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Abstract

Within the performance-based earthquake engineering (PBEE) framework, the fragility
model plays a pivotal role. Such a model represents the probability that the engineering
demand parameter (EDP) exceeds a certain safety threshold given a set of selected intensity
measures (IMs) that characterize the earthquake load. The-state-of-the art methods for
fragility computation rely on full non-linear time-history analyses. Within this perimeter,
there are two main approaches: the first relies on the selection and scaling of recorded ground
motions; the second, based on random vibration theory, characterizes the seismic input with a
parametric stochastic ground motion model (SGMM). The latter case has the great advantage
that the problem of seismic risk analysis is framed as a forward uncertainty quantification
problem. However, running classical full-scale Monte Carlo simulations is intractable because
of the prohibitive computational cost of typical finite element models. Therefore, it is
of great interest to define fragility models that link an EDP of interest with the SGMM
parameters — which are regarded as IMs in this context. The computation of such fragility
models is a challenge on its own and, despite few recent studies, there is still an important
research gap in this domain. This comes with no surprise as classical surrogate modeling
techniques cannot be applied due to the stochastic nature of SGMM. This study tackles this
computational challenge by using stochastic polynomial chaos expansions to represent the
statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full
conditional probability distribution of EDP conditioned on IMs. We compare the proposed
approach with some state-of-the-art methods in two case studies. The numerical results show
that the new method prevails its competitors in estimating both the conditional distribution
and the fragility functions.
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1 Introduction

The PEER1 performance-based earthquake engineering (PBEE) framework introduced two
decades ago [1] represents the state-of-the-art approach to seismic risk assessment. The framework
builds on the total probability theorem by convolving the output of probabilistic seismic hazard
analysis (PSHA, [2]) with fragility, damage, and loss models. The output of the PSHA analysis
is the so-named hazard curves, which are rates of occurrence of a given intensity measure (IM,
e.g., peak ground acceleration, spectral acceleration, etc.) or a vector of IMs. The damage
of a structure is typically characterized by the engineering demand parameter (EDP) which
represents the structural response (e.g., the maximum interstory drift for a multistory building,
the maximum base shear, etc.).

A critical component of the framework is represented by the statistical relationship between
IMs and EDP. This relationship, named fragility model, is a function of the IMs and computes
the EDP exceeding probability (e.g., EDP exceeds a certain threshold) conditioned on the
corresponding value of IMs. As an important part of PBEE, fragility models have become a rich
field of research with two major lines of investigation. The first line is based on the selection and
scaling of recorded ground motions and (non-)linear time history analysis. An incomplete list of
studies following this line of research includes [3–6].

The second line of research builds on stochastic ground motion models (SGMM) [7, 8], and
(non-)linear time history analysis. An SGMM typically combines a set of engineering-meaningful
parameters, referred to as SGMM parameters in the sequel, with a set of hidden aleatory variables
(e.g., white noise) to generate synthetic ground motions. The available records are considered as
realizations of the SGMM and used to calibrate the SGMM parameters. The latter are modeled
as random variables to account for epistemic uncertainties due to limited data. In this setting,
the SGMM parameters are statistically related to the earthquake and site characteristics (e.g.,
magnitude, faulting mechanism, source-to-site distance, and the site shear-wave velocity) via
predictive equations. In essence, these are classical ground motion predictive equations (GMPEs,
[2]) with the IMs being the SGMM parameters.

Following this line, a fragility model becomes the statistical relationship between the SGMM
parameters and the EDP. These models, when developed, allow for a rapid seismic risk assessment
by computing directly or via (inexpensive) simulations of the convolutions of the PEER-PBEE
framework. Within this perimeter, therefore, the development of efficient algorithms for fragility
computation is paramount. While several studies use a SGMM for seismic risk assessment (an
incomplete list includes [9–14]), to the best of our knowledge, fragility models as a function of
the SGMM parameters have been explicitly introduced only recently, [15].

In this context, however, there is a research gap in the development of efficient algorithms that
allow a feasible computation of these special fragility models. This paper aims to fill this gap by
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using the stochastic polynomial chaos expansion (SPCE) [16], which we show to be the most
computationally efficient option up to date. As such, this paper focuses only on the fragility
model computation without employing the full seismic risk analysis.

A great advantage of the simulation-based approach is that the problem of seismic risk analysis
can be framed as a forward uncertainty quantification problem [15]. In fact, by combining the
SGMM with the dynamical analysis of structures, one obtains a simulator that maps a set of
ground motion parameters to the associated EDP. More specifically, this is a stochastic simulator
[15, 17], i.e., several runs with the same ground motion parameters produce different values of
the EDP, due to the aleatory hidden variables in the generation of ground motions. Therefore,
one can run multiple simulations for given values of IMs without introducing bias. Moreover, this
allows for coupling the seismic hazard model and the fragility function without going through
intermediate variables.

When working with ground motion parameters, replication-based methods have been proposed so
far in the literature [10, 15]. In this framework, one fixes the SGMM parameters, and the hazard
model produces a set of consistent earthquake loads for dynamical analysis of the structure. This
procedure is called replication, as we evaluate repeatedly the simulator for the same values of the
input. The associated EDP values are realizations of the structural response conditioned on the
given SGMM parameters. Therefore, they can be used to estimate the underlying conditional
distribution. This procedure is repeated for different SGMM parameters, and the fragility
function can be estimated from the conditional distribution. Because many replications (e.g.,
100) are necessary to characterize the conditional distribution, this approach requires a large
number of model runs (as shown in [15]).

To alleviate the computational cost, in this paper, we explore the methods that do not rely on
replications [11, 18, 19]. Since the SGMM parameters are vector-valued IMs, some methods
developed for fragility analysis with a single IM can be extended and applied. Cornell et al. [18]
proposed the so-called cloud analysis which is a linear model in the log-scale with a homoscedastic
Gaussian noise. This parametric model relies on rather restrictive assumptions (log-linearity and
homoscedasticity).

Alternatively, fragility models can be computed in a classification framework [19, 20]. This
method only works with binary damage variables (whether the structure fails or not) and does
not make use of the precise value of the EDP, which leads to a certain loss of information.
More recently, nonparametric models, namely kernel smoothing, have been proposed in the
literature [11, 21]. However, it is well-known that nonparametric models suffer from the curse of
dimensionality [22]: the model accuracy decreases drastically with increasing input dimensionality
(in our case, the number of IMs).

In this paper, to better balance the model flexibility and limited number of simulations, we
propose applying the newly developed stochastic polynomial chaos expansion (SPCE) technique
[16]. This model introduces an artificial latent variable and a noise variable to represent the
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random nature of the stochastic simulation. More precisely, it expresses the EDP as a function
of the IMs and the latent variable plus the additive noise. Therefore, this model can tackle a full
representation of conditional distributions. It follows that natural byproducts of the analysis
are the classical fragility models. In fact, one can naturally develop statistical relations between
classical IMs and the selected EDP. In this case, the classical IMs are available as statistics of
the synthetic ground motions2, and the fragility models can be used in the original PEER-PBEE
framework directly.

The paper is organized as follows. In Section 2, we outline the stochastic simulator approach;
then, we recap the extension of classical methods developed to multiple intensity measures. In
Section 3, we summarize the main ingredients of the stochastic polynomial chaos expansion. In
Section 4, we use a synthetic ground motion model and two computational examples to illustrate
the performance of the proposed method. Finally, we conclude with the main finding of the
study and give an outlook for future research in Section 6.

2 Stochastic simulator approach for fragility analysis

2.1 The stochastic simulator approach

This paper follows the line of research that uses an SGMM to characterize seismic excitation.
Using the representation introduced in Abbiati et al. [15], the stochastic ground motion can be
expressed as follows

A(t) = Ma(t,Ξ|X), (1)

where Ma represents the synthesis formula of a parametric SGMM, Ξ is a Gaussian vector (with
i.i.d. standard normal random variables) representing the aleatory variability of the process,
and X is a random vector collecting the parameters of the model and the associated epistemic
variability. The SGMM parameters are selected to be engineering meaningful ([7, 23]); therefore,
in this framework, X can be regarded as a vector of IMs. In the PEER-PBEE framework, X is
statistically related to the earthquake and site characteristics via predictive equations. However,
this study focuses only on the fragility model computation and, therefore, for simplicity, we use
a marginal joint probability distribution of X fitted to a specific seismic catalog (see Section 4.1
for further details).

Let Y denote the EDP (e.g., maximum interstory drift) of a structural system of interest computed
as Y = Md(A(t)|xd), where Md is an expensive-to-evaluate deterministic solver3 with xd being a
set of deterministic parameters (e.g., a finite element model with deterministic masses, damping,

2In this case, one has to verify that the rate of exceedance of the classical IMs emerging from the SGMM is
compatible to the ones derived by PSHA analysis [8]

3In [15], the solver is also assumed to be stochastic to accommodate random fields. In this paper, we choose
the more restrictive deterministic solver as it is the most typical case in earthquake engineering
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and constitutive models). It follows that Y can be expressed as

Y = Md(Ma(t,Ξ|X)|xd) = Ms(Ξ|X), (2)

where Ms
def= Md ◦Ma is a stochastic simulator since for X = x the response Y is still stochastic

(due to the aleatory variability encoded in Ξ). Provided with this framework, the objective of
this study is to use a stochastic surrogate model, namely the SPCE, to develop fragility models.

2.2 Fragility analysis

In PBEE, seismic loads are typically characterized by a selected set of IMs. An incomplete list of
conventional IMs includes peak ground acceleration, spectral acceleration, peak ground velocity,
and Arias intensity [24]. In general, an IM can represent any “optimal” feature of the seismic
load. According to [24], optimal is defined as being practical, sufficient, effective, and efficient
(see [24] for further details). To improve the power of the prediction and reduce the variability
among ground motions, one can combine several IMs for fragility analysis [25–27].

In the SGMM context, a natural choice for the IMs is the set of SGMM parameters. This allows
applying directly the PBEE-PEER framework by convolving the predictive equations (which
extend the classical GMPEs) with these fragility models based on the SGMM parameters [15].
In this study, we pursue this philosophy by proposing SPCE as a computational method that
outperforms the current state of the art. In particular, this section first introduces the general
concept of fragility models; second, it reviews a series of computational methods which can be
used directly in this context and that we will use to compare the proposed SPCE approach.

The structural performance is usually defined by the event that the EDP exceeds a certain
threshold δ0, which represents a predefined damage level. A fragility model express the exceeding
probability as a function of IMs, that is,

pf (x) = P (Y > δ0 | X = x) = 1 − FY |X(δ0 | x). (3)

Using the distribution characterizing the SGMM parameters, we generate N samples grouped
into X =

{
x(1), . . . ,x(N)

}
. Unlike Gidaris et al. [10] and Abbiati et al. [15] where O(102)

replications are used, we do not consider replications in this paper to drastically reduce the
overall number of simulations. This is feasible because of the features of the SPCE approach
described in Section 3. Therefore, for each set of the ground motions parameters x(i), we generate
one synthetic ground motion and then compute the associated EDP y(i) which is collected in
Y =

{
y(1), . . . , y(N)

}
.

In the sequel, we introduce a series of classical fragility model computation methods which can
be used directly in this context. Moreover, we use these benchmark methods to compare the
proposed SPCE approach.
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One of the most popular methods for fragility analysis is the linear model [18, 27] (i.e., the
so-called cloud analysis), where the logarithm of EDP is expressed as a linear function of the
logarithm of the IMs with an independent additive Gaussian noise, i.e.,

log(Y ) =
M∑

i=1
β0 +

∑

j=1
βj log(xj) + e, (4)

where e ∼ N (0, σ2). The model parameters β and σ can be estimated using standard ordinary
least-squares. Equation (4) gives directly the conditional probability density function (PDF),
and the fragility function is calculated as

pf (x) = 1 − Φ




δ0 − β0 −
M∑

j=1
βj ln(xj)

σ


 , (5)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.

Probit regression is another classical method used to estimate directly fragility functions [19, 20].
In this context, fragility models are interpreted as a soft classifier. In the earthquake engineering
community, the CDF of a lognormal distribution is typically selected as classifier. Although this
method is usually used for a single IM, it can be extended directly to the case of multiple IMs,
that is,

pf (x) = Φ


β0 +

∑

j=1
βj ln(xj)


 . (6)

The model parameters β are estimated by maximum likelihood estimation. In this classification
framework, the threshed δ0 is used to directly classify the samples of the outcomes (e.g.,
{not fail} def= {EDP < δ0}, {fail} def= {EDP ≥ δ0}), and the precise value of the EDP is ignored.
Therefore, δ0 is a property of the classifier; in other words, when the value of δ0 varies, it is
necessary to build a new model.

In recent years, nonparametric methods for fragility model computations have gained momentum
[11, 21], given their inherent flexibility. Recall the definition of the conditional distribution

fY |X(y | x) = fY,X(y,x)
fX(x) . (7)

Without introducing restrictive assumptions, the distributions fY,X and fX can be estimated
using nonparametric estimators, namely kernel smoothing, which then provides an estimate
of the conditional distribution. In this approach, the bandwidths are hyper-parameters to be
defined. Noh et al. [21] proposed selecting the bandwidths by engineering judgments and prior
information. Mai and Sudret [11] applied the method developed in [28] to estimate separately
fY,X and fX . However, this does not yield a valid conditional distribution (the integral over y is
unequal to 1). In this paper, we consider a more advanced nonparametric method developed
by Li et al. [29] that is typically designed for estimating the conditional CDF, as the latter is
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directly related to the exceeding probability. Following Mai and Sudret [11], the kernel estimator
is applied to the logarithmic transform of the data to guarantee the positiveness of the EDP and
the IMs.

3 Stochastic polynomial chaos expansion

The methods reviewed in the previous section have their limitations: the linear model relies on
very restrictive assumptions, the probit model does not make full use of the information, and the
kernel estimator suffers from the curse of dimensionality [22]. To achieve better accuracy with
a limited number of simulations, we propose using the stochastic polynomial chaos expansion
(SPCE) approach recently proposed in Zhu and Sudret [16] to estimate the probability distribution
of the EDP, Y , conditioned on the IMs, X = x. The conditional random variable is denoted by
Yx. In this section, we recap the principle of the standard polynomial chaos expansion (PCE)
and its extension to SPCE.

PCE is a surrogate model that has been widely applied to emulate deterministic simulators in the
context of uncertainty quantification. Considering the uncertain input variables X, this surrogate
represents a deterministic model Md : x 7→ Md(x) by a series of polynomial expansions, that is,

Md(X) ≈
∑

α∈A
cαψα(X), (8)

where ψα is the basis function defined by the multi-index α, cα is the associated coefficient, and
A is the truncated set of multi-indices that define the basis functions used in the expansion.

For X with independent components, the basis function is given by a product of univariate
polynomials:

ψα(x) =
M∏

j=1
ϕ(j)

αj
(xj), (9)

where M is the dimension of X, i.e., the number of input parameters, αj is the polynomial
degree in xj , and

{
ϕ

(j)
k : k ∈ N

}
is the orthogonal polynomial basis with respect to the marginal

distribution fXj , which satisfies

E
[
ϕ

(j)
k (Xj)ϕ(j)

l (Xj)
]

=





1 if l = k

0 otherwise
. (10)

For uniform, normal, gamma, and beta distributions, the associated univariate orthogonal
polynomials are well known as Legendre, Hermite, Laguerre, and Jacobi polynomials [30].

When X has dependent components, the tensor product in Eq. (9) generally does not produce
an orthogonal basis. To circumvent this problem, one common way is to transform X into an
auxiliary vector H = T (X) with independent components (e.g., a standard normal vector) using
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the Nataf or Rosenblatt transform [31]. The polynomial basis is then defined with respect to the
auxiliary variables

ψα(x) =
M∏

j=1
ϕ(j)

αj
(hj). (11)

where h = T (x), and
{
ϕ

(j)
k : k ∈ N

}
is defined by the marginal distribution of Hj .

Let us introduce now the stochastic extension of PCE. Equation (8) is a deterministic function
of the input variables x. To represent the stochastic behavior in the earthquake simulation, we
include an artificial latent variable Z in the expansion and an additive noise variable ϵ which
results in the SPCE [16]:

log (Yx) d≈ log
(
Ỹx

)
=
∑

α∈A
cαψα (x, Z) + ϵ, (12)

where the expansion is expressed on the logarithmic transform of Yx to ensure the EDP is positive
(this transform is also applied by Gidaris et al. [10]). The noise variable ϵ is a centered Gaussian
random variable with standard deviation σ, i.e., ϵ ∼ N (0, σ2).

Here, we aim at approximating the distribution of the EDP Yx for any x. As a result, we use the
notation d≈ to denote approximation in distribution. The artificial latent variable Z in Eq. (12)
is only introduced to reproduce the stochasticity, and it is not related to the high-dimensional
hidden random vector Ξ in the stochastic ground motion model of Eq. (2). In this paper, we
select a standard Gaussian latent variableZ ∼ N (0, 1). With this choice, if only linear terms are
considered in Eq. (12), the SPCE is equivalent to the linear model in Eq. (4).

To build such a model, we need to determine the coefficients c of the expansion and the standard
deviation σ of the noise term.For a data point (x, y) the conditional likelihood can be expressed
as (see details in Zhu and Sudret [16])

l(c, σ; x, y) = 1
y

∫

DZ

1√
2πσ

exp
(

−(log(y) −∑
α∈A cαψα(x, z))2

2σ2

)
fZ(z)dz. (13)

In practice, we can apply the Gaussian quadrature [32] with respect to the weight function fZ to
efficiently evaluate the one-dimensional integral, that is

l(c, σ; x, y) ≈ l̃(c, σ; x, y)

= 1
y

NQ∑

j=1

1√
2πσ

exp
(

−(log(y) −∑
α∈A cαψα(x, zj))2

2σ2

)
wj ,

(14)

where NQ is the number of integration points, zj is the j-th integration point, and wj is the
associated weight. Based on Eq. (14) and the available data (X ,y), we calibrate the coefficients
c by maximum likelihood estimation (MLE)

ĉ = arg max
c

N∑

i

log
(
l̃
(
c, σ; x(i), y(i)

))
. (15)
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The standard deviation σ cannot be fitted jointly with c because the likelihood in Eq. (13) is
unbounded for σ = 0 (see [16] for a detailed discussion). Therefore, σ is a hyper-parameter, and
we use cross-validation with the out-of-sample likelihood as the performance metric to select
an optimal value for σ. In addition, the cross-validation score is also useful for determining an
appropriate truncated set A.

After constructing the model, one can efficiently generate new samples of Ỹx by fixing the value
of x and sampling (Z, ϵ) to evaluate Eq. (12). Therefore, probabilistic quantities of Ỹx (e.g.,
mean, variance, quantiles, and exceeding probabilities Eq. (3)) can be estimated by large-scale
Monte Carlo simulations. Similarly, jointly sampling (X, Z, ϵ) produces samples of Ỹ which can
be used to study the properties of the emulated EDP.

4 Numerical examples

In this section, we compare SPCE with the methods reviewed in Section 2.2, namely the
linear model (LM) [18], the kernel conditional distribution estimator (KCDE), and the classical
classification-based fragility model (i.e., the probit model) [19], on two numerical examples. For
the KCDE, we apply the kernel estimator developed for conditional CDF estimation [29] which
is available in the package np [33] implemented in R. To quantitatively assess the performance,
we report the convergence of the models for the estimation of the conditional distribution and
the fragility function.

When comparing the distribution estimation, we consider only LM, SPCE, and KCDE, as
the probit model directly estimates the fragility function without providing the conditional
distribution. Since LM, SPCE, and KCDE are all applied to the logarithmic transform of the
EDP, we examine the estimation accuracy of the conditional distribution of the transformed
quantity. In this respect, we use the normalized Wasserstein distance [16] as the error metric
which reads

ε =
EX

[
d2

WS

(
log (YX) , log

(
ỸX

))]

Var [log(Y )] , (16)

where Yx is the EDP obtained from the stochastic simulation, Ỹx is that of the surrogate model,
and dWS is the Wasserstein distance of order two [34] between two probability measures. For
continuous random variables Y1 and Y2 with quantile functions (i.e., inverse CDF) Q1 and Q2,
this distance can be computed by

d2
WS (Y1, Y2) = ∥Q1 −Q2∥2

2 =
∫ 1

0
(Q1(u) −Q2(u))2 du, (17)

For the fragility model in Eq. (3) which is a deterministic function of x, we use the relative
mean-squared error to assess the global approximation accuracy

εp
def=

E
[
(pf (X) − p̃f (X))2

]

Var [pf (X)] , (18)

where pf is the fragility function of the simulator, and p̃f denotes that of the surrogate.
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4.1 Stochastic ground motion model

This section briefly describes the simplified SGMM model used in our analysis. It is out of
the scope of the current study to develop predictive equations that link the SGMM parameters
to the earthquake site and source characteristics. Specifically, we employ a site-based SGMM
defined in the frequency domain [23, 35]. The model is the spectral representation of the original
time-domain model implemented in [8]. It targets broad-band excitations, which are typically
associated with far-field ground motions.

In detail, the SGMM is completely characterized by an evolutionary power spectral density
(EPSD) [36]. Like its original time-domain counterpart, this representation allows separating the
temporal and spectral components of the process [23, 35]. In this study, without losing generality,
we neglect the non-stationary spectral characteristics of the ground motion. In fact, within a
good engineering approximation, the frequency content and the bandwidth of the strong ground
motion phase can be assumed constant for broad-band excitations. Moreover, it is assumed that
severe structural damage occurs during the strong motion phase.

Finally, the spectral content of the process is represented by a normalized stationary Kanai-Tajimi
power spectral density (KT-PSD), which is a function of two parameters: the main frequency,
ωg, and the bandwidth, ζg. The normalized KT-PSD produces a stationary process with unit
variance so that the intensity of the ground motion is completely controlled by a time-modulating
function. We use a gamma modulating function ([8, 23]), which is completely defined by the
expected Arias intensity Ia, the time at which 45% of the expected Arias intensity is reached, tmid,
and the effective duration of the motion, D5−95. Finally, the complete SGMM EPSD is given by
modulating the normalized KT-PSD with the time modulating function. Moreover, to ensure
zero residual velocity and displacement, we apply a high-pass filter using the evolutionary theory
of Priestley (see [23] for a detailed description). To summarize, the SGMM model parameters
are x = [Ia, tmid, D5−95, ωg, ζg].

Next, we fit the SGMM model to a catalog of recorded far-field ground motions from the PEER
NGA-West2 database (the same used in [37]). The catalog includes 71 ground motions recorded
at a range of distances (10-90 km) and site conditions from reverse earthquakes with a magnitude
between 6 and 7.6. The two horizontal components of each record are rotated into the major and
intermediate principal directions ([8]). In this study, we used only the major component (i.e., we
used 71 time series). The fitting procedure for the frequency content of the ground motion is
described in detail in Broccardo and Dabaghi [23]. However, in Broccardo and Dabaghi [23], ωg

and ζg are a time-varying function, while in this study ωg corresponds to the main frequency
of the ground motions at tmid (which is considered the strong phase of the ground motion).
Moreover, we fix ζg to a constant value of 0.9, which was a good approximation for the selected
broad-band excitations4. The approach to estimates the parameters Ia, tmid, D5−95 follows [8]. In

4We found that the EDP response was not sensitive to large values of ζg. Therefore, we used a point
approximation and reduced the parameter space. Note that this approximation does not limit the generality of the
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this respect, the free SGMM parameters are random variables (i.e., x becomes a random vector,
X) to account for the epistemic uncertainty related to the chosen data set.

Provided with the 71 estimates of the free parameters, we fit a joint-probability model based on
log-normal marginal distributions and a Gaussian copula (i.e., a joint log-normal distribution).
Consequently, the models also account for the dependence structure among the parameters.
The joint-probability model parameters are reported in Table 1. Finally, the simulation of the
synthetic time series follows a two-step simulation (which is typical in a stochastic simulator
setting). First, the SGMM parameters are sampled from the joint log-normal distribution. Second,
using the synthesis formula of the frequency domain representation of a stochastic process [38],
the time series are generated by filtering white noise Gaussian vectors with the EPSD and the
high-pass filter. Therefore, for a given set of model parameters X = x, multiple time series can
be generated. Consequently, the EDP of interest is a random variable even when X = x.

Table 1: Ground motion parameters, g is the gravitational constant expressed in [m/s2]

Name Distribution

Ia [g2· s] LN (−4.61, 1.452)

tmid [s] LN (
2.55, 0.902)

D5−95 [s] LN (
2.67, 0.532)

ωg [rad/s] LN (
1.42, 0.592)

Correlation
matrix

R =




1 0.015 −0.23 −0.13
0.015 1 0.68 −0.36
−0.23 0.68 1 −0.11
−0.13 −0.36 −0.11 1




4.2 Toy example

In this example, we introduce the properties of a three-story shear frame idealized as a three-
degree of freedom system. We are interested in the dynamic response of the system subjected to
the ground motions generated according to Section 4.1. The interstory behavior is inelastic, with
a force-interstory-drift relationship based on a Bouc-Wen hysteretic model [39]. Specifically, the
i-th interstory restoring force is written as

qi(vi(t), v̇i(t)) = ki [αvi(t) + (1 − α)z(t)] , (19)

where vi(t) denotes the interstory drift, α is a parameter that controls the degree of inelasticity
(i.e., α = 1 corresponds to the linear case), ki is the initial elastic interstory stiffness, and z(t) is

SPCE approach for fragility model computation.
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the hysteretic response governed by the following law

ż(t) = −γ |v̇(t)| |z(t)|n−1 − η |z(t)|n v̇i(t) +Av̇(t), (20)

where γ, n,A and η are the model parameters. The values of structural properties, including the
local masses mi and damping ci, and model parameters are reported in Table 2. The story yield
displacement, δy, is set to 0.01 m and the post-hardening stiffness is set at 10% of the elastic
stiffness ki for all the three stories. The EDP of interest is the maximum interstory drift, i.e.,

Y = max
[
max

t
[v1(t)],max

t
[v2(t)],max

t
[v3(t)]

]
. (21)

Table 2: Structural properties and Bouc-Wen parameters (δy = 0.01 m).

mi 106[kg] ci [106[Ns/m] ki 108[N/m] α n γ [1/mn] η [1/mn] A

Story 1 1 1.73 3.0 0.1 5 1/(2δy)n 1/(2δy)n 1
Story 2 1 1.73 2.4 0.1 5 1/(2δy)n 1/(2δy)n 1
Story 3 1 1.73 1.5 0.1 5 1/(2δy)n 1/(2δy)n 1

Figure 1 illustrates the conditional PDF of the maximum interstory drift for four different values
of the ground motion variables. The models are constructed based on a total number of 1,000
simulations. The reference histograms are obtained by replicating the simulation 250 times for
each set of ground motion parameters, i.e., we generated 250 ground motions for each x and
computed the associated structural responses. The distributions are plotted on the logarithmic
transform of Yx, which allows for verifying the assumptions of the linear model.

As shown in Figure 1, the linear model can represent the overall location and shape of the
conditional distribution: the prediction of the mean values are close to the reference histograms
that demonstrate normal-like shapes. Nevertheless, the linear model loses some details of the
mean estimation in Figures 1a and 1c and cannot capture the heteroskedastic effect (varying
variance). The PDF predictions of KCDE are quite poor, as it yields spurious oscillations in
Figures 1a, 1c and 1d. This is because the bandwidth selection procedure [33] is designed
for estimating the conditional CDF. Moreover, the conditional distribution estimation requires
estimating the joint distribution of (X, Y ) in Eq. (7) which is of dimension 5. This is rather high
for nonparametric estimators and leads to the observed poor predictions. In contrast, SPCE can
accurately emulate the PDFs in terms of not only the location and the heteroskedastic effect but
also the shape of the distributions: Figure 1d is slightly right-skewed which is well represented
by SPCE.

To study the convergence of the various methods, we generated a big data pool of size 105

(following the distribution of X described in Table 1). We randomly subsampled it to have
samples of desired sizes N ∈ {250; 500; 1,000; 2,000; 4,000} to train the models. Note that this
mimics the procedure of random design of experiment. To account for the uncertainties in the
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(a) x = (0.0013, 69.94, 61.59, 5.66) (b) x = (0.017, 7.57, 10.06, 7.01)

(c) x = (0.055, 3.67, 3.45, 4.79) (d) x = (0.16, 7.23, 6.15, 2.70)

Figure 1: Example 1 — comparison of emulated PDFs of log (Yx) for four different values of x;
the models are built on N = 1,000 simulations.
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estimation, we repeated the procedure 20 times for each sample size (i.e., we obtain 20 models
constructed on independent subsamples for each N). To evaluate the error metrics defined in
Eqs. (16) and (18), we generated a validation set of size 400. For each validation point, we used
250 replications to have a reference distribution (meaning a total number of 400×250 simulations
for the validation set). The error estimates for each sample size are represented by box plots
constructed from the 20 repetitions of the full analysis.

Figure 2 shows the results of the models for estimating the conditional distribution. For relatively
small sample sizes N ≤ 500, the linear model gives the best results. This is because the linear
model is very simple, and its assumptions are relatively “suitable” for this example. More
precisely, the error of a statistical model can be decomposed into bias and variance [40]. In
Figure 1, we observe that the conditional distribution is close to Gaussian, the mean function
does not exhibit a strong nonlinearity, and the heteroskedastic effect is relatively weak. Therefore,
the bias of the linear model is rather small. Because of its simplicity, the linear model has a
small variance. As a result, when only a few data points are available, the linear model gives
the best results. However, with increasing sample size, the errors of the linear model run into
a plateau. This is due to the irreducible bias (caused by the model misspecification). On the
contrary, SPCE and KCDE are more flexible models that have smaller bias but bigger variance.
Hence, both models exhibit a clear decay of the error. Due to its nonparametric feature, KCDE
is merely comparable to the linear model for N = 4,000. When enough samples are available,
i.e., N ≥ 1,000, SPCE is the best model. Furthermore, the average error of SPCE is three times
smaller than those of the linear model and kernel estimator for N = 4,000.

Figure 2: Example 1 — comparison of the convergence among the models in terms of the
normalized Wasserstein distance. The lines correspond to the average values over 20 repetitions
of the full analysis, whereas the box plot summarize the 20 results.

When considering fragility functions, we select two thresholds δ0 = 0.02 m and δ0 = 0.07 m. The
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relative mean-squared errors for estimating the associated fragility functions are reported in
Figure 3. In general, SPCE produces the best overall approximation to the fragility functions for
all sample sizes. Similar to what we observed in Figure 2, the performance of the linear model
barely improves with increasing N . For δ0 = 0.07 m, SPCE outperforms the linear model in the
case of a few samples N ≤ 500. This indicates that SPCE better approximates the tails. The
probit model yields relatively large errors for training sets of sizes N ≤ 1,000 in the estimation of
the fragility function associated with δ0 = 0.07 m. This is because this model ignores the precise
values of EDP and only works with the binary variable. For δ0 = 0.07 m, only a small fraction
of samples (about 1.3%) exceed the threshold. Consequently, the probit model only produces
reliable estimates for large N . Finally, KCDE performs quite poorly even though the associated
bandwidth selection procedure is designed for CDF estimation.

(a) Fragility function for δ0 = 0.02 m (b) Fragility function for δ0 = 0.07 m

Figure 3: Example 1 — comparison of the convergence among the models in terms of the fragility
functions. The lines correspond to the average values over 20 repetitions of the full analysis,
whereas the box plot summarize the 20 results.

4.3 Three-story frame

As a second example, we apply the methods to study the three-story steel frame modeled with
the software OpenSees [41]. The geometry of the structure is shown in Figure 4a, and the story
height and floor span are H = 3 m and L = 5 m, respectively. We choose the standard European
IPE A 330 for the beams and HE 200 AA for the columns.

The mechanical property of the steel follows the uniaxial Giuffre-Menegotto-Pinto model with
isotropic strain hardening (material of type “Steel02” in OpenSees). More precisely, we set
the Young’s modulus to E = 205,000 MPa, the yield stress to fy = 235 MPa, and the strain
hardening ratio to b = 0.01 (the other parameters controlling the elastic-plastic transition are
given by R0 = 18, CR1 = 0.925, and CR2 = 0.15). The load applied to the structure consists of
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dead load (weight of frame elements and supported floors) and live load, which results in a total
distributed load on the beams equal to q = 20 kN/m [11].

The structural components (beams and columns) are modeled by nonlinear beam elements based
on the iterative force-based formulation. The element cross-sections are defined by a set of fiber
sections, which allows modeling the plasticity over the cross-section. Figure 4b illustrates the
stress-strain relation of the bottom left column for the frame under an example ground motion.
The first two fundamental periods of the structure are 0.950 s and 0.317 s (from modal analysis),
respectively. In this study, we are interested in the dynamic response of the system subjected to
the ground motions generated according to Section 4.1. The EDP of interest is the maximum
interstory drift ratio.

(a) Illustration of the frame structure (b) Hysteric behavior of the steel material at section
1-1 for a ground motion

Figure 4: Example 2 — three-story steel frame.

Figure 5 shows the prediction of the conditional PDFs for four different values of x. The reference
histogram of each x is calculated by performing 250 replications, and the surrogate models are
built on 1,000 simulations. Similar to the first example Figure 1, we observe that the conditional
distributions have bell shapes that are close to Gaussian distributions. The linear model can well
approximate the location of the distributions, so the (log-)mean function does not demonstrate a
strong non-linearity. The variance of the conditional distribution does not vary too much. The
linear model shows a good overall approximation, but it fails to characterize the precise variation
of the distribution. On the contrary, the kernel method is too flexible and completely mispredicts
the shape of the distribution. In contrast, SPCE turns out to accurately represent not only the
location and shape of the distribution but also the heteroskedastic effect.

For the convergence study, we followed the same procedure as Section 4.2. In this example,
we generated a data pool of size 50,000. We randomly subsampled this data set to have the
experimental design of sizes N {250; 500; 1,000; 2,000; 4,000} to build the surrogate models. We
repeated the analysis 20 times for each value of N to account for the uncertainties (due to the
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(a) x = (0.0098, 44.21, 47.08, 2.33) (b) x = (0.0058, 31.36, 26.89, 2.69)

(c) x = (0.014, 15.15, 10.19, 1.24) (d) x = (0.11, 12.85, 5.49, 1.76)

Figure 5: Example 2 — comparison of emulated PDFs of log (Yx) for four different values of x;
the models are built on N = 1,000 simulations.
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random ground motion parameters and the intrinsic stochasticity of the ground motion model).
To evaluate the error defined in Eqs. (16) and (18), we created a validation set of size 200, and we
performed 250 replications for each validation point to have a reference conditional distribution.

Figure 6 shows the error metric defined in Eq. (16). Similar to Figure 2, the linear model is
superior to SPCE and KCDE when only N = 250 data points are used. With increasing N , its
errors exhibit narrower spreads, but the average values do not decrease due to the bias resulted
from the model simplicity. The kernel estimator exhibits a better convergence rate but performs
poorly overall. SPCE has a similar performance to the linear model at N = 500 and surpasses
the latter for N ≥ 1,000. In addition, SPCE has a clear decay of the errors with a similar rate to
KCDE. For N = 4,000, the average error of SPCE is less than half of those of the linear model
and KCDE.

Figure 6: Example 2 — comparison of the convergence among the models in terms of the
normalized Wasserstein distance. The lines correspond to the average values over 20 repetitions
of the full analysis, whereas the box plot summarize the 20 results.

For fragility function, we select two thresholds δ0 = 0.7% and δ0 = 2.5% which are typically used
to characterize light and moderate damages for steel frames [42]. The relative mean-squared
errors for estimating the associated two fragility functions are reported in Figure 7. For the
small threshold of δ0 = 0.7%, the results are similar to the distribution estimation in Figure 6.
Specifically: first, the linear model yields the best estimates of the fragility function when small
data sets of N = 250 are considered, but the errors get stagnant with more data; second, KCDE
is too flexible to estimate robustly the fragility function due to its nonparametric feature; third,
SPCE performs similarly to the linear model for N = 500 but outperforms all the other models
for N ≥ 1,000. Unlike the first example (Figure 3a), the errors of the probit model are not
comparable to these of SPCE but between the linear model and KCDE. For the high threshold
of δ0 = 2.5%, SPCE is the best model for all values of N . The simplicity of the linear model
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leads to a significant irreducible bias. In contrast, SPCE, KCDE, and the probit model all
demonstrate a clear decay of the errors. The kernel estimator has a large spread of errors but a
slow convergence of the average value. The probit model performs poorly for N ≤ 500 because
the model ignores the precise values of the EDP and only a few data points exceed the threshold
(ca. 1.8% in the data set). In summary, SPCE generally provides more accurate estimates of the
fragility functions than the other models.

(a) Fragility function for δ0 = 0.7% (b) Fragility function for δ0 = 2.5%

Figure 7: Example 2 — comparison of the convergence among the models in terms of the fragility
function. The lines correspond to the average values over 20 repetitions of the full analysis,
whereas the box plot summarize the 20 results.

In this example, we plot the two fragility functions in the Ia − ωg plan of an SPCE built upon
1,000 model evaluations in Figure 8. The plotted fragility models are obtained by averaging out
the functions with respect to tmid and D5−95. Specifically, we obtain the “cross section” fragility
model conditional to each {tmid, D5−95} sample and, then, we compute the average fragility
model.

We choose Ia −ωg which are the most important parameters of the fragility functions according to
a sensitivity analysis. This outcome is in line with the results reported in [15]. As a comparison,
we run the simulator for a validation set of nine points obtained by the Cartesian product of
Ia ∈ {0.02, 0.06, 0.1} and ωg ∈ {2, 6, 10}. The reference failure probability associated with each
validation point is computed by 250 replications (i.e., a total number of 2,250 simulations for
validation). As seen in Figure 8, the diamonds representing the reference points lie fairly well on
the estimated fragility surface. More precisely, the average absolute error of SPCE (averaged
over the 9 validation points) is 2.7% for δ0 = 0.7% and 0.7% for δ0 = 2.5%. In this case, we
observe that the dominant variable is the Arias intensity Ia (also confirmed by the sensitivity
analysis). This was expected, given the broad-band nature of the excitation, which “spread” the
energy content among the full range of frequencies.
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(a) Fragility function for δ0 = 0.7% (b) Fragility function for δ0 = 2.5%

Figure 8: Example 2 — Fragility function in the Ia − ωg plan of a SPCE built on 1,000 samples.
The diamond points correspond to the reference value computed from 250 replications.

4.4 Discussion

The models considered in this paper were constructed on data without replications. For replication-
based approaches [10, 15], a typical number of O(102) replications are used. Following such a
strategy, the amount of points exploring the input space would significantly reduce to only O(10)
(as the total number of simulations varies in {250; 500; 1,000; 2,000; 4,000}). This does not allow
for good coverage of the input space, especially when the failure occurs with a higher probability
at the tail of the input distribution. Moreover, using replications in the estimation of conditional
distributions of a parametric model is also not optimal, as shown in Zhu and Sudret [43].

Our numerical results demonstrate that SPCE is accurate for estimating both the conditional
distribution and the fragility functions for different thresholds. Therefore, SPCE provides a good
balance between the model flexibility and limited data. The linear model performs usually well for
small values of N but cannot correctly approximate fragility functions with large thresholds. Due
to its restrictive assumptions, the linear model cannot be further improved by using more data.
Surprisingly, the kernel estimator is almost always the worst model despite that the bandwidth
selection procedure is designed for CDF estimation. The probit model directly estimates the
fragility function and has a rather low accuracy compared to the other models.

5 Additional post-processing

5.1 CCDF of the EDP

As the conditional distribution is available from SPCE, one can aggregate the uncertainties in X

and evaluate the overall risks by uncertainty propagation. As an example, we can compute the
complementary cumulative distribution function (CCDF) defined by P(Y ≥ δ) of the EDP by
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resampling Y from SPCE. This represents the unconditioned exceeding probability of the EDP
as a function of δ.

In Figure 9, we plot the CCDFs of the two examples estimated by LM, SPCE, and KCDE, as the
probit model does not allow resampling the EDP. The reference curves are the empirical CCDFs
using all the available samples (105 for the first example and 50,000 for the second example).
The surrogate models are built on 1,000 simulations.

We observe that the linear model exhibits a systematic gap at the tail: it overestimates the
exceeding probabilities for relatively large values of δ, which cannot be reduced by increasing
N . The CCDFs obtained from the kernel estimator are generally more accurate than the linear
model but are unstable for big values of δ in Figure 9a. SPCE achieves a high accuracy in
Figure 9a but has a slight discrepancy at the tail in Figure 9b) which, according to the numerical
investigation, can be efficiently reduced by using more data.

(a) Example 1 (3-DOF system) — CCDF of the
maximum interstory drift

(b) Example 2 (OpenSees model) — CCDF of the
maximum interstory drift ratio

Figure 9: Comparisons of the CCDF estimation (the models are built on N = 1,000).

5.2 Classical fragility curves

With the data generated for estimating the distribution of EDP conditioned on the ground
motion parameters, we can also compute the fragility curves with respect to a classical IM, such
as peak ground acceleration (PGA) or spectral acceleration at the fundamental frequency (SA).
More precisely, we first extract the values of the selected IM from the synthetic seismograms and
then apply the proposed method to estimate conditional distributions which, by post-processing,
gives the fragility curves. As an illustration, we choose a data set of size 1,000 to estimate the
fragility curves for each of the examples in Sections 4.2 and 4.3.

For the first example (the 3-DOF system), we select the spectral acceleration (SA) as IM. More
specifically, SA corresponds to the spectral acceleration for a single-degree-of-freedom system
with a period equal to the fundamental period of the structural and viscous damping ratio equal
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to 2%. Figure 10a shows the scatter plot of the 1,000 data points. We observe that the data
have a strong heteroskedasticity (in the log-log scale) reflecting a typical nonlinear structural
behavior.

Figure 10b summarizes the fragility curves estimated by the different models (constructed on the
data illustrated in Figure 10a) for δ0 = 0.02 m and δ0 = 0.07 m. The reference fragility curves
are computed by applying the kernel estimator to all the available data (i.e., 105). Due to the
heteroskedastic effect and the possibly non-Gaussian shape of the conditional distribution, the
linear model has a significant gap to the reference, in particular for δ0 = 0.07. KCDE produces
an irregular fragility curve for δ0 = 0.07. The reason is that most of the data are in the region
where the intrinsic variability is not significant, which leads to a small value of the selected
bandwidth. This results in a large variance of the estimation in the region where the data are
sparse, as KCDE is a local estimator. The probit model is quite accurate for δ0 = 0.02, but it
yields unstable estimate of the fragility curve for δ0 = 0.07. This is because only a few points (9
out of 1,000) lead to exceedance. Finally, SPCE built on the data in Figure 10b approximates
the fragility curves with high accuracy.

(a) Training samples of size N = 1,000 (b) Comparison of fragility curve estimation

Figure 10: Example 1 — fragility curves using spectral acceleration as IM.

For the second example (OpenSees model), we use the PGA as intensity measure. Figure 11a
shows the scatter plot of a data set of size N = 1,000. We observe that the PGA is a less relevant
IM than the SA as the relationship PGA-EDP shows a much larger variability. Therefore, the
derived fragility curves are less informative than the previous ones. The PGA-EDP relationship is
close to linear with a homoscedastic noise (in the log-log scale). Therefore, the linear model is able
to approximate well the fragility curves with relatively small biases. Unlike Figure 10b, the kernel
estimator yields smooth predictions, but the fragility curve shows a non-increasing behavior for
δ0 = 2.5%. The probit model and SPCE provide the most accurate estimate for the fragility curve
of δ0 = 0.7%. However, in this case, SPCE underestimates the exceeding probabilities associated
with the threshold of δ0 = 2.5% for very large values of PGA. This is because most of the data
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are in the region where PGA is small and the structure does not fail with very high probabilities:
the 95% and 99% quantiles of PGA are 0.351g and 0.605g, and the associated reference exceeding
probabilities are 0.079 and 0.4427, respectively. The SPCE is a flexible model developed to
estimate the overall conditional distribution (with respect to the probability distribution of the
IM), but not designed to fit directly the tail of the distribution. As a consequence, in specific
cases, it may suffer of over-fitting and lack of robust extrapolation behavior for extreme quantiles.
In this case, the problem is exacerbated by the relative large variability between PGA and EDP,
which makes difficult the estimation of the tail of the distribution.

The lack of failure data for large damage thresholds is a well-known problem in fragility analysis.
In the classical framework for fragility computation based on real ground motions, this problem
is overcome by scaling the ground motions and fitting procedures based on censored data [20].
In the context of stochastic simulation, scaling is not recommended [44]. A promising future
research line is to develop an importance sampling scheme to simulate extreme events from the
SGMM model and fill adaptively the EDP intervals of interest. Observe that the presented
SPCE approach is orthogonal to this research line and can be easily adapted and applied once
the adaptive importance density scheme is developed.

(a) Training samples of size N = 1,000 (b) Comparison of fragility curve estimation

Figure 11: Example 2 — fragility curves using peak ground acceleration as IM.

6 Conclusions

In this paper, we propose methods to efficiently perform fragility analysis based on artificial
ground motions, following the recent development in Abbiati et al. [15]. We characterize the
ground motion model by a few engineering-meaningful parameters that are calibrated from seismic
records and modeled by random variables. Combing this model with the dynamical analysis of
structures, we obtain a stochastic simulator: for a given set of ground motion parameters, the
engineering demand parameter that characterizes the structural damage is random. Because
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of this non-deterministic relation, classical surrogate models cannot be used to represent the
simulator.

Some methods that have been developed for estimating classical fragility curves can be extended
and applied by regarding the ground motion parameters as multiple intensity measures. To
have a reliable model without introducing restrictive assumptions, we propose using the recently
developed stochastic surrogate model called stochastic polynomial chaos expansion to emulate the
conditional distribution. This model introduced an artificial latent variable and a noise variable
to reproduce the stochastic behavior of the earthquake simulation.

The performance of the proposed method is illustrated by two numerical examples: a three-
degree-of-freedom system and a 3-story steel frame (modeled in OpenSees). For the conditional
distribution estimation, SPCE is compared with the linear model and a state-of-the-art kernel
conditional distribution estimator. Using an appropriate error measure defined in Eq. (16) to
assess the accuracy, we observe that the linear model reaches its performance limit for only
N = 250 simulations because of its simplicity. The kernel estimator is too flexible to have a
stable estimate as a consequence of its nonparametric feature. In contrast, SPCE demonstrates a
steep decay of the errors and yields the best approximation for N ≥ 1,000.

For the fragility function, we include the probit model in the comparison. The results show that
SPCE prevails over the other models, especially for higher thresholds. In addition, SPCE can
be used to propagate the uncertainties in the ground motion parameters to evaluate the overall
risks. By resampling the model, SPCE can accurately estimate the complementary cumulative
distribution function with limited data even at the tail. Furthermore, one can also apply the
method to estimate the fragility curves with respect to classical intensity measures, i.e., PGA
and Sa.

SPCE can generally produce accurate estimates of the fragility curves. However, the data
are mostly in the safe region for a high threshold because of the sampling procedure. Thus,
extrapolating SPCE for extreme quantiles of the intensity measure with limited data is not
reliable. To cope with small exceeding probabilities, adaptive design strategies remain to be
explored. The simulation scheme will not simply sample the distribution of the ground motion
parameters but adaptively select the samples in the region where the structure is prone to fail
to improve the predictive quality of the surrogate model [45, 46]. This will also benefit the
estimation of fragility curves with classical IM.

We underline that the proposed method can be extended by considering uncertain parameters in
the structural properties to tackle a larger set of problems. It can also be applied to model other
probabilistic components in PBEE such as relating decision variables (e.g., monetary loss) to
structural damage and the damage state to EDP. With these models representing the conditional
distributions, one can evaluate the exceeding probability function of the decision variables by
resampling (similar to the calculation of the CCDF in Figure 9). Studies in this direction are
currently under investigation.
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