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Abstract

In this paper, we consider a bivariate process (Xt, Yt)t∈Z which, conditionally on a signal (Wt)t∈Z,
is a hidden Markov model whose transition and emission kernels depend on (Wt)t∈Z. The resulting pro-
cess (Xt, Yt,Wt)t∈Z is referred to as an input-output hidden Markov model or hidden Markov model
with external signals. We prove that this model is identifiable and that the associated maximum likeli-
hood estimator is consistent. Introducing an Expectation Maximization-based algorithm, we train and
evaluate the performance of this model in several frameworks. In addition to learning dependencies be-
tween (Xt, Yt)t∈Z and (Wt)t∈Z, our approach based on hidden Markov models with external signals also
outperforms state-of-the-art algorithms on real-world fashion sequences.

Keywords: Hidden Markov Model, Identifiability, Consistency, Expectation-Maximization, Fashion
time series

1 Introduction
A hidden Markov model (HMM) is a bivariate process (Xt, Yt)t∈Z where (Xt)t∈Z is a hidden Markov
process and (Yt)t∈Z is an observed process such that at each time s ∈ Z, the conditional law of Ys given
(Xt)t∈Z depends only on Xs. Such models, introduced in the late 1960s, have been largely studied and
applied in many disciplines, see for instance [Douc et al., 2014, Chopin et al., 2020, Särkkä, 2013] and
references therein. As the process (Xt)t∈Z is not observed, the maximum likelihood estimator (MLE) is
intractable in most cases. The Expectation Maximization (EM) algorithm, introduced in [Dempster et al.,
1977], overcomes this issue and provides a very appealing framework to infer these models with latent states.
Variants of the EM algorithms have also been proposed to perform for instance online learning, see [Andrieu
and Doucet, 2003, Cappé and Moulines, 2009, Le Corff and Fort, 2013], or inference of seasonal hidden
Markov models [Touron, 2019].

Numerous theoretical results have been provided for hidden Markov models and their extensions. Gen-
eral identifiability results have been first obtained in [Gassiat et al., 2015] for HMMs with finite state space
using the spectral method introduced in [Hsu et al., 2012]. This result establishes that given the law of a

1
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triplet of observations, the transition matrix of the hidden states and the emission densities, i.e. the con-
ditional densities of the observations given the states, can be identified up to a common permutation. This
result was then extended by [Touron, 2019, Gassiat and Rousseau, 2016] to provide a theoretical justification
of the use of nonparametric finite translation HMMs and of HMMs with seasonality. Finally, the work of
[Gassiat et al., 2020] generalizes the identifiability guarantees to nonparametric translation HMMs with con-
tinuous state space, without any assumption on the distribution of the noise, and under a light tail assumption
on the distribution of the latent variables.

The consistency of the MLE for HMMs has also been widely studied since the first result of [Baum and
Petrie, 1966], where consistency is proved when both (Yt)t∈Z and (Xt)t∈Z take values in a discrete space.
A notable extension is proved in [Leroux, 1992] in the case where only (Xt)t∈Z is assumed to be discrete.
A general result, valid for a large class of nonlinear state space models and encompassing linear Gaussian
state space models and finite state models, is then established in [Douc et al., 2011]. Additional results have
also been proposed to analyze several extensions of HMMs. For instance, the authors of [Juang and Rabiner,
1985] introduce the autoregressive hidden Markov model. In this model, at each time t, the conditional law
of Yt given all the available information depends of Xt but also on some past values denoted Ys:t−1 with
s < t. Another HMM variant can be found in [Touron, 2019] where seasonal components are included in the
law of (Xt)t∈Z and (Yt)t∈Z. For both extensions, identifiability of the model and consistency of the MLE
have been proved, see [Touron, 2019, Douc et al., 2004].

Despite all these results, recent state-of-the-art forecasting models are for a large part based on recurrent
neural networks [Hochreiter and Schmidhuber, 1997, Salinas et al., 2020] or sequence to sequence deep
learning architectures [Vaswani et al., 2017, Li et al., 2019]. Intrinsically designed to deal with numerous
heterogeneous data and include external signals, these new approaches overcome some limitations of HMMs
and reach unprecedented accuracy levels in various frameworks and for numerous data sets, see for instance
[Lim et al., 2021, Salinas et al., 2020, David et al., 2022]. However, these results have a cost: i) most of the
recent state-of-the-art models are black boxes as the final forecast usually cannot be explained ; ii) very few
theoretical guarantees exist for such deep learning architecture-based algorithms.

Regarding this new signal processing context, a main limitation of HMMs is the absence of theoretical
results concerning the inclusion of meaningful external signals in the transition and emission kernels. In this
paper, we consider bivariate processes (Yt, Xt)t∈Z with (Yt)t∈Z the observation process and (Xt)t∈Z a dis-
crete hidden process. Conditionally on an observed external signal (Wt)t∈Z, it is assumed that (Yt, Xt)t∈Z
is a hidden Markov model so that at each time t ∈ Z, the transition matrix of the hidden process and the
emission law of the observation sequence depend on (Wt,Wt+1). Such models are inspired by the Input-
Ouput models introduced in [Bengio and Frasconi, 1994], where a recurrent architecture is used to combine
a discrete hidden state representing a past context and some input variables for sequence processing. The
contextual HMMs of [Radenen and Artieres, 2012] also provide numerical insights of the benefit of adding
external variables in the setting of Gaussian HMMs.

In this paper, we prove the identifiability of HMMs with external signals (Theorem 1) and the consistency
of the associated MLE (Theorem 2). Then, we implement the MLE using the EM algorithm and show on
a synthetic data set that it can recover the true set of parameters and that the addition of external signals
does not prevent an efficient training process. Finally, we evaluate the proposed method on real world
retail times series using the fashion data set introduced in [David et al., 2022]. This data set gathers the
evolution of thousands of fashion items on social media and provides for each of them an external signal
representing the behaviour of influencers. Using this additional influencers signal as an external signal in
our new framework, we run experiments on a sample of fashion time series with challenging dynamics.
Our approach outperforms state-of-the-art algorithms, including deep learning architectures on several time
series and illustrates the potential of HMMs with external signals.
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The paper is organized as follows. Section 2 extends the identifiability result of HMMs to HMMs with
external signals following [Touron, 2019]. Then, the consistency of the MLE is proved in Section 3 following
[Douc et al., 2014, Chapter 13]. Section 4 describes our experiments using synthetic data and some real-
world fashion time series. Finally, a general conclusion and some research perspectives are given in Section
5.

Notations. For any vector v of size m > 1, diag(v) is the diagonal matrix in Rm×m whose diagonal is
given by v. By convention, one-dimensional vectors are row vectors in this paper. Given a sequence (Yt)t∈Z,
for any s ∈ Z and all r ∈ Z such that r < s, write Yr:s = (Yr, · · · , Ys) with the convention Ys:s = Ys.
For any finite set A, let | A | be the cardinality of A. Consider a finite measurable space (X,X ). For any
transition matrix Q defined on X× X, any measurable function h defined on X and any A ∈ X , write for all
x, x′ ∈ X,

Q(x, h) = Qh(x) =
∑
x′∈X

Q(x, x′)h(x′) and Q(x,A) =
∑
x′∈X

Q(x, x′)1A(x′) ,

where 1A is the indicator function of the setA. In addition, for all sequences of transition matrices {Qk}k∈Z,
and all r 6 s, write for all xr ∈ X and any measurable function h defined on X,

Qr,s(xr, h) = Qr,sh(xr) =
∑

xr+1:s∈Xs−r
Qr+1(xr, xr+1) · · ·Qs(xs−1, xs)h(xs) ,

with the convention Qs,s = Id and Qk = Qk,k+1.

2 Identifiability of HMMs with external signals
Let (Wt)t∈Z be a sequence of external variables taking values in a measurable space (W,W). We assume
that all variables Wt, t ∈ Z, have the same support, and without loss of generality, we assume this support
to be the whole space W. These auxiliary variables may account for the history of some additional time
series, or any other available information. Let (Yt)t∈Z be the sequence of observations taking values in a
measurable space (Y,Y) with Y a Polish space. We consider models in which there exists a hidden process
(Xt)t∈Z taking values in a finite space X such that if P is the distribution of the process (Wt, Xt, Yt)t∈Z, the
pair (X,P) satisfies the following assumptions.

H1 The conditional law of {(Xt, Yt)}t∈Z given (Wt)t∈Z satisfies

– for all t ∈ Z, for all k ∈ X,

P(Xt+1 = k | (Xs)s6t, (Ws)s∈Z) = P(Xt+1 = k | Xt,Wt,Wt+1) ,

– For all t ∈ Z and for all measurable set A ∈ Y ,

P (Yt ∈ A | (Xs)s∈Z, (Ws)s∈Z) = P(Yt ∈ A | Xt,Wt) .

A graphical model to illustrate H1 is displayed in Figure 1.
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Figure 1: Graphical model of a latent data models with external signals satisfying H1.

H2 For all t ∈ Z, for all wt−1, wt, wt+1 ∈ W, all xt−1, xt, xt+1 in X and all A ∈ Y⊗3, the limit
limε→0 P(Xt−1:t+1 = xt−1:t+1, Yt−1:t+1 ∈ A | Wt−1:t+1 ∈ B(wt−1:t+1, ε)) exists and there exist
functions

(w, x) ∈W × X 7−→ πt,w(x),

(w,w′, x, x′) ∈W ×W × X× X 7−→ Qt|w,w′(x, x
′)

and
(w, x,A) ∈W × X× Y 7−→ νt|w,x(A)

such that πt,w is a probability vector on X,Qt|w,w′ is a transition matrix on X×X, νt|w,x is a probability
measure on (Y,Y) and

lim
ε→0

P(Xt−1:t+1 = xt−1:t+1, Yt−1:t+1 ∈ A |Wt−1:t+1 ∈ B(wt−1:t+1, ε))

=: P(Xt−1:t+1 = xt−1:t+1, Yt−1:t+1 ∈ A |Wt−1:t+1 = wt−1:t+1)

= πt−1,wt−1
(xt−1)Qt−1|wt−1,wt(xt−1, xt)Qt|wt,wt+1

(xt, xt+1)

×
∫
A

⊗t+1
s=t−1νs|ws,xs(dyt−1:t+1). (1)

In particular, for all t ∈ Z, for all xt, xt+1 ∈ X and for all wt, wt+1 ∈W,

πt,wt(xt) = lim
ε→0

P(Xt = xt |Wt ∈ B(wt, ε)) ,

Qt|wt,wt+1
(xt, xt+1) = lim

ε→0
P(Xt+1 = xt+1 | Xt = xt,Wt:t+1 ∈ B(wt:t+1, ε)) ,

and for all measurable set A ∈ Y ,

νt|wt,xt(A) = lim
ε→0

P(Yt ∈ A | Xt = xt,Wt ∈ B(wt, ε)) .

The conditional law of the process (Xt, Yt)t∈Z given (Wt)t∈Z is the law of a hidden Markov model with
transition matrices Qt|Wt,Wt+1

and emission densities (νt|Wt,k)k∈X, t ∈ Z.

H3 For all t ∈ Z, for all wt, wt+1 ∈ W, Qt|wt,wt+1
is invertible, and for all wt ∈ W, (νt|wt,xt)xt∈X are

linearly independent.

H4 For all t ∈ Z and for all k ∈ X and wt ∈W, πt,wt(k) > 0.
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Theorem 1. Assume that (X,P) satisfies H1-4 with parameters

ϑ = {πt,wt , Qt−1|wt−1,wt , νt|wt,x}t∈Z,x∈X,wt−1,wt∈W .

Let (X̃, P̃) be such that |X̃| 6 |X| and satisfying Assumptions H1-2 with parameters

ϑ̃ = {π̃t,wt , Q̃t−1|wt−1,wt , ν̃t|wt,x}t∈Z,x∈X,wt−1,wt∈W .

If for all t ∈ Z, the distribution of (Wt−1:t+1, Yt−1:t+1) is the same under P and P̃, then |X̃| = |X| and there
exists a family of bijections (σt,w)t∈Z,w∈W, where σt,w : X −→ X̃, such that for all t ∈ Z, x, x′ ∈ X and
wt−1, wt ∈W, 

πt−1,wt−1
(x) = π̃t−1,wt−1

(σt−1,wt−1
(x)),

Qt−1|wt−1,wt(x, x
′) = Q̃t−1|wt−1,wt(σt−1,wt−1(x), σt,wt(x

′)),

νt|wt,x = ν̃t|wt,σt,wt (x) .

Proof. For all t ∈ Z and wt−1, wt, wt+1 in W, the limits P(· | Wt−1:t+1 = wt−1:t+1) and P̃(· |
Wt−1:t+1 = wt−1:t+1) from (1) define probability distributions of (Xt−1:t+1, Yt−1:t+1) depending on
wt−1:t+1. We write E[· | Wt−1:t+1 = wt−1:t+1] the conditional expectation under the probability dis-
tribution P(· | Wt−1:t+1 = wt−1:t+1). Moreover, since P(Yt−1:t+1 ∈ A | Wt−1:t+1 ∈ B(wt−1:t+1, ε)) =

P̃(Yt−1:t+1 ∈ A | Wt−1:t+1 ∈ B(wt−1:t+1, ε)) for all wt−1, wt, wt+1 in W and ε > 0, the distribution
of Yt−1:t+1 is the same under under P(· | Wt−1:t+1 = wt−1:t+1) and P̃(· | Wt−1:t+1 = wt−1:t+1). We
may then extend the identifiability results for hidden Markov models given in [De Castro et al., 2017, Gas-
siat et al., 2015] to hidden Markov models with external signals following the same steps as in the proofs
introduced in [Touron, 2019].

Let (φn)n∈N be a sequence of measurable functions on (Y,Y) such that for all probability measures ν1,
ν2 on (Y,Y), if for all n ∈ N,

∫
Y
φndν1 =

∫
Y
φndν2, then ν1 = ν2. As Y is a Polish space, the existence of

such a sequence (φn)n∈N is ensured. Let k ∈ X, m > 1 and a, b, c ∈ {1, ...,m}. For all wt−1, wt, wt+1 in
W, all t ∈ Z, define the matrix Ot,wt ∈ Rm×K by

(Ot,wt)a,k = E[φa(Yt) | Xt = k,Wt = wt] . (2)

For all a, b, c ∈ {1, ...,m}, consider also:

Lt,wt(a) = E[φa(Yt) |Wt = wt] ,

Nt,wt−1:t
(a, b) = E[φa(Yt−1)φb(Yt) |Wt−1:t = wt−1:t] ,

Pt,wt−1:t+1
(a, c) = E[φa(Yt−1)φc(Yt+1) |Wt−1:t+1 = wt−1:t+1] ,

Mt,wt−1:t+1
(a, b, c) = E[φa(Yt−1)φb(Yt)φc(Yt+1) |Wt−1:t+1 = wt−1:t+1] .

For greater conciseness, the dependency on m of all these matrices is kept implicit. The first step of the
proof is to write, for all wt−1, wt and wt+1 in W and b ∈ {1, . . . ,m}, the known quantities Lt,wt , Nt,wt−1:t

,
Pt,wt−1:t+1 and Mt,wt−1:t+1(., b, .) as functions of the quantities to be identified: πt,wt , (Os,ws)t−16s6t+1,
Qt−1|wt−1,wt , Qt|wt,wt+1

and (νs|ws,x)t−16s6t+1. For all a ∈ {1, . . . ,M}, wt ∈W,

Lt,wt(a) =
∑
xt∈X

πt,wt(xt)E[φa(Yt) | Xt = xt,Wt = wt] =
∑
xt∈X

πt,wt(xt)(Ot,wt)a,xt .
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We obtain similarly, for all wt−1, wt and wt+1 in W,

Lt,wt = Ot,wtπ
>
t,wt , (3)

Nt,wt−1:t = Ot−1,wt−1diag(πt−1,wt−1)Qt−1|wt−1,wtO
>
t,wt , (4)

Pt,wt−1:t+1
= Ot−1,wt−1

diag(πt−1,wt−1
)Qt−1|wt−1,wtQt|wt,wt+1

O>t+1,wt+1
, (5)

and for all b ∈ {1, . . . ,m},

Mt,wt−1:t+1(., b, .) = Ot−1,wt−1diag(πt−1,wt−1)Qt−1|wt−1,wtdiag(Ot,wt(b, .))Qt|wt,wt+1
O>t+1,wt+1

. (6)

The second step is to prove that Ot,wt can be computed using the known quantities Lt−1,wt−1 , Nt,wt−1:t ,
Pt,wt−1:t+1 and Mt,wt−1:t+1 . Assumption H3 and the definition of the sequence (φn)n∈N yield that for all
wt−1, wt and wt+1 in W, there exists m0 > K, such that for all m > m0, Ot−1,wt−1

, Ot,wt and Ot+1,wt+1

have full rank. Consider now that m > m0. Under H3 and H4, Qt−1|wt−1,wt , Qt|wt,wt+1
and diag(πwt−1

)
are invertible. Then, using (5), it follows that the matrix Pt,wt−1:t+1

has rank K. Write the singular value
decomposition of the matrix Pt,wt−1:t+1 :

Pt,wt−1:t+1 = UΣV > , (7)

where U and V are matrices in Rm×K containing the singular vectors associated with non-zero singular
values of Pt,wt−1:t+1 and Σ is a K × K diagonal matrix. As Pt,wt−1:t+1 has rank K, the diagonal matrix
Σ = U>Pt,wt−1:t+1

V contains the K nonzero singular values of Pt,wt−1:t+1
. It is important to note that this

decomposition is not unique as the order of the singular values is not fixed. For all b ∈ {1, ...,m} and for all
wt−1, wt and wt+1 in W, define:

Bt,wt−1:t+1
(b) = (U>Pt,wt−1:t+1

V )−1U>Mt,wt−1:t+1
(., b, .)V . (8)

Using (5) and (6), for all b ∈ {1, ...,m},

Bt,wt−1:t+1(b) = (U>Ot−1,wt−1diag(πt−1,wt−1)Qt−1|wt−1,wtQt|wt,wt+1
O>t+1,wt+1

V )−1U>Ot−1,wt−1

× diag(πt−1,wt−1
)Qt−1|wt−1,wtdiag(Ot,wt(b, .))Qt|wt,wt+1

O>t+1,wt+1
V

= (Qt|wt,wt+1
O>t+1,wt+1

V )−1diag(Ot,wt(b, .))Qt|wt,wt+1
O>t+1,wt+1

V .

Defining R = (Qt|wt,wt+1
O>t+1,wt+1

V )−1, yields, for all b ∈ {1, ...,m},

diag(Ot,wt(b, .)) = R−1Bt,wt−1:t+1(b)R . (9)

By (9), for all (α1, ..., αm) ∈ Rm, the eigenvalues of
∑m
b=1 αbBt,wt−1:t+1

(b) are the diagonal values of the
matrix diag(

∑m
b=1 αbOt,wt(b, .)) = diag(αOt,wt). Since Ot,wt has rank K, there exist α ∈ Rm such that

Bt,wt−1:t+1 =
∑m
b=1 αbBt,wt−1:t+1(b) has distinct eigenvalues. Therefore, the eigenvalue decomposition of

Bt,wt−1:t+1
is unique up to permutation and scaling of the columns of R. By computing the eigenvectors of

Bt,wt−1:t+1
, we can finally compute R up to permutation and scaling of its columns. Therefore, the vectors

Ot,wt(b, .) can be recovered for all b ∈ {1, ...,m} up to a common permutation of their components. As
Mt,wt−1:t+1

(., b, .) and Pt,wt−1:t+1
are the same when computed under P and P̃,

(Ot,wt).,x = (Õt,wt).,σt,wt−1:t+1
(x)

6
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for some permutation σt,wt−1:t+1
. From its definition in (2), the matrix Ot,wt does not depend of wt−1 and

wt+1. Consequently, σt,wt−1:t+1 only depends on wt and we write σt,wt so that

(Ot,wt).,x = (Õt,wt).,σt,wt (x) . (10)

We can similarly recover Ot−1,wt−1
and Ot+1,wt+1

up to permutations σt−1,wt−1
and σt+1,wt+1

by consid-
ering the conditional law of the triplets Yt−2:t and Yt:t+2 given Wt−2:t and Wt:t+2.

The last part of the proof is to show that the remaining quantities πt−1,wt−1
, Qt−1|wt−1,wt and

(νs|ws,x)t−16s6t+1 can also be identified up to the permutations (σs,ws)t−16s6t+1. For all s ∈ {t−1, t, t+

1}, let Us be a K ×m matrix such that U>s Os,ws is invertible. Such a matrix exists as soon as Os,ws has
full rank, which is the case since we assumed m > m0. Using (3),

Lt−1,wt−1
= Ot−1,wt−1

π>t−1,wt−1

and
πt−1,wt−1 = ((U>t−1Ot−1,wt−1)−1U>t−1Lt−1,wt−1)> .

Given a permutation σ, we write Πσ the associated permutation matrix, that is the matrix whose j-th column
has a 1 in row σ(j) and 0 elsewhere for all j. In particular, given a matrix A, the columns of AΠσ are the
columns ofA permuted according to σ. Since the matrix Lt−1,wt−1

is the same under P and P̃, Equation(10)
yields

Lt−1,wt−1
= Ot−1,wt−1

π>t−1,wt−1
= Õt−1,wt−1

π̃>t−1,wt−1
= Ot−1,wt−1

Πσt−1,wt−1
π̃>t−1,wt−1

,

which brings that π̃t−1,wt−1 = πt−1,wt−1Πσt−1,wt−1
. Likewise,

Nt,wt−1:t = Ot−1,wt−1diag(πt−1,wt−1)Qt−1|wt−1,wtO
>
t,wt ,

which yields

Qt−1|wt−1,wt = diag(πt−1,wt−1
)−1(U>t−1Ot−1,wt−1

)−1U>t−1Nt,wt−1:t
Ut(O

>
t,wtUt)

−1 .

Moreover, since the matrix Nt−1,wt−1:t is the same when computed under P and P̃ and noting that
diag(πt−1,wt−1

Πσt−1,wt−1
) = Π>σt−1,wt−1

diag(πt−1,wt−1
) Πσt−1,wt−1

,

Nt,wt−1:t = Ot−1,wt−1diag(πt−1,wt−1)Qt−1|wt−1,wtO
>
t,wt

= Õt−1,wt−1
diag(π̃t−1,wt−1

)Q̃t−1|wt−1,wtÕ
>
t,wt

= Ot−1,wt−1Πσt−1,wt−1
diag(πt−1,wt−1

Πσt−1,wt−1
)Q̃t−1|wt−1,wt(Ot,wtΠσt,wt

)> ,

= Ot−1,wt−1diag(πt−1,wt−1)Πσt−1,wt−1
Q̃t−1|wt−1,wtΠ

>
σt,wt

O>t,wt ,

which gives Q̃t−1|wt−1,wt = Π>σt−1,wt−1
Qt−1|wt−1,wtΠσt,wt

.
Therefore, under H1-4, if for all t, all wt−1, wt, wt+1 in W, the distribution of Yt−1:t+1 given

Wt−1:t+1 = wt−1:t+1 is the same under two sets of parameters, then for all x, x′ ∈ X,

πt,wt(x) = π̃t−1,wt−1
(σt−1,wt−1

(x)) ,

Qt−1|wt−1,wt(x, x
′) = Q̃t−1|wt−1,wt(σt−1,wt−1

(x), σt,wt(x
′)) ,

(Ot,wt).,x = (Õt,wt).,σt,wt (x) .
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The last equality provides that for every m > m0, Ot,wt = Õt,wtΠσt,wt
. By definition of the sequence

(φn)n∈N, this implies that for all wt ∈W, for all k ∈ X:

νt|wt,k = ν̃t|wt,σt,wt (k)

and this result concludes the proof.

3 Consistency
We consider hidden Markov models with external variables as defined in Section 2 and satisfying Assump-
tions H1-4. We assume that for all t ∈ Z, wt, wt+1 in W, and k ∈ X, the transition matrices and emission
distributions of the model are entirely parameterized by some θ ∈ Θ, where Θ is a closed parameter space,
and written Qθt|wt,wt+1

and νθt|wt,k. In addition, we introduce the following assumptions.

H5 The process (Yt,Wt)t∈Z is stationary and ergodic.

Note that we do not assume the model parameters Qθt|wt,wt+1
and νθt|wt,k to be the same for all t ∈ Z.

Most works on maximum likelihood estimation assume that the distribution of the observations belongs
to the proposed parametric family of distributions. In many cases, it is unlikely that this assumption is
satisfied. In this section, we only assume that H5 holds but we do not assume that (Yt)t∈Z has a distribution
satisfying Assumptions H1-4. Consequently, we introduce P∗ the true distribution of {(Yt,Wt)}t∈Z and E∗,
the expectation under this distribution.

H6 a) There exists a probability measure λ on (Y,Y) such that for all x ∈ X, all w ∈W, all t ∈ Z and
all θ ∈ Θ, νθt|w,x has a density with respect to λ denoted by fθt|w,x.

b) There exists σ− > 0 such that, for all x, x′ ∈ X, all (w,w′) ∈ W2, all t ∈ Z and all θ ∈ Θ,
Qθt|w,w′(x, x

′) > σ−.

c) For all t ∈ Z, y ∈ Y, all w ∈W and all θ ∈ Θ: 0 <
∑
x∈X f

θ
t|w,x(y) <∞.

H7 b+ := supθ,t supxt,yt,wt f
θ
t|wt,xt(yt) < ∞ and for all t ∈ Z, E∗[| ln(b−(t, Yt,Wt) |] < ∞, where

b−(t, yt, wt) := infθ
∑
xt∈X f

θ
t|wt,xt(yt).

Consider also the following family of probability distributions on X:

D = {π probability distribution on X ; ∀x ∈ X, π(x) > σ−} .

For any initial distribution π ∈ D, any θ ∈ Θ and any r, s ∈ Z such that r < s, let Lθπ,r:s be the conditional
likelihood function of the s − r + 1 first observations of the hidden Markov model with external variables
associated with initial distribution π at time r and parameter θ:

Lθπ,r:s(yr:s | wr:s) =
∑

xr:s∈Xr−s+1

π(xr)f
θ
r|wr,xr (yr)

s∏
p=r+1

Qθp−1|wp−1,wp
(xp−1, xp)f

θ
p|wp,xp(yp) .

Under H1-4, and following the demonstration introduced in [Douc et al., 2014, Chapter 13], it is possible to
establish the strong consistency of the maximum likelihood estimator conditionally to the external variables
defined as

θ̂n,π,W0:n−1
∈ argmax

θ∈Θ
Lθπ,0:n−1(Y0:n−1 |W0:n−1) . (11)
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Since Lθπ,r:s(Yr:s | Wr:s) is the likelihood of a hidden Markov model, the loglikelihood of the observations
Y0:n−1 conditionally to the external signals W0:n−1, denoted by `π,n(θ) = ln Lθπ,0:n−1(Y0:n−1 | W0:n−1),
can be decomposed as follows using H1:

`π,n(θ) = ln Lθπ,0:n−1(Y0:n−1 |W0:n−1) =

n−1∑
t=0

ln Lθπ,0:t(Yt | Y0:t−1,W0:n−1)

=

n−1∑
t=0

ln Lθπ,0:t(Yt | Y0:t−1,W0:t) , (12)

with the convention Lθπ,0:0(Y0 | Y0:−1,W0) = Lθπ,0(Y0 | W0) =
∑
x0∈X π(x0)fθ0|W0,x0

(Y0). We first show
that the limit limm→∞ Lθπ,−m:t(Yt | Y−m:t−1,W−m:t) exists P∗-a.s. and does not depend on π. Writing
Lθ(Yt | Y−∞:t−1,W−∞:t) this limit, it forms an ergodic stationary sequence and we introduce the following
approximation of `π,n(θ):

`sn(θ) =
n−1∑
t=0

lnLθ(Yt | Y−∞:t−1,W−∞:t) , (13)

where the superscript s stands for stationary. Using Birkoff’s theorem with this new sequence, we can prove
that there is a constant `(θ) such that limn→∞ n−1 lnLθπ(Y0:n−1 | W0:n−1) = `(θ), P∗-a.s. . The last step
of the proof amounts to establishing that limn→∞ d(θ̂n,π,w0:n−1

,Θ∗) = 0 with Θ∗ = argmaxθ∈Θ `(θ).

Proposition 1.1. Under Assumptions H5-H7, for all (yt, wt)t∈Z, π ∈ D,
(Lθπ,−m:t(yt | y−m:t−1, w−m:t))m>0 has a finite limit, which does not depend on the initial distribution π,
denoted byLθ(yt | y−∞:t−1, w−∞:t). Moreover, the limit limn→∞ n−1

∑n−1
t=0 lnLθ(Yt | Y−∞:t−1,W−∞:t)

exists P∗-a.s. and
lim
n→∞

sup
θ∈Θ

sup
π∈D

n−1 | `π,n(θ)− `sn(θ) |= 0 , P∗-a.s. , (14)

where `π,n(θ) =
∑n−1
t=0 lnLθπ,0:t(Yt | Y0:t−1,W0:t) and `sn(θ) =

∑n−1
t=0 lnLθ(Yt | Y−∞:t−1,W−∞:t).

Proof. The proof follows the same steps as the proof of [Douc et al., 2014, Proposition 13.5] and is given in
Supplementary material B.1.

The last part of the proof is to use the Birkhoff ergodic theorem so as to conclude the strong consistency
of the conditional MLE θ̂n,π,w0:n−1

.

H8 for all t ∈ Z, all (xt−1, xt) ∈ X2, all (wt−1, wt) ∈ W2 and all yt ∈ Y, the functions θ 7→
Qθt−1|wt−1,wt

(xt−1, xt) and θ 7→ fθt|wt,xt(yt) are continuous.

Theorem 2. Under H5-H8, For any sequence of estimators (π̂n)n taking values in D, P∗-a.s.,

lim
n→∞

d(θ̂n,π̂n,w0:n−1 ,Θ
∗) = 0 , (15)

with Θ∗ = argmax
θ∈Θ

`(θ) and `(θ) = E∗[lnLθ(Y0 | Y−∞:−1,W−∞:0)].

Proof. The proof follows the same steps as the proofs of [Douc et al., 2014, Theorems 13.7 and 8.42] and is
given in Supplementary material B.2.
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4 Experiments
We propose to use an Expectation Maximization algorithm to learn the parameters of the proposed models,
see [Dempster et al., 1977]. Let (Xt, Yt,Wt)t>1 be a HMM with external signals and K hidden states. An
EM-based algorithm can be derived to maximize the loglikelihood function θ 7→ log pθ(Y1:N | W1:N ) for
some N > 1.

Given a current parameter estimate θk−1, the pivotal idea of this algorithm is to replace the loglikelihood
of the observations by the surrogate quantity:

θ 7→ Q(θ, θk−1) = Eθk−1
[log pθ(X,Y |W) | Y,W] ,

with X = (Xt)16t6N , Y = (Yt)16t6N , W = (Wt)16t6N and pθ(X,Y |W) the joint density of (X,Y)
conditionally to the external signal W. The new parameter estimate is then obtained following the two steps:

(i) compute θ 7→ Q(θ, θk−1) ;

(ii) set θk as one of the maximizers of θ 7→ Q(θ, θk−1).

As the latent states take values in {1, . . . ,K}, the conditional distribution of X given (Y,W) can be com-
puted explicitly using the Baum-Welch forward-backward algorithm, see for instance [Douc et al., 2014].
Therefore, step (i) can be performed as it is. For step (ii), as a maximizer of θ 7→ Q(θ, θk−1) is not al-
ways straightforward to compute, the generalized EM (GEM) approach [Dempster et al., 1977] is used.
Given θk−1, an optimizer is used to find a θk verifying Q(θk, θk−1) > Q(θk−1, θk−1). This less restrictive
variation, despite a potential slowdown, still ensures the convergence of the EM algorithm.

4.1 Simulated data
Assume first that K = 2 and consider the following hidden Markov models.

Hidden Markov Model (hmm). For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1) and for t > 1,
P(Xt+1 = j | Xt = i) = Qij with Qi1 = exp(Pi1)/(1 + exp(Pi1)) and Pi1 = ωi1 ∈ R. For all t > 1, the
conditional distribution of Yt given {Xt = k} is Gaussian with mean µk ∈ R and variance σ2

k > 0.

Seasonal Hidden Markov Model (shmm). For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1) and for
t > 1, P(Xt+1 = j | Xt = i) = Qij(t) with Qi1(t) = exp(Pi1(t))/(1 + exp(Pi1(t))) and Pi1(t) =
ωi1 + ωi3 cos(2πt/T ) + ωi4 sin(2πt/T ), with ωi1, ωi3, ωi4 in R. For all t > 1, the conditional distribution
of Yt given {Xt = k} is Gaussian with mean µk(t) = δk1 + δk3 cos(2πt/T ) + δk4 sin(2πt/T ), with δk1,
δk3, δk4 in R, and variance σ2

k > 0.

Hidden Markov Model with External Signals (hmm-es). For all i, j, k ∈ {1, 2}, P(X1 = k) =
πk ∈ (0, 1) and for t > 1, P(Xt+1 = j | Xt = i) = Qij(Wt) with Qi1(Wt) = exp(Pi1(Wt))/(1 +
exp(Pi1(Wt))) and Pi1(Wt) = ωi1 + ωi2Wt, with ωi1, ωi2 in R. For all t > 1, the conditional distribution
of Yt given {Xt = k} and Wt is Gaussian with mean µk(Wt) = δk1 + δk2Wt, with δk1, δk2 in R, and
variance σ2

k > 0.
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Figure 2: Example of external signal sequence (orange) and associated simulated sequence using a shmm-es
model with parameter θ∗ (black).

Seasonal Hidden Markov Model with External Signals (shmm-es). For all i, j, k ∈ {1, 2}, P(X1 =
k) = πk ∈ (0, 1) and for t > 1, P(Xt+1 = j | Xt = i,Wt) = Qij(t,Wt) with Qi1(t,Wt) =
exp(Pi1(t,Wt))/(1+exp(Pi1(t,Wt))) and Pi1(t,Wt) = ωi1 +ωi2Wt+ωi3 cos(2πt/T )+ωi4 sin(2πt/T ),
with ωi1, ωi2, ωi3, ωi4 in R. For all t > 1, the conditional distribution of Yt given {Xt = k} and Wt is
Gaussian with mean µk(t,Wt) = δk1 + δk2Wtδk3 cos(2πt/T ) + δk4 sin(2πt/T ), with δk1, δk2, δk3, δk4 in
R , and variance σ2

k > 0 > 0.

A first simulated time series is generated using a hidden Markov model with external signals and sea-
sonal components as defined above (shmm-es). As external signal (Wt)t>1, a signal of the fashion dataset
introduced in [David et al., 2022] is used to provide a realistic setting. The external sequence is smoothed us-
ing a moving average with a sliding window of length 8 and divided by the mean of the first year to rescale
the signal. In addition, the smoothed signal is duplicated to simulate an arbitrary long sequence (Yt)t>1.
Figure 2 displays the resulting external signal duplicated 4 times to reach the length of 1000 time steps. We
define a set of parameters θ∗ of a shmm-es with T = 52:

π∗ =
(
π∗1 1− π∗1

)
=
(
0 1

)
δ∗ =

(
δ∗11 δ∗12 δ∗13 δ∗14

δ∗21 δ∗22 δ∗23 δ∗24

)
=

(
3. 0.8 2.5 4.
−1.1 −0.1 −1.5 3.5

)
σ∗ =

(
σ∗1 σ∗2

)
=
(
0.5 0.25

)
ω∗ =

(
ω∗11 ω∗12 ω∗13 ω∗14

ω∗21 ω∗22 ω∗23 ω∗24

)
=

(
0.5 0.9 0.7 0.5
−2. −0.2 −0.6 0.7

)
.

We set T = 52 according to the weekly seasonality of the external signal. Using this set of parameters and
the external sequence (Wt)t>1, a sequence of (Xt)t>1 and (Yt)t>1 is generated, see Figure 2. Using the
Expectation Maximization algorithm, 10 hmm, shmm, hmm-es and shmm-es are fitted on a training set of
length 10000 with different initial parameters θ0 = (ω0, δ0, σ0). For each initial parameter estimate, the EM
algorithm is run for 1000 iterations. A test set of length 250 is generated and used to evaluate the different
approaches. As we provide a single simulated sequence, the parameter π is not learned and fixed at the
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Figure 3: Comparison of the true functions µ1(t,Wt) and µ2(t,Wt) and the estimations with the shmm-
es model (left). Comparison of the true functions Q1(t,Wt) and Q2(t,Wt) and the estimations with the
shmm-es model (right). For the functions µ1(t,Wt) and µ2(t,Wt), estimations are almost perfect: the true
functions and the learned ones are combined.

true parameter π∗ during the training. In order to reproduce results and trainings on simulated sequences, a
complete code in Python is publicly provided1.

We first evaluate the performance of the EM algorithm to estimate the true set of parameters θ∗. Figure 3
displays the true functions t 7→ µ1(t,Wt), t 7→ µ2(t,Wt), t 7→ Q11(t,Wt) and t 7→ Q22(t,Wt) and
the estimations by the shmm-es. A complete overview of the final learned parameters by the EM-based
algorithm for the shmm-es model can be found in Table 4. Additional experiments to analyze the impact
of the sequence length and the initial parameters are also summarized in Appendix A.1. Secondly, the
forecasting accuracy of hmm, shmm, hmm-es and shmm-es is evaluated. For each trained model. A set of
1000 predictions of the test set is generated, the average prediction is computed and evaluated using the
mean absolute error (MAE), the mean squared errror (MSE) and the mean absolute scaled error (MASE):

MAE =
1

h

h∑
j=1

| YN+j − ŶN+j | MSE =
1

h

h∑
j=1

(YN+j − ŶN+j)
2

MASE =
N − T
h

∑h
j=1 | YN+j − ŶN+j |∑N−T
i=1 | Yi − Yi−T |

,

where N represents the train set length, h the horizon and T the seasonality length. Table 1 summarizes
the mean and the standard deviation over the 10 repetitions for the 4 approaches and the 3 metrics. Finally,
Figure 4 shows predictions of each method on the test set. This first experiment illustrates two main results.
Firstly, as the true set of parameters was correctly recovered for the shmm-es model, the EM algorithm is
efficient to estimate parameters of models with external signals. Secondly, Table 1 shows that hmm-es and
shmm-es methods are able to leverage the external signal and outperform their concurrent methods hmm and
shmm.

4.2 Fashion time series forecasting
An interesting application of HMM with external signals can be found in the fashion and retail industries. It
is crucial for these domains to accurately forecast the consumers future behaviours in order to make optimal
inventory decisions and avoid massive wastes. However, fashion dynamics appear to be really volatile with
nonlinear changes of dynamics resulting from the apparition of new tendencies. By taking into account
behaviour of influencers as external signals, it becomes possible to better anticipate these changes.

1https://github.com/etidav/hmm_with_external_signals
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Table 1: MASE, MSE and MAE accuracy of the 4 hmm approaches considered using a synthetic time series.
For each method, 10 trainings are done with different initialisation parameter. The mean and the standard
deviation over the 10 iteration is displayed for each approach

MASE MAE MSE
mean std mean std mean std

hmm 1.354 0.016 4.833 0.056 31.124 0.368
shmm 0.903 0.005 3.222 0.017 15.582 0.193
hmm-es 1.245 0.008 4.446 0.027 26.346 0.327
shmm-es 0.737 0.008 2.630 0.029 14.102 0.346

Figure 4: 1000 simulation and average prediction of hmm, shmm, hmm-es and shmm-es models on the test
set.

13
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Figure 5: Time series ”eu-female-top-325” from [David et al., 2022] representing an emerging fashion trend
on social media with its linked influencers external signal. The influencers sequence is smoothed using a
moving average with a sliding window of length 8.

4.2.1 Application to a single time series

A sequence 1 from the fashion dataset introduced in [David et al., 2022] was selected as it shows a sudden
change of level, seasonality and noise intensity as illustrated in Figure 5. Several models are trained using
this time series. hmm, shmm, hmm-es and shmm-es described in Section 4.1 are considered in this first
application. We also consider an autoregressive HMM (ar-hmm), an autoregressive HMM with seasonal
components (ar-shmm), an autoregressive HMM with external signals (ar-hmm-es) and an autoregressive
HMM with seasonal components and external signals (ar-shmm-es). A complete description of these ad-
ditional models can be found in Appendix A.3.2. To fairly compare and evaluate HMM-based methods,
several benchmarks are also evaluated. Four statistical benchmarks are proposed: snaive, thetam, tbats, ets.
Complete descriptions and references for these models can be found in [Hyndman et al., 2015]. A recurrent
neural network (RNN) model [Hochreiter and Schmidhuber, 1997] denoted lstm is also considered. Finally
the hybrid model hermes introduced in [David et al., 2022] is added in the pool of benchmarks. Combin-
ing the strengths of statistical approaches and RNNs, this model achieved impressive results on the fashion
dataset and demonstrated the benefit of the inclusion of influencers signal. As all the previous benchmarks
do not include the external signal, variations of lstm and hermes using external signal and called lstm-es and
hermes-es are also considered.

For HMM-based models and statistical benchmarks, a complete code is publicly available2. Concern-
ing the training of the HMM approaches, additional information can be found in Appendix A.4. For lstm,
lstm-es, hermes and hermes-es, pre-trained models on the fashion dataset introduced in [David et al., 2022]
are directly used without retraining. We evaluate our candidates on a 1-year forecasting task. The 52 points
of 2020 are hidden during the training procedure and used to evaluate the accuracy of the models. For each
model, a forecast of the test set is computed and the three metrics MAE, MSE and MASE are used to evalu-
ate the prediction. In addition, for HMM-based models, ten independent training procedures are performed

1This sequence is referred to as ”eu-female-top-325”.
2https://github.com/etidav/hmm_with_external_signals
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Table 2: MASE, MSE and MAE accuracy on the fashion time series eu-female-top-325. Bold values provide
the best performance for the benchmarks and for the HMMs-based approaches.

MASE MAE(10−3) MSE(10−6)
mean std mean std mean std

thetam 1.73 - 0.87 - 1.04 -
ets 1.59 - 0.80 - 0.89 -
tbats 1.25 - 0.63 - 0.68 -
snaive 1.09 - 0.55 - 0.51 -
lstm-es 0.97 0.20 0.49 0.10 0.50 0.19
lstm 0.78 0.11 0.39 0.06 0.28 0.09
hermes 0.70 0.05 0.35 0.02 0.23 0.02
hermes-es 0.67 0.04 0.34 0.02 0.22 0.01

hmm 1.99 0.01 1.01 0.01 1.78 0.03
shmm 1.95 0.01 0.99 0.01 1.61 0.02
hmm-es 0.98 0.07 0.60 0.04 0.52 0.06
ar-hmm 0.95 0.01 0.58 0.01 0.62 0.01
ar-hmm-es 0.80 0.13 0.49 0.08 0.40 0.09
ar-shmm 0.77 0.07 0.47 0.04 0.43 0.09
shmm-es 0.62 0.04 0.38 0.02 0.24 0.02
ar-shmm-es 0.56 0.08 0.35 0.05 0.24 0.07

and standard variations over the 10 replications are provided for the three metrics. Results are summarized
in Table 2. In this challenging framework, the 4 statistical benchmarks do not reach the same performance
as models with external signals. The same remark can be made with the hmm and shmm approaches. How-
ever, the inclusion of the external signal considerably improves the performance of the HMM-based model
and they achieve a level of accuracy comparable to RNN-based models hermes-es and lstm-es trained on
the whole fashion dataset and using external signal. Predictions of the best HMM model ar-shmm-es, the
statistical method tbats and the two state-of-the-art models hermes-es and lstm-es are displayed in Figures
6-7.

4.2.2 Application on a sample of time series

In this section, the different approaches are compared using 10 sequences from the fashion dataset introduced
in [David et al., 2022]. Name and additional materials concerning these trends can be found in Appendix A.3.
For each time series, the same models and training process as in Section 4.2.1 are considered. Table 3
summarizes the results on each sequence in terms of MASE. The inclusion of the external signal always
largely improves the accuracy of the HMM models. ar-hmm-es method reaches the highest level of accuracy
over the 10 time series followed by hmm-es, lstm-es,hermes-es and ar-shmm-es.

• On the first fashion sequence, HMMs including the influencers signal leveraged the influencers exter-
nal signals resulting in a significant improvement of the accuracy compared to the benchmark models.

• Conversely, on the seventh fashion sequence, as the first increase of the external signal led to a de-
crease of the main sequence in the train set, HMM models using the influencers signal showed diffi-
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Figure 6: ar-shmm-es predictions of the last year of the time series eu-female-top-325. 1000 simulation are
calculated and displayed in grey and for each point, the mean over the 1000 predictions is displayed in red.

Figure 7: tbats, hermes-es, lstm-es and ar-shmm-es predictions on the last year of the time series eu-female-
top-325. for ar-shmm-es, 1000 predictions are calculated and for each point, the mean (in red) is displayed.
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Table 3: MASE of the benchmarks and HMM models on the 10 fashion time series. For the RNN-based
and HMM-based approaches, as 10 training were done, standard variation of the final MASE over the 10
replications is also provided. Bold values provide the best performance for the benchmarks and for the
HMMs-based approaches.

ts 1 ts 2 ts 3 ts 4 ts 5 ts 6 ts 7 ts 8 ts 9 ts 10 total

snaive 5.91 1.25 1.36 0.46 1.09 0.98 2.44 0.73 0.87 0.45 1.55
thetam 4.93 0.76 0.63 1.15 1.73 0.84 0.86 1.33 0.38 0.57 1 .32
tbats 5.04 0.80 0.73 0.61 1.25 0.65 1.40 0.83 0.51 0.32 1.21
ets 4.90 0.45 0.69 0.64 1.59 0.62 1.33 0.79 0.48 0.44 1.19
lstm 5.35 ±0.53 0.69 ±0.20 0.92 ±0.20 0.83 ±0.22 0.78 ±0.11 0.70 ±0.05 1.54 ±0.13 1.22 ±0.42 0.59 ±0.05 0.31 ±0.02 1.29
hermes 5.50 ±0.12 0.54 ±0.06 0.85 ±0.15 0.55 ±0.06 0.70 ±0.05 0.75 ±0.03 1.98 ±0.13 0.73 ±0.05 0.60 ±0.03 0.28 ±0.01 1.25
hermes-es 4.70 ±0.38 0.68 ±0.27 0.76 ±0.11 0.65 ±0.11 0.67 ±0.04 0.61 ±0.05 1.64 ±0.23 0.70 ±0.07 0.59 ±0.03 0.27 ±0.01 1.13
lstm-es 4.18 ±0.54 0.80 ±0.21 0.88 ±0.17 0.77 ±0.30 0.97 ±0.20 0.54 ±0.08 1.18 ±0.18 0.87 ±0.22 0.51 ±0.03 0.29 ±0.02 1.10

shmm 6.80 ±0.44 0.56 ±0.02 1.05 ±0.27 0.95 ±0.01 1.95 ±0.01 0.46 ±0.07 2.69 ±0.01 0.84 ±0.01 0.62 ±0.01 0.36 ±0.04 1.63
hmm 5.48 ±0.01 0.83 ±0.02 0.75 ±0.02 1.09 ±0.01 1.99 ±0.01 0.65 ±0.01 2.61 ±0.01 1.32 ±0.01 0.75 ±0.13 0.65 ±0.01 1.61
ar-shmm 5.54 ±0.23 0.31 ±0.01 0.80 ±0.15 0.42 ±0.01 0.77 ±0.07 0.99 ±0.02 2.60 ±0.04 0.75 ±0.01 0.84 ±0.08 0.81 ±0.05 1.38
ar-hmm 5.55 ±0.01 0.48 ±0.05 0.54 ±0.01 0.60 ±0.01 0.95 ±0.01 1.22 ±0.04 1.84 ±0.81 0.64 ±0.08 0.79 ±0.16 0.69 ±0.01 1.33
shmm-es 4.67 ±0.99 0.36 ±0.03 0.66 ±0.06 0.43 ±0.04 0.62 ±0.04 1.11 ±0.13 2.89 ±0.66 0.81 ±0.06 0.58 ±0.07 0.59 ±0.15 1.27
ar-shmm-es 4.57 ±0.53 0.46 ±0.22 0.64 ±0.07 0.46 ±0.02 0.56 ±0.08 0.62 ±0.04 2.72 ±0.59 0.79 ±0.05 0.51 ±0.06 0.52 ±0.15 1.18
hmm-es 2.89 ±0.34 0.52 ±0.01 0.54 ±0.02 0.42 ±0.02 0.98 ±0.07 0.43 ±0.12 2.84 ±0.26 0.92 ±0.01 0.53 ±0.06 0.61 ±0.01 1.07
ar-hmm-es 3.04 ±0.50 0.41 ±0.05 0.64 ±0.16 0.40 ±0.01 0.80 ±0.13 0.81 ±0.03 2.21 ±0.74 0.90 ±0.02 0.54 ±0.04 0.62 ±0.01 1.04

culties to leverage the external signal. Consequently, even simple statistical models like ets or tbats
outperformed the HMM-based models on this specific sequence.

• As the 10 fashion sequences are short and some of them do not have a strong seasonal component,
seasonal variations of HMMs did not reach the best global level of accuracy.

Finally, over the 10 time series, HMMs including the external signal show the same high level of accu-
racy than benchmarck models like hermes-es and lstm-es while these two benchmarks have several thousand
of parameters, have been train on the whole fashion dataset gathering 10000 time series and include the ex-
ternal signal. It reveals that on these 10 specific sequences, the new HMM approach is better suited and better
leverages the influencers signal while maintaining theoretical properties and interpretability. Multiples fig-
ures displaying predictions of the different models on the fashion sequences can be found in Appendix A.5.

5 Conclusion
The motivation of this paper is to establish theoretical guarantees for a family of latent data models including
external signals in the transition matrices and the emissions laws. We showed that under several assump-
tions, the identifiability and convergence results known in the HMM literature can be extended to these
models. In addition of the theoretical guarantees, numerous experiments were done on simulated data and
real world time series. Several HMMs including external signal were tested on a long-term forecasting task
and compared to statistical and RNN-based alternatives. Final results highlighted that including external
signals in HMMs allows to learn meaningful dependencies and improve forecasting performance. On some
real world sequences, they even outperformed state-of-the-art models.
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However, as a HMM with external signals has to be trained for each new sequences, our approach re-
mains computationally expensive to train. Consequently, a future work will be to design a HMM framework
able to be trained on a large dataset, to learn complex shared dynamics and finally leverage high dimensional
external signals.
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Table 4: shmm-es final parameters depending of the train set size. the final values are displayed and percent-
ages of errors compared to the true parameters are computed.

true parameter length=1000 length=10000 length=100000
mean % error mean % error mean % error

δ11 3.0 3.0 <1% 2.99 <1% 3.0 <1%
δ12 0.8 0.8 <1% 0.8 <1% 0.8 <1%
δ13 2.5 2.5 <1% 2.49 <1% 2.5 <1%
δ14 4.0 3.98 <1% 4.0 <1% 4.0 <1%
δ21 -1.1 -1.12 1% -1.07 3% -1.1 <1%
δ22 -0.1 -0.09 8% -0.11 8% -0.1 1%
δ23 -1.5 -1.54 3% -1.51 1% -1.5 <1%
δ24 3.5 3.57 2% 3.49 <1% 3.49 <1%
σ1 0.25 0.24 4% 0.25 1% 0.25 <1%
σ2 0.5 0.5 1% 0.51 1% 0.5 <1%
ω11 0.5 0.52 3% 0.32 35% 0.46 8%
ω12 0.9 0.91 1% 1.02 13% 0.92 2%
ω13 0.7 0.49 30% 0.66 6% 0.7 <1%
ω14 0.5 0.51 3% 0.53 6% 0.56 12%
ω21 -2.0 -2.48 24% -2.0 <1% -2.0 <1%
ω22 -0.2 -0.01 95% -0.21 7% -0.19 5%
ω23 -0.6 -0.8 34% -0.63 6% -0.62 4%
ω24 0.7 0.88 26% 0.79 12% 0.72 2%

A Additional numerical results

A.1 shmm-es-generated time series
In addition to Figure 3, Table 4 provides a complete description of the final parameters recovered by the
shmm-es depending on the length of the sequence used during training. In each case, final parameters values
and percentages of errors compared to the real parameters are displayed. Consider a parameter x∗ and x̂
its estimate, we call percentage of errors the following quantity: 100 × (| x∗ − x̂ | /x∗). In each scenario
(δ11, δ12, ..., δ22) and (σ11, σ22) are efficiently recovered. Some parameters of the transition matrices, even
in the case where a sequence of 100000 time steps is used, are not perfectly learned. However, using larger
training sequences considerably improves the estimation for most of them.

As the EM algorithm is strongly impacted by the initialisation of the parameters, a second experiment is
done so as to evaluate the impact of the initialisation on the shmm-es learning. Three trainings are run with
a sequence of length 10000. For the first one, an initialisation of θ0 is sampled with Gaussian distributions
with mean (ω∗, δ∗, σ∗) and standard deviations equal to 0.5. For the second one, the Gaussian standard
deviations are set to 1 and for the last one, increased to 2. Table 5 displays final parameters values recovered
by the shmm-es in the 3 scenarios as well as a percentage of error defined above. In all scenarios, the EM
algorithm converges and accurately retrieves the true set of parameters of the shmm-es model.
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Table 5: shmm-es final parameters depending of the initialization method. The first method use Gaussian
distribution centred at the true parameter values with the standard deviation set at 0.5. For the second method,
the standard deviation is increased to 1 and for the last one, increased to 2. A simulated sequence with length
equal to 10000 is used to train a shmm-es model for each initialization method. With the 3 resulting set of
parameters, the final values are displayed and percentages of errors compared to the true set of parameters
are computed.

true parameter Init. std=0.5 Init. std=1 Init. std=2
mean % error mean % error mean % error

δ11 3.0 2.99 <1% 2.99 <1% 2.99 <1%
δ12 0.8 0.8 <1% 0.8 <1% 0.8 <1%
δ13 2.5 2.49 <1% 2.49 <1% 2.49 <1%
δ14 4.0 4.0 <1% 4.0 <1% 4.0 <1%
δ21 -1.1 -1.07 3% -1.07 3% -1.07 3%
δ22 -0.1 -0.11 8% -0.11 7% -0.11 7%
δ23 -1.5 -1.51 1% -1.51 1% -1.51 1%
δ24 3.5 3.49 <1% 3.49 <1% 3.49 <1%
σ1 0.25 0.25 1% 0.25 1% 0.25 1%
σ2 0.5 0.51 1% 0.5 <1% 0.5 <1%
ω11 0.5 0.32 35% 0.32 35% 0.32 35%
ω12 0.9 1.02 13% 1.02 13% 1.02 13%
ω13 0.7 0.66 6% 0.66 6% 0.66 6%
ω14 0.5 0.53 6% 0.53 6% 0.53 6%
ω21 -2.0 -2.0 <1% -2.0 <1% -2.0 <1%
ω22 -0.2 -0.21 7% -0.21 7% -0.21 7%
ω23 -0.6 -0.63 6% -0.64 6% -0.64 6%
ω24 0.7 0.79 12% 0.79 12% 0.79 12%
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Figure 8: Simulated hidden sequence (Xt)t>1 (red) and simulated main sequence (Yt)t>1 (black) using a
HMM model with parameter θ∗.

A.2 hmm-generated time series
A second simulated time series is generated using a simple HMM as defined in Section 4.1. The true set of
parameters of the model θ∗ is:

π∗ =
(
π∗1 1− π∗1

)
=
(
0 1

)
δ∗ =

(
δ∗11

δ∗21

)
=

(
−1.
2.

)
σ∗ =

(
σ∗1 σ∗2

)
=
(
1 0.25

)
ω∗ =

(
ω∗11

ω∗21

)
=

(
−0.8
−1.4

)
.

Using this set of parameters, a sequence of (Xt)t>1 and (Yt)t>1 of length 10000 is generated and a sample
of length 1000 is displayed in Figure 8. Using the Expectation Maximization algorithm and with the same
protocol as in Section 4.1, a hmm, shmm, hmm-es and shmm-es are trained. In order to fit the hmm-es
and the shmm-es approach, the generated external signal (Wt)t61 displayed in Figure 2 is used. With this
experiment, we evaluate the ability of HMM with external signals to recover the true set of parameters in the
case where the external signal (Wt)t>1 is not involved in the HMM dynamics. Table 6 shows the mean of the
final parameters over the 4 trains and the percentage of error associated. The true set of parameters is well
recovered by the four candidates. As the time series is generated with a simple HMM, the two models using
the external signal learned parameters near 0 for the external signal dependencies and seasonal variations
did not learn artificial seasonal effects.
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Table 6: hmm, shmm, hmm-es and shmm-es final parameters. In each case, a training is done using a simu-
lated sequence of length 10000. The resulting set of parameters and the percentages of errors as defined in
Appendix A.1 are displayed. Rows of parameters representing external signal dependencies are highlighted.

true parameter hmm shmm hmm-es shmm-es
mean % error mean % error mean % error mean % error

δ11 -1.0 -1.01 1% -1.01 1% -1.01 1% -1.0 <1%
δ12 - - - - - -0.0 - -0.0 -
δ13 - - - -0.06 - - - -0.06 -
δ14 - - - 0.02 - - - 0.02 -
δ21 2.0 2.01 <1% 2.01 <1% 2.01 1% 2.01 1%
δ22 - - - - - -0.0 - -0.0 -
δ23 - - - -0.0 - - - -0.0 -
δ24 - - - 0.0 - - - 0.0 -
ω11 -0.8 -0.87 8% -0.87 8% -0.83 4% -0.82 3%
ω12 - - - - - -0.01 - -0.02 -
ω13 - - - 0.03 - - - 0.02 -
ω14 - - - -0.04 - - - -0.05 -
ω21 -1.4 -1.42 2% -1.42 2% -1.44 3% -1.44 3%
ω22 - - - - - 0.01 - 0.01 -
ω23 - - - 0.01 - - - 0.02 -
ω24 - - - 0.03 - - - 0.03 -
σ1 1.0 1.0 <1% 1.0 <1% 1.0 <1% 1.0 <1%
σ2 0.25 0.25 <1% 0.25 <1% 0.25 <1% 0.25 <1%

A.3 Fashion time series forecasting
A.3.1 Fashion sequences

In Section 4.2.2, ten sequences from the fashion dataset were selected. 3 These time series were not totally
randomly selected but for the fact that they display various dynamics including abrupt changes of behaviours,
which are difficult to forecast. A smoothing is applied using a moving average with a sliding window of
length 8 to the external signal associated with each time series. Figure 9 displays the 10 sequences and their
external signals.

A.3.2 Model descriptions

In this section, a complete description of the HMM approaches introduced in Section 4.2 is given.

Hidden Markov Model (hmm). For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1) and for t > 1,
P(Xt+1 = j | Xt = i) = Qij with Qi1 = exp(Pi1)/(1 + exp(Pi1)) and Pi1 = ωi1 ∈ R. For all t > 1, the
conditional distribution of Yt given {Xt = k} is Gaussian with mean µk ∈ R and variance σ2

k.

Seasonal Hidden Markov Model (shmm). For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1) and for
t > 1, P(Xt+1 = j | Xt = i) = Qij(t) with Qi1(t) = exp(Pi1(t))/(1 + exp(Pi1(t))) and Pi1(t) =

3They are respectively named br-female-shoes-262, br-female-texture-59, br-female-texture-82, eu-female-outerwear-177, eu-
female-top-325, eu-female-top-394, eu-female-texture-80, us-female-outerwear-171, us-female-shoes-76, and us-female-top-79.
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Figure 9: 10 fashion time series (black) and their associated external signals (orange).
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ωi1 + ωi3 cos(2πt/T ) + ωi4 sin(2πt/T ). For all t > 1, the conditional distribution of Yt given {Xt = k} is
Gaussian with mean µk(t) = δk1 + δk4 cos(2πt/T ) + δk5 sin(2πt/T ) and variance σ2

k.

Auto Regressive Hidden Markov Model (ar-hmm). For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈ (0, 1)
and for t > 1, P(Xt+1 = j | Xt = i) = Qij with Qi1 = exp(Pi1)/(1 + exp(Pi1)) and Pi1(Yt−52) =
ωi1 +ωi2Yt−52. For all t > 1, the conditional distribution of Yt given {Xt = k} and Yt−52 is Gaussian with
mean µk(Yt−52) = δk1 + δk2Yt−52 and variance σ2

k.

Auto Regressive Seasonal Hidden Markov Model (ar-shmm). For all i, j, k ∈ {1, 2}, P(X1 = k) =
πk ∈ (0, 1) and for t > 1, P(Xt+1 = j | Xt = i) = Qij(t) with Qi1(t) = exp(Pi1(t))/(1 + exp(Pi1(t)))
and Pi1(t) = ωi1 + ωi2 cos(2πt/T ) + ωi3 sin(2πt/T ). For all t > 1, the conditional distribution of Yt
given {Xt = k} and Yt−52 is Gaussian with mean µk(t, Yt−52) = δk1 + δk2Yt−52 + δk4 cos(2πt/T ) +
δk5 sin(2πt/T ) and variance σ2

k.

Hidden Markov Model with External Signals (hmm-es). For all i, j, k ∈ {1, 2}, P(X1 = k) = πk ∈
(0, 1) and for t > 1, P(Xt+1 = j | Xt = i) = Qij(Wt−52) with Qi1(Wt−52) = exp(Pi1(Wt−52)
)/(1 + exp(Pi1(Wt−52))) and Pi1(Wt−52) = ωi1 + ωi2Wt−52. For all t > 1, the conditional distribution
of Yt given {Xt = k} and Wt−52 is Gaussian with mean µk(Wt−52) = δk1 + δk3Wt−52 and variance σ2

k.

Seasonal Hidden Markov Model with External Signals (shmm-es). For all i, j, k ∈ {1, 2}, P(X1 =
k) = πk ∈ (0, 1) and for t > 1, P(Xt+1 = j | Xt = i,Wt−52) = Qij(t,Wt−52) with Qi1(t,Wt−52) =
exp(Pi1(t,Wt−52))/(1 + exp(Pi1(t,Wt−52))) and Pi1(t,Wt−52) = ωi1 + ωi2Wt−52 + ωi3 cos(2πt/T ) +
ωi4 sin(2πt/T ). For all t > 1, the conditional distribution of Yt given {Xt = k} and Wt−52 is Gaussian
with mean µk(t,Wt−52) = δk1 + δk3Wt−52 + δk4 cos(2πt/T ) + δk5 sin(2πt/T ) and variance σ2

k.

Auto Regressive Hidden Markov Model with External Signals (ar-hmm-es). For all i, j, k ∈ {1, 2},
P(X1 = k) = πk ∈ (0, 1) and for t > 1, P(Xt+1 = j | Xt = i) = Qij(Wt−52) with Qi1(Wt−52) =
exp(Pi1(Wt−52))/(1+exp(Pi1(Wt−52))) andPi1(Wt−52) = ωi1+ωi2Wt−52. For all t > 1, the conditional
distribution of Yt given {Xt = k}, Yt−52 and Wt−52 is Gaussian with mean µk(Yt−52,Wt−52) = δk1 +
δk2Yt−52 + δk3Wt−52 and variance σ2

k.

Auto Regressive Seasonal Hidden Markov Model with External Signals (ar-shmm-es). For all i, j, k ∈
{1, 2}, P(X1 = k) = πk ∈ (0, 1) and for t > 1, P(Xt+1 = j | Xt = i) = Qij(t,Wt−52) with
Qi1(t,Wt−52) = exp(Pi1(t,Wt−52))/(1 + exp(Pi1(t,Wt−52))) and Pi1(t) = ωi1 + ωi2Wt−52 + ωi3
cos(2πt/T ) + ωi4 sin(2πt/T ). For all t > 1, the conditional distribution of Yt given {Xt = k}, Yt−52 and
Wt−52 is Gaussian with mean µk(t, Yt−52,Wt−52) = δk1 + δk2Yt−52 + δk3Wt−52 + δk4 cos(2πt/T ) +
δk5 sin(2πt/T ) and variance σ2

k.

In a real world situation, the external signal, depending on influencers, is not known in advance. Con-
sequently, a lag of one year (here 52 time steps) is introduced i.e. the distribution of the HMM at time t
depends on Wt−52. The same lag is used in the Auto-regressive HMM as almost all the fashion sequences
show a strong yearly seasonality.

25
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A.4 HMM-based model training
We propose a complete overview of the training process used in Section 4.2 for the HMM approaches. For
each HMM-based model, given a fashion time series, the following estimation procedure is used.

1. Parameter θ0 is randomly initialized.

2. A GEM is run for 10 iterations.

3. Using the resulting parameter, 10 predictions of the last year of the train set are computed and evalu-
ated using a MSE.

4. The average MSE over the 10 forecasts is computed

5. Steps 1-4 are repeated 30 times and the best run is saved based on the average MSE computed in step
4.

6. Starting with the initial parameter of the best run, 500 iterations of the EM algorithm are run and the
final parameter θ̂ is saved.

The complete code is developed in Python and Tensorflow and available at https://github.com/
etidav/hmm_with_external_signals.

A.5 HMM-based model predictions
In this last section, in addition to Table 3, predictions of the best models on the 10 considered fashion time
series are displayed in Figure 10.
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Figure 10: tbats, hermes-es, lstm-es and hmmes predictions on the last year of the 10 fashion time series. for
hmmes, 1000 predictions are calculated and for each point, the mean is displayed
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Supplementary material

B Additional proofs
Additional notations. For any finite signed measure λ on (X,X ), | λ | refers to the total variation and
| λ |TV=| λ | (X) denotes the total variation norm. We denote by dTV(.) the total variation distance
and recall that for every signed measures λ and λ′ on (X,X ), dTV(λ, λ′) =| λ − λ′ |TV /2. Finally, for
every Markov kernel M on (X,X ), we denote by ∆TV (M) the Dobrushin coefficient of M : ∆TV (M) =
supx,x′∈X | M(x, ·) −M(x′, ·) |TV /2. The proofs given here follow closely [Douc et al., 2014] and are
given for completeness.

B.1 Proof of Proposition 1.1
Lemma 2.2 provides that for a fixed t ∈ Z and for all π ∈ D, the sequence (Lθπ,−m:t(yt | y−m:t−1, w−m:t))m>0

is a uniform Cauchy sequence. Consequently, it has a finite limit and Equation (28) provides that this limit
does not depend of the initial distribution π. We write Lθ(yt | y−∞:t−1, w−∞:t) this limit. Using Equa-
tion (27), for all θ ∈ Θ, for all π ∈ D, for all t > 1 and m > 0,

ln(σ−b
−(t, yt, wt)) 6 lnLθπ,−m:t(yt | y−m:t−1, w−m:t) 6 ln(b+) .

Therefore, | lnLθπ,−m:t(yt | y−m:t−1, w−m:t) |6| ln(σ−b
−(t, yt, wt)) | ∨ | ln(b+) |. Taking the limit as m

grows to infinity,

| lnLθ(yt | y−∞:t−1, w−∞:t) |6| ln(σ−b
−(t, yt, wt)) | ∨ | ln(b+) | , (16)

and, under Assumption H7,

E∗[| lnLθ(Yt | Y−∞:t−1,W−∞:t) |] <∞ . (17)

Thus, as we assumed the process (Yt,Wt)t∈Z stationary and ergodic with H5, Birkhoff’s ergodic theorem
can be used and establishes that n−1

∑n−1
t=0 lnLθ(Yt | Y−∞:t−1,W−∞:t) exists P∗-a.s. Finally, using Equa-

tion (29) and letting k grow to infinity yields for all t > 1 and all π ∈ D,

sup
θ∈Θ
| lnLθπ(yt | y0:t−1, w0:t)− lnLθ(yt | y−∞:t−1, w−∞:t) |6

ρt−1

σ−
.

In addition, for t = 0 and m > 0,

| Lθπ,0(y0 | w0)− Lθπ,−m:0(y0 | y−m:−1, w−m:0) |6 2
∑
x0∈X

fθ0|w0,x0
(y0) .

On the other hand, Lθπ,−m:0(y0 | y−m:−1, w−m:0) > σ−
∑
x0∈X f

θ
0|w0,x0

(y0) and noting that π ∈ D,
Lθπ,0(y0 | w0) > σ−

∑
x0∈X f

θ
0|w0,x0

(y0). Therefore, since | ln a− ln b |6| a− b | /(a ∧ b),

| lnLθπ,0(y0 | w0)− lnLθπ,−m:0(y0 | y−m:−1, w−m:0) |6 2

σ−
,
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which yields | lnLθπ,0(y0 | w0)− lnLθ(y0 | y−∞:−1, w−∞:t) |6 2/σ−. Consequently, for all θ ∈ Θ and all
π ∈ D:

n−1 | `π,n(θ)− `sn(θ) | = n−1

∣∣∣∣∣
n−1∑
t=0

lnLθπ,0:t(Yt | Y0:t−1,W0:t)−
n−1∑
t=0

lnLθ(Yt | Y−∞:t−1,W−∞:t)

∣∣∣∣∣
= n−1

∣∣∣∣∣
n−1∑
t=0

lnLθπ,0:t(Yt | Y0:t−1,W0:t)− lnLθ(Yt | Y−∞:t−1,W−∞:t)

∣∣∣∣∣
6 n−1

n−1∑
t=0

∣∣lnLθπ,0:t(Yt | Y0:t−1,W0:t)− lnLθ(Yt | Y−∞:t−1,W−∞:t)
∣∣

6 n−1 2 +
∑n−1
t=1 ρ

t−1

σ−
.

The proof of Equation (14) follows.

B.2 Proof of Theorem 2
We introduce the notation ∆t(θ) = lnLθ(Yt | Y−∞:t−1,W−∞:t). Then, under Assumption H7 and using
Equation (27), ∆0(θ) ∈ L1, see (17) in the proof of Proposition 1.1. Thus, Birkhoff’s theorem can be used
to establish that limn→∞ n−1`sn(θ) exists P∗-a.s., and

lim
n→∞

n−1`sn(θ) = lim
n→∞

n−1
n−1∑
t=0

∆t(θ) = E∗[∆0(θ)] = `(θ), P∗-a.s. (18)

After this first result, the rest of the proof is divided in three steps.

i) First, using H8 and Lemma 2.2, we show that θ 7→ E∗[∆0(θ)] is upper-semicontinuous.

ii) Then, introducing for all n > 1, θ̄n ∈ argmaxθ∈Θ n
−1`sn(θ), we establish that limn→∞ d(θ̄n,Θ

∗) =
0, P∗-a.s..

iii) Finally, combining i) and ii), we prove that limn→∞ d(θ̂n,π̂n,w0:n−1
,Θ∗) = 0, P∗-a.s..

Let K a compact subset of Θ. For all θ0 ∈ K, ρ > 0,

lim sup
ρ→0

lim sup
n→∞

sup
θ∈B(θ0,ρ)

n−1
n−1∑
k=0

∆k(θ) 6 lim sup
ρ→0

lim sup
n→∞

n−1
n−1∑
k=0

sup
θ∈B(θ0,ρ)

∆k(θ) .

In the proof of Proposition 1.1, Equation (16) shows that for all θ ∈ Θ, | ∆0(θ) |6| ln(σ−b
−(0, Y0,W0)) |

∨ | ln(b+) |. Hence, supθ∈B(θ0,ρ) | ∆0(θ) |6| ln(σ−b
−(0, Y0,W0)) | ∨ | ln(b+) | and under Assumption

H 7, E[supθ∈B(θ0,ρ) | ∆0(θ) |] < ∞ . Thus, supθ∈B(θ0,ρ) ∆0(θ) belongs to L1 and by Birkhoff’s ergodic
theorem,

lim sup
ρ→0

lim sup
n→∞

sup
θ∈B(θ0,ρ)

n−1
n−1∑
k=0

∆k(θ) 6 lim sup
ρ→0

lim sup
n→∞

n−1
n−1∑
k=0

sup
θ∈B(θ0,ρ)

∆k(θ)

= lim sup
ρ→0

E∗[ sup
θ∈B(θ0,ρ)

∆0(θ)] .
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As the function ρ 7→ supθ∈B(θ0,ρ) ∆0(θ) is non-decreasing, using the monotone convergence theorem,

lim sup
ρ→0

E∗
[

sup
θ∈B(θ0,ρ)

∆0(θ)

]
= E∗

[
lim sup
ρ→0

sup
θ∈B(θ0,ρ)

∆0(θ)

]
.

Under Assumption H8, for all t ∈ Z, all (xt−1, xt) ∈ X2, all (wt−1, wt) ∈W2 and all yt ∈ Y,
θ 7→ Qθt−1|wt−1,wt

(xt−1, xt) and θ 7→ fθt|wt,xt(yt) are continuous. Consequently, the function θ 7→
lnLθn(Y−m:t | W−m:t) is continuous. Moreover, using (29), for all π ∈ D and all ε > 0, there exists
n0 > 1 such that for all n,m > n0 with m > n:

sup
θ∈Θ
| lnLθπ(yt | y−n:t−1, w−n:t)− lnLθπ(yt | y−m:t−1, w−m:t) |6

ρt+n−1

σ−
6
ρt+n0−1

σ−
6 ε .

This result provides that {lnLθπ(Y−m:t | W−m:t)}m>0 is an uniform Cauchy sequence. Therefore, the
sequence θ 7→ lnLθn(Y−m:t | W−m:t) is a sequence of continuous function and converges uniformly to
θ 7→ lnLθ(Y−∞:t |W−∞:t) that yields that this limit is continuous. Thus,

lim sup
ρ→0

E∗
[

sup
θ∈B(θ0,ρ)

∆0(θ)

]
= E∗

[
lim sup
ρ→0

sup
θ∈B(θ0,ρ)

∆0(θ)

]
= E∗[∆0(θ0)] .

We finally have:

lim sup
ρ→0

sup
θ∈B(θ0,ρ)

E∗[∆0(θ)] 6 lim sup
ρ→0

E∗[ sup
θ∈B(θ0,ρ)

∆0(θ)] = E∗[∆0(θ0)] . (19)

This result establishes that θ 7→ E∗[∆0(θ)] is upper-semicontinuous.
Consequently, Θ∗ := argmaxθ∈Θ E∗[∆0(θ)] is a closed and nonempty subset of Θ and for all ε >

0, Kε := {θ ∈ Θ; d(θ,Θ∗) > ε} is a compact subset of Θ. The upper-semicontinuity of θ 7→ E∗[∆0(θ)]
provides that there exists θε ∈ Kε such that, for all θ∗ ∈ Θ∗,

sup
θ∈Kε

E∗[∆0(θ)] = E∗[∆0(θε)] < E∗[∆0(θ∗)] .

Consider now θ̄n a parameter such that {θ̄n : n ∈ N∗} ⊂ Θ and for all n > 1, θ̄n ∈ argmaxθ∈Θ n
−1`sn(θ).

We want to prove the intermediate result limn→∞ d(θ̄n,Θ
∗) = 0, P∗-a.s. For all η > 0 and θ̃ ∈ K, we can

find a ρθ̃ > 0 such that,

lim sup
n→∞

sup
θ∈B(θ̃,ρθ̃)

n−1
n−1∑
k=0

∆k(θ) 6 E∗[∆0(θ̃)] + η 6 sup
θ∈K

E∗[∆0(θ)] + η P∗-a.s.

Since K is a compact subset, there exist p > 1 and a collection of θi ∈ K for i ∈ {1, · · · , p} such that
K ⊂

⋃p
i=1B(θi, ρθi) and

lim sup
n→∞

max
16i6p

sup
θ∈B(θi,ρθi )

n−1
n−1∑
k=0

∆k(θ) 6 sup
θ∈K

E∗[∆0(θ)] + η P∗-a.s.

The previous inequality is then equivalent to

lim sup
n→∞

sup
θ∈K

n−1
n−1∑
k=0

∆k(θ) 6 sup
θ∈K

E∗[∆0(θ)] + η P∗-a.s.
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Étienne David, Jean Bellot, Sylvain Le Corff and Luc Lehéricy HMM with external signals

Since η is arbitrary,

lim sup
n→∞

sup
θ∈K

n−1
n−1∑
k=0

∆k(θ) 6 sup
θ∈K

E∗[∆0(θ)] P∗-a.s.

We have finally that,

lim sup
n→∞

sup
θ∈Kε

n−1`sn(θ) = lim sup
n→∞

sup
θ∈Kε

n−1
n−1∑
t=0

∆k(θ)

6 sup
θ∈Kε

E∗[∆0(θ)]

< E∗[∆0(θ∗)] = lim
n→∞

n−1`sn(θ∗) 6 lim inf
n→∞

n−1`sn(θ̄n) (20)

The last result insures that θ̄n /∈ Kε for all n greater that a certain random rank N and as ε is arbitrary, we
prove:

lim
n→∞

d(θ̄n,Θ
∗) = 0, P∗-a.s. (21)

Using the result above and the upper-semicontinuity of θ 7→ E∗[∆0(θ)], the final result can be proved. For
all θ∗ ∈ Θ∗, P∗-a.s.,

E∗[∆0(θ∗)] = lim inf
n→∞

n−1`sn(θ∗) 6 lim inf
n→∞

n−1`sn(θ̄n) 6 lim sup
n→∞

n−1`sn(θ̄n)

= lim sup
n→∞

sup
θ∈Θ

n−1`sn(θ) 6 sup
θ∈Θ

E∗[∆0(θ)]

Since θ 7→ E∗[∆0(θ)] is upper-semicontinuous and Θ∗ is a closed and nonempty subset of Θ, θ 7→
E∗[∆0(θ)] reaches is maximum and we have:

sup
θ∈Θ

E∗[∆0(θ)] = max
θ∈Θ

E∗[∆0(θ)] = E∗[∆0(θ∗)] .

Consequently,
lim
n→∞

n−1`sn(θ̄n) = E∗[∆0(θ∗)], P∗-a.s.

We introduce δn := supθ∈Θ supπ∈D n
−1 | `π,n(θ)− `sn(θ) |. Then,

n−1`sn(θ̄n)−δn 6 n−1`π̂n,n(θ̄n) 6 n−1`π̂n,n(θ̂n,π̂n,w0:n−1
) 6 n−1`sn(θ̂n,π̂n,w0:n−1

)+δn 6 n−1`sn(θ̄n)+δn .

Thus, using Proposition1.1,

lim
n→∞

n−1`sn(θ̂n,π̂n,w0:n−1
) = E∗[∆0(θ∗)], P∗-a.s.

Then, as for Equation (20),

lim sup
n→∞

sup
θ∈Kε

n−1`sn(θ) = lim sup
n→∞

sup
θ∈Kε

n−1
n−1∑
t=0

∆k(θ) 6 sup
θ∈Kε

E∗[∆0(θ)]

< E∗[∆0(θ∗)] = lim
n→∞

n−1`sn(θ̂n,π̂n,w0:n−1
) .

Therefore, θ̂n,π̂n,w0:n−1 /∈ Kε. As ε is arbitrary, the proof follows.
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B.3 Technical results
Define, for all x, x′ ∈ X, y ∈ Y, w,w′ ∈W, θ ∈ Θ, and t ∈ Z:

Mθ,y
t,w,w′(x, x

′) = Qθt−1|w,w′(x, x
′)fθt|w,x′(y) .

For every m ∈ Z such that −m 6 t, we introduce the distribution of the hidden state Xt given the obser-
vations (Y−m:t,W−m:t) and starting at time −m with X−m ∼ π and π a discrete distribution on X. For all
A ∈ X ,

Pθπ,t|−m(Xt ∈ A | Y−m:t,W−m:t) =∑
x−m:t∈Xt+m+1 π(x−m)fθ−m|W−m,x−m(Y−m)

∏t
p=−m+1M

θ,Yp
p,Wp−1,Wp

(xp−1, xp)1A(xt)∑
x−m:t∈Xt+m+1 π(x−m)fθ−m|W−m,x−m(Y−m)

∏t
p=−m+1M

θ,Yp
p,Wp−1,Wp

(xp−1, xp)
. (22)

Using Assumption H6-(b), Lemma 2.1 establishes the forgetting of the initial distribution π for
Pθπ,t|−m(Xt ∈ . | Yt:−m,Wt:−m).

Lemma 2.1. Under H6, for all probability measures π, π′, k > 1 and −∞ < r 6 s <∞,

sup
θ∈Θ

dTV(Pθπ,s|r(Xs ∈ . | Yr:s,Wr:s),Pθπ′,s|r(Xs ∈ . | Yr:s,Wr:s)) 6 ρs−r , (23)

sup
θ∈Θ

dTV(Pθπ,s|r(Xs ∈ . | Yr:s,Wr:s),Pθπ,s|r−k(Xs ∈ . | Yr−k:s,Wr−k:s)) 6 ρs−r P∗-a.s. , (24)

where ρ = 1− σ− with σ− is defined in Assumption H6-(b).

Proof. Assuming that Equation (23) holds, for all discrete distributions π, π′ on X and all −∞ < r 6 s <
∞:

dTV(Pθπ,s|r(Xs ∈ . | Yr:sWr:s),Pθπ′,s|r(Xs ∈ . | Yr:sWr:s)) 6 ρs−r .

For all xr ∈ X, define π̃(xr) ∝
∑

(xr−k,··· ,xr−1)∈Xk π(xr−k)
∏r−1
p=r−k f

θ
p|Wp,xp

(Yp)Q
θ
p|Wp,Wp+1

(xp, xp+1).
Then, for all A ∈ X , using Equation (22):

Pθπ,s|r−k(Xs ∈ A | Yr−k:s,Wr−k:s)

=

∑
xr−k:s∈Xs−r+k+1 π(xr−k)fθr−k|Wr−k,xr−k

(Yr−k)
∏s
p=r−k+1M

θ,Yp
p,Wp−1,Wp

(xp−1, xp)1A(xs)∑
xr−k:s∈Xs−r+k+1 π(xr−k)fθr−k|Wr−k,xr−k

(Yr−k)
∏s
p=r−k+1M

θ,Yp
p,Wp−1,Wp

(xp−1, xp)

=

∑
xr:s∈Xs−r+1 π̃(xr)f

θ
r|Wr,xr

(Yr)
∏s
p=r+1M

θ,Yp
p,Wp−1,Wp

(xp−1, xp)1A(xs)∑
xr:s∈Xs−r+1 π̃(xr)fθr|Wr,xr

(Yr)
∏s
p=r+1M

θ,Yp
p,Wp−1,Wp

(xp−1, xp)

= Pθπ̃,s|r(Xs ∈ A | Yr:s,Wr:s) .

Combining Equation (23) and the previous result yields (24). For a better readability, we introduce the
following quantity:

Mθ
r,s(xr, xs) =

∑
xr+1:s−1∈Xs−r−1

s∏
p=r+1

M
θ,Yp
p,Wp−1,Wp

(xp−1, xp) .
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Then, we can notice that for all θ ∈ Θ, if we denote h : xs 7→ 1A(xs), π̄(xr) ∝ π(xr)f
θ
r|Wr,xr

(Yr) and
π̄′(xr) ∝ π′(xr)f

θ
r|Wr,xr

(Yr), we have Pθπ,r|s(Xs ∈ A | Yr:sWr:s) = π̄Mθ
r,sh/π̄M

θ
r,s1 and Pθπ′,r|s(Xs ∈

A | Yr:sWr:s) = π̄′Mθ
r,sh/π̄

′Mθ
r,s1. Then, proving Equation (23) is equivalent to prove:∣∣∣∣∣ π̄Mθ

r,sh

π̄Mθ
r,s1
−
π̄′Mθ

r,sh

π̄′Mθ
r,s1

∣∣∣∣∣ 6 ρs−rosc(h) ,

where ρ = 1− σ−. Introducing for all A ∈ P(X),

M̃θ
r,s(xr, A) =

Mθ
r,s(xr, A)

Mθ
r,s(xr,X)

,

we obtain
π̄Mθ

r,sh

π̄Mθ
r,s1

=

∑
xr∈X π̄(xr)M

θ
r,s(xr,X)M̃θ

r,sh(xr)∑
xr∈X π̄(xr)Mθ

r,s(xr,X)
= π̄r,sM̃

θ
r,sh , (25)

where for all B ∈ X ,

π̄r,s(B) =

∑
xr∈X π̄(xr)M

θ
r,s(xr,X)1B(xr)∑

xr∈X π̄(xr)Mθ
r,s(xr,X)

.

Then, we have

M̃θ
r,s(xr, A) =

Mθ
r,s(xr, A)

Mθ
r,s(xr,X)

=

∑
xr+1∈XM

θ
r+1(xr, xr+1)Mθ

r+1,s(xr+1,X)M̃θ
r+1,s(xr+1, A)

Mθ
r,s(xr,X)

= Rθr,sM̃
θ
r+1,s(xr, A) ,

where the kernel Rθr,s is defined, for all xr ∈ X, A ∈ X , by:

Rθr,s(xr, A) =

∑
xr+1∈AM

θ
r+1(xr, xr+1)Mθ

r+1,s(xr+1,X)

Mθ
r,s(xr,X)

.

Consequently, by induction, the quantity M̃θ
r,s can be expressed as

M̃θ
r,s = Rθr,sR

θ
r+1,s · · ·Rθs−1,s . (26)

Using Assumption H6-(b), for any xs ∈ X and A ∈ X ,

Rθr,s(xs, A) =

∑
xr+1∈AM

θ
r+1(xr, xr+1)Mθ

r+1,s(xr+1,X)∑
xr+1∈XM

θ
r+1(xr, xr+1)Mθ

r+1,s(xr+1,X)
> σ−vr,s(A) ,

with:

vr,s(A) =

∑
xr+1∈A f

θ
r+1|Wr+1,xr+1

(Yr+1)Mθ
r+1,s(xr+1,X)∑

xr+1∈X f
θ
r+1|Wr+1,xr+1

(Yr+1)Mθ
r+1,s(xr+1,X)

.

Consequently, the kernel Rr,s verifies the Doeblin condition and its Dobrushin coefficient satisfies
∆TV (Rθr,t) 6 ρ, see [Douc et al., 2014] (definition 6.9 and Lemma 6.10). Moreover, as the Dobrushin
coefficient is submultiplicative and using the decomposition (26) yields

∆TV (M̃θ
r,s) 6 ∆TV (Rθr,s)∆TV (Rθr+1,s) · · ·∆TV (Rθs−1,s) 6 ρs−r .
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Étienne David, Jean Bellot, Sylvain Le Corff and Luc Lehéricy HMM with external signals

Finally, for any π, π′ ∈M1(X), by Lemma 6.5 introduced in [Douc et al., 2014] and (25),∣∣∣∣∣ π̄Mθ
r,s

π̄Mθ
r,s1
−

π̄′Mθ
r,s

π̄′Mθ
r,s1

∣∣∣∣∣
TV

=| π̄r,sM̃θ
r,s − π̄′r,sM̃θ

r,s |TV 6 ∆TV(M̃θ
r,s) | π̄r,s − π̄′r,s |TV

6 ρs−r | π̄r,s − π̄′r,s |TV .

Then, ∣∣∣∣∣ π̄Mθ
r,sh

π̄Mθ
r,s1
−
π̄′Mθ

r,sh

π̄′Mθ
r,s1

∣∣∣∣∣ 6 1

2

∣∣∣∣∣ π̄Mθ
r,s

π̄Mθ
r,s1
−

π̄′Mθ
r,s

π̄′Mθ
r,s1

∣∣∣∣∣
TV

osc(h) 6 ρs−r
1

2

∣∣π̄r,s − π̄′r,s∣∣TV
osc(h)

6 ρs−rosc(h) ,

which concludes the proof.

For all t,m ∈ Z verifying −m < t, the conditional loglikelihood can be written as follows

Lθπ,−m:t(Yt | Y−m:t−1,W−m:t) =∑
(xt−1,xt)∈X2

Pθπ,−m(Xt−1 = xt−1 | Y−m:t−1,W−m:t)Q
θ
t−1|Wt−1,Wt

(xt−1, xt)f
θ
t|Wt,xt

(Yt) . (27)

Lemma 2.2. Under Assumptions H5-H7, for all probability measures π, π′, all t > 1, all k > 1, all m > 0,
all sequences y−m:t ∈ Yt+m+1 and all sequences w−m:t ∈Wt+m+1:

sup
θ∈Θ
| lnLθπ,−m:t(yt | y−m:t−1, w−m:t)− lnLθπ′,−m:t(yt | y−m:t−1, w−m:t) | 6

ρt+m−1

σ−
, (28)

sup
θ∈Θ
| lnLθπ,−m:t(yt | y−m:t−1, w−m:t)− lnLθπ,−m−k:t(yt | y−m−k:t−1, w−m−k:t) 6

ρt+m−1

σ−
, (29)

sup
θ∈Θ

sup
m>0

Lθπ,−m:t(yt | y−m:t−1, w−m:t) 6 b+ . (30)

Proof. Equation (30) is a direct consequence of Equation (27). The proof of Equation (29) can be derived
using Equation (28) by fixing:

π′(x−m) ∝
∑

x−m−k:−m−1∈Xk
π(x−m−k)

−m−1∏
p=−m−k

fθp|wp,xp(yp)Q
θ
p|wp,wt+1

(xp, xp+1) .

We turn to the proof of Equation (28). Using (27), Lemma 2.1 and Assumption H6, we have:

| Lθπ,−m:t(yt |y−m:t−1, w−m:t)− Lθπ′,−m:t(yt | y−m:t−1, w−m:t) |

6

∣∣∣∣∣∣
∑

(xt−1,xt)∈X2

Qθt−1|wt−1,wt
(xt−1, xt)f

θ
t|wt,xt(yt)

{
pθπ,−m:t(xt−1)− pθπ′,−m:t(xt−1)

}∣∣∣∣∣∣
6 ρt+m−1

∑
xt∈X

fθt|wt,xt(yt) ,
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where pθπ,−m:t(xt−1) = Pθπ,−m(Xt−1 = xt−1 | Y−m:t−1 = y−m:t−1,W−m:t = w−m:t). Moreover,

Lθπ,−m:t(yt | y−m:t−1, w−m:t) ∨ Lθπ′,−m:t(yt | y−m:t−1, w−m:t) > σ−
∑
xt∈X

fθt|wt,xt(yt) .

Using that | lnu− ln v |6| u− v | /(u ∨ v), where u ∨ v = max(u, v), completes the proof of (28).
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