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Abstract

Stochastic simulators are non-deterministic computer models which provide a different
response each time they are run, even when the input parameters are held at fixed values.
They arise when additional sources of uncertainty are affecting the computer model, which
are not explicitly modeled as input parameters. The uncertainty analysis of stochastic sim-
ulators requires their repeated evaluation for different values of the input variables, as well
as for different realizations of the underlying latent stochasticity. The computational cost
of such analyses can be considerable, which motivates the construction of surrogate models
that can approximate the original model and its stochastic response, but can be evaluated
at much lower cost.

We propose a surrogate model for stochastic simulators based on spectral expansions.
Considering a certain class of stochastic simulators that can be repeatedly evaluated for the
same underlying random event, we view the simulator as a random field indexed by the
input parameter space. For a fixed realization of the latent stochasticity, the response of the
simulator is a deterministic function, called trajectory. Based on samples from several such
trajectories, we approximate the latter by sparse polynomial chaos expansion and compute
analytically an extended Karhunen-Loève expansion (KLE) to reduce its dimensionality.
The uncorrelated but dependent random variables of the KLE are modeled by advanced
statistical techniques such as parametric inference, vine copula modeling, and kernel density
estimation. The resulting surrogate model approximates the marginals and the covariance
function, and allows to obtain new realizations at low computational cost. We observe that
in our numerical examples, the first mode of the KLE is by far the most important, and
investigate this phenomenon and its implications.

1 Introduction

Nowadays, computer simulations are an essential ingredient of the research and development
workflow in virtually all fields of science and engineering. Typically, not all parameters and
conditions needed for the simulations are known exactly, and this uncertainty affects the output
of the simulations. This is the main focus of the field of uncertainty quantification (Smith, 2014).

1



Most computer simulations can be classified as deterministic simulators: repeatedly evaluating
the model M for the same set of input parameters x always yields the same deterministic
response y = M(x) ∈ R.1 To perform uncertainty quantification, the uncertainty on the input
(parameters and conditions) is usually represented probabilistically, and we follow this approach
in this paper. Propagating the input uncertainty through the deterministic simulator, the overall
response of the simulation becomes a random quantity.

However, not all computer simulations can be classified as deterministic simulators. Some models
contain intrinsic stochasticity that cannot be modeled as input parameter, e.g., epidemiological
models where each transmission or recovery is a random event, governed by the respective rate
of occurrence. Other models depend on uncontrollable environmental variables such as wind
fields or earthquakes, for which it can be infeasible or undesirable to explicitly model their
uncertainty. In these cases, it is more convenient to use the notion of a stochastic simulator :
only some of the uncertainty is explicitly modeled as random input variables, and there is some
residual randomness affecting the computational model that causes the model response M(x)
for a fixed set of input parameters x to still be a random variable: Yx = M(x). In other words,
evaluating the computer model several times with the same input parameters x will result in
different realizations y of the random variable Yx. Of course, since there is no true randomness
in a computer, every computer simulation can be made deterministic by fixing the random seed.
However, the seed is in general not a useful parametrization of uncertainty.

Uncertainty quantification methods typically require many runs of the computational model,
which can become costly or even infeasible for expensive engineering simulators. To save com-
putational resources, the model is often replaced with a cheaper surrogate model (or metamodel),
which provides a reasonably good approximation to the original model. The surrogate model is
computed from a small number of model evaluations and can subsequently be evaluated many
times with negligible computational cost. Surrogate models often treat the model as a black
box, i.e., they do not use any specific knowledge about the model and rely only on the avail-
able input-output data samples (and sometimes on the characteristics of the input parameter
space). Popular surrogate models for deterministic simulators include polynomial chaos ex-
pansions (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002), Kriging (Sacks et al., 1989;
Rasmussen and Williams, 2006), radial basis functions (Buhmann, 2000), and support vector
regression (Vapnik, 1995; Smola and Schölkopf, 2004).

Since the response of stochastic simulators is a random variable for every set of input parameters,
even more runs might be required to analyze their uncertainty, making surrogate models all
the more relevant in this case. Research on surrogating stochastic simulators is comparatively
recent. Most available methods focus on the marginal response distribution P (Y |X = x) for
x ∈ D and emulate the conditional density itself or certain statistics of it. Early contributions
aimed at characterizing the variation of the first two moments of the output response over
the input domain using joint Gaussian process models (Iooss and Ribatet, 2009; Marrel et al.,

1We consider here only real-valued simulators. The extension to low-dimensional vector-valued simulators is
straightforward. For the extension to high-dimensional vector-valued or function-valued simulators, see e.g. Nagel
et al. (2020); Perrin et al. (2021).
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2012). Another class of methods aims at directly modeling the variation of the marginal output
probability density function (pdf) of the random variable Yx over the input domain. Assuming
that the true marginal response pdf at a number of input locations is known, Moutoussamy
et al. (2015) represent the marginal pdf of a new input point as a linear combination of training
examples (i.e., kernel regression) or of specifically constructed basis functions. However, the
true marginal pdf is rarely known or its generation might require a lot of samples. For a finite
number of stochastic simulator evaluations over the input domain (with or without replications),
Zhu and Sudret (2020, 2021a) model the variation of the marginal output pdf over the input
domain using the so-called generalized lambda model, a parametric distribution family that is
able to approximate many classical families. In fact, stochastic simulators are akin to real-world
scientific experiments, which are usually stochastic due to unavoidable measurement error and
environmental noise. Therefore, standard statistical methods like quantile regression (Torossian
et al., 2020) and kernel conditional density estimation (Hall et al., 2004) can also be used to
emulate the marginal distribution of the response of a stochastic simulator. Furthermore, Zhu
and Sudret (2022) developed an approach that emulates the stochastic simulator response in
distribution, inspired by the weak PCE methodology based on maximum likelihood estimation
(Xiu, 2010).

A related method from machine learning are Bayesian neural networks, whose weights are
modeled as independent Gaussian random variables (MacKay, 1992; Goan and Fookes, 2020).
Bayesian methods such as Markov Chain Monte Carlo or variational inference are used to de-
termine the parameters of the weight densities from the given data. Furthermore, generative
models like variational autoencoders (Kingma and Welling, 2014) and generative adversarial
networks (Goodfellow et al., 2014) can be seen as surrogate models in distribution, learning a
conditional target density from data.

All the methods cited above aim at emulating only the univariate probability density functions
of the response random variables of the stochastic simulator. However, they do not take into
account the correlation and higher-order information between the stochastic simulator responses
at different points in the input domain. This close relation between the responses at different
input locations can be best illustrated by fixing the stochasticity of the simulator (e.g., by fixing
the random seed)2: in this case, the stochastic simulator response over the input domain becomes
a deterministic function, which we call a trajectory. In other words, the stochastic simulator can
be seen as a random field, i.e., as a collection of random functions.

Surrogating a stochastic simulator based on few model evaluations becomes therefore the task
of inferring a random field from discrete samples (often called “limited data”). Popular methods
for modeling random fields include orthogonal series expansions, such as spectral representation
(Shinozuka and Deodatis, 1991; Grigoriu, 1993) or Karhunen-Loève expansion (KLE) (Loève,
1978; Karhunen, 1946; Zhang and Ellingwood, 1994; Ramsay and Silverman, 2005; Grigoriu,
2006), and translation processes, which are mappings of Gaussian processes (Yamazaki and
Shinozuka, 1988; Grigoriu, 1998; Sakamoto and Ghanem, 2002; Shields et al., 2011). To our

2Note that this does not require this randomness to be modeled. In practice, fixing the seed might not be
possible for all computational models, as it depends on their implementation.

3



knowledge, the only publication in the specific context of stochastic simulators which takes
the random field point of view and aims at emulating trajectories (including the higher-order
relations between responses at different input locations) is by Azzi et al. (2019), who construct
a metamodel using Karhunen-Loève expansion together with the deterministic methods PCE
and Kriging.

The goal of our paper is to develop a surrogate model that is able to emulate the trajectories of a
stochastic simulator, and allows insight into the dependence between the simulator responses at
different input locations. Our method of choice in this paper is Karhunen-Loève expansion, one
of the most popular methods for random field inference from limited data. The main challenges
in constructing a trajectory-based surrogate for a stochastic simulator (a stochastic emulator)
are explained in more detail in the following:

1. Accuracy and efficiency: the surrogate should be accurate while needing as few model
evaluations as possible.

2. Continuous surrogate from discrete data: the surrogate should emulate the response over
the whole (continuous) input domain, while the available data consists of trajectories
sampled at a few points throughout the input domain (i.e., discrete samples).

3. The stochastic simulator is in general a non-Gaussian random field. This introduces addi-
tional complexity into the Karhunen-Loève model.

We are addressing each of these challenges by introducing a novel approach that combines several
state-of-the-art methodologies. We use Karhunen-Loève expansion in conjunction with sparse
PCE (Blatman and Sudret, 2011; Lüthen et al., 2021), which is a powerful and sample-efficient
surrogate modeling method for deterministic simulators, to address Challenge 1. This circum-
vents the otherwise high computational cost of solving the integral eigenvalue problem of KLE
(Schwab and Todor, 2006; Betz et al., 2014) by reducing the integral eigenvalue problem to
finite-dimensional discrete principal component analysis (PCA) in the truncated space of PCE
coefficients. The joint distribution of the resulting sample of dependent random KLE coeffi-
cients (Challenge 3) is identified using statistical inference within the marginal-copula frame-
work (Torre et al., 2019b). The procedure results in an analytical formula for the stochastic
emulator that can be used for computing marginals and correlations, as well as for generating
new trajectories that resemble trajectories of the original stochastic simulator.

In our approach, the extension from discrete data to the continuous model (Challenge 2) is
achieved by approximating the sampled trajectories by sparse regression-based PCE. A similar
approach has been used by Navarro Jimenez et al. (2017) in the context of stochastic differential
equations with the goal of sensitivity analysis, using non-intrusive pseudospectral projection to
compute the PCE coefficients. The representation by sparse PCE can be seen as a variant of
orthogonal series expansion (OSE) (Zhang and Ellingwood, 1994), which expands a second-order
random process in terms of an orthogonal basis of the associated Hilbert space.

Note that when random fields are approximated based on a set of samples, it is most often
assumed that the latter are collected on a discrete mesh in the index set, whereas this is not a
requirement for our method. In such mesh-based approximations to random fields, PCE is often
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used for modeling the random variables arising in dimension-reduced expansions (Desceliers
et al., 2006; Doostan et al., 2007; Das et al., 2009; Raisee et al., 2015; Abraham et al., 2018; Dai
et al., 2019). This is distinct from our approach, as we use PCE to approximate the trajectories
in the input space. Our approach yields an emulator for the whole input space (including unseen
locations), while existing approaches are mostly focused on building an emulator on the discrete
mesh where the samples were collected.

KLE represents a random field using an optimal orthogonal basis of the index space, resulting
in an expansion in terms of deterministic functions weighted by random coefficients. These
random coefficients are by construction uncorrelated, but unless the random field is a Gaussian
random field, they are in general statistically dependent. Inferring the joint distribution of de-
pendent random variables from samples is challenging but necessary for approximating a general
non-Gaussian random field by KLE. To address this challenge of inference, several approaches
have been proposed. Grigoriu (2010) suggests two methods to infer the joint distribution of the
random coefficients of a series expansion model, of which one amounts to kernel density esti-
mation, and the other to the fitting of a discrete joint distribution. Poirion and Zentner (2013,
2014) use KLE for modeling seismic ground motion time series, and model the random KLE
coefficients by 1D sample CDFs assuming at most pairwise dependence (Poirion and Zentner,
2013), or by kernel density estimation (Poirion and Zentner, 2014). In the present paper, we
investigate the use of kernel density estimation and inference of parametric joint distributions
based on marginals and vine copulas.

This paper is organized as follows: in Section 2 we recall the relevant theory and definitions.
In Section 3 we present our new stochastic emulator. The proposed method is then applied in
Section 4, where we assess its performance on several examples of varying complexity. Here we
observe that the KLE is often significantly dominated by its first mode, a phenomenon that we
investigate in Section 5. Finally, we draw conclusions and give an outlook on possible further
developments in Section 6.

2 Theoretical foundation

We provide a brief summary of the relevant theory and concepts needed to construct our pro-
posed stochastic emulator for stochastic simulators: random fields, polynomial chaos expansions,
Karhunen-Loève expansion, and inference of joint probability distributions.

2.1 Stochastic simulators as random fields

Let X be a random vector with values in D ⊂ R
d, with finite variance and joint probability

density function (pdf) fX . Denote by ω ⊂ Ω an abstract random event in a probability space
(Ω,F , P ). A stochastic simulator is a mapping

M : D × Ω → R, (1)

(x, ω) 7→ M(x, ω). (2)
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Fixing x ∈ D, the quantity Yx = M(x, ·) : Ω → R is a random variable. Fixing ω ∈ Ω,
M(·, ω) : D → R is a function in the input parameters, which we call trajectory or realization of
the stochastic simulator (see also Fig. 1). We assume that Yx has finite variance for all x, and
that M(·, ω) ∈ L2

fX
(D) for all ω ∈ Ω.

(a) Random variable Yx = M(x, ·) (b) Trajectory M(·, ω) : D → R

Figure 1: Visual representation of a stochastic simulator when either the input parameters x or the
random event ω are held fixed, resulting in a random variable (left) or a deterministic function (right).
The computational model is a high-rise building parametrized by several properties x (visualized in the
sketch by the shape of the building) subject to random earthquake events ω (visualized by 1D time series
in different colors), whose output M(x, ω) is a real number (e.g., the maximal displacement at the top
floor).

These definitions imply that a stochastic simulator M can be seen as a random field (also:
stochastic process or random process) {Yx}x∈D with index set D, i.e., as a family of random
variables {Yx} indexed by x ∈ D. In the following, we provide a brief reminder of a few random
field basics. For more details, see e.g. Grigoriu (2002).

To fully characterize a general random field, one needs to specify the collection of all its finite-
dimensional distributions

FYx1 , ... ,Yxn
(y1, . . . , yn) = P (Yx1 ≤ y1 ∧ . . . ∧ Yxn ≤ yn) (3)

for all n ≥ 1 and any x1, . . . ,xn ∈ D. Extending the concept of moments of random variables
to random fields, the deterministic mean function of the random field is given by µ(x) = E [Yx].
If µ(x) = 0, the random field is called centered. The (auto-)covariance function is defined by

c(x,x′) = E
[
(Yx − µ(x))(Yx′ − µ(x′))

]
. (4)

In general, a random field is not uniquely defined by its mean and covariance function. The only
exception is the family of Gaussian processes, for which all finite-dimensional joint distributions
are multivariate Gaussian distributions. For Gaussian processes, conditional distributions are
again multivariate Gaussians, which lies at the foundation of the popular surrogate modeling
technique Kriging/Gaussian process modeling. While Gaussian random fields are computation-
ally convenient, random fields encountered in real-world problems (and in particular, stochastic
simulators) are often non-Gaussian. One obvious argument is that Gaussian variables are un-
bounded while physical quantities are almost always bounded (Grigoriu, 2002).

6



A special feature of a stochastic simulator M, as opposed to classical random fields, is that its
index set is not an interval or a hypercube, but a general domain D ∈ R

d with weight function
fX . We will use this property to build an accurate surrogate model for M respecting the
probability density fX of the input space.

2.2 Polynomial chaos expansion

Polynomial chaos expansion (PCE) is a technique for modeling random variables using a basis
of polynomials that are orthonormal w.r.t. a given probability density function (Ghanem and
Spanos, 1991; Xiu and Karniadakis, 2002). In our algorithm (Section 3), we will use PCE
to approximate trajectories M(·, ω) of the stochastic simulator, which can be seen as random
variables M(X, ω) with their randomness induced by the uncertainty in the input X.

Consider a random vector X with values in D ⊂ R
d and independent components. Let

fX(x) = ∏d
i=1 fXi(xi) be its probability density function (pdf) and assume that X has fi-

nite variance. Let L2
fX

(D) be the space of real-valued function that are square-integrable under
fX , i.e., L2

fX
(D) =

{
g : D → R

∣∣ VarX [g(X)] < +∞}
. Under certain assumptions on the ran-

dom vector X (Xiu and Karniadakis, 2002; Ernst et al., 2012), there exists an orthonormal
polynomial basis {ψα | α ∈ N

d} of L2
fX

(D), where each element is the product of univariate
polynomials characterized by the multi-index α.

Let M ∈ L2
fX

(D) be a (computational) model. Its output Y = M(X) is a random vari-
able, which can be represented in terms of the orthonormal polynomial basis as M(X) =
∑

α∈Nd aαψα(X) with aα = EX [M(X)ψα(X)]. This representation is called polynomial chaos
expansion. In practice, a truncated expansion is computed,

M(X) ≈ MPCE(X) =
∑

α∈A
aαψα(X), (5)

where A ⊂ N
d is a finite subset of the full basis. The accuracy of a truncated PCE depends on

three ingredients: the choice of A, the method used for computing the coefficients a = (aα)α∈A,
and the choice of points X ⊂ D used in the coefficient computation method. An extensive
overview of the state-of-the-art methods to determine these is given in Lüthen et al. (2021,
2022).

2.3 Karhunen-Loève expansion

Karhunen-Loève expansion (KLE) is a well-established spectral expansion technique through
which a random field is represented in terms of an optimal orthogonal basis for the index space,
weighted by random coefficients (Karhunen, 1946; Loève, 1978). KLE transforms the random
field, which is an uncountably infinite but correlated family of random variables {Mx}x∈D, into a
countably infinite but uncorrelated family of different random variables {ξi}i=1,2,.... Furthermore,
the random variables ξi are typically of decreasing importance. KLE is therefore well suited and
often used for discretization and modeling efforts for random fields.
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To make these notions more precise, let {Mx(ω)}x∈D be a random field. Denote by µ(x) =
E [Mx] its mean function, and by c(x,x′) = Cov [Mx,Mx′ ] its covariance function. Let D be
closed and bounded. Let c be continuous on D × D and assume that Mx has finite variance for
all x ∈ D. Then the Karhunen-Loève expansion of the random field Mx is given by

Mx(ω) = µ(x) +
∞∑

k=1

√
λkξk(ω)ϕk(x) (6)

where (ϕk)k=1,2,... is an orthonormal basis of L2(D), λ1 ≥ λ2 ≥ . . . ≥ 0 is a non-increasing
sequence of non-negative real numbers, and {ξk}k=1,2,... is a countable family of zero mean, unit
variance, uncorrelated random variables.

Here, (λk, ϕk) are solutions to the integral eigenvalue problem
∫

D
c(x,x′)ϕk(x′)dx′ = λkϕk(x), (7)

and ξk is the result of the projection of M onto the spatial basis

ξk(ω) = 1√
λk

∫

D
M(x, ω)ϕk(x)dx. (8)

From Eq. (6) and the properties of ϕk and ξk it follows immediately that the covariance function
can be expressed as

c(x,x′) =
∞∑

k=1
λkϕk(x)ϕk(x′) (9)

(Mercer’s theorem). Note that the KLE random variables {ξk} (herein KL-RV ) do not enter
this expression.

KLE is especially well-suited to Gaussian random fields, since in this case the random variables
ξk are standard Gaussian and independent. However, Eq. (6) holds for all random fields fulfilling
the assumptions, not only for Gaussian random fields. The non-Gaussianity is modeled by the
(possibly complex) joint distribution fξ of the KL-RV.

Eqs. (6) to (8) are formulated in terms of L2(D), but they can be generalized: let X be a random
variable with values in D ⊂ R

d, density fX , and finite variance. Then KLE can be generalized to
the space L2

fX
(D) instead of L2(D). In that case, the index set D does not have to be bounded,

since the volume of D under measure fXdx is finite. This is called extended KLE (Iemma et al.,
2006). This property is crucial for our proposed stochastic emulator, which we will introduce in
Section 3.

In practice, the infinite expansion in Eq. (6) must be truncated. From the orthonormality
of {ϕk} it follows from Eq. (9) that the variance of the random field is equal to ∑∞

k=1 λk. The
sequence λ1 ≥ λ2 ≥ · · · ≥ 0 is non-increasing, and typically (depending on the correlation length
of the random field) this sequence decays rather quickly to zero. Loosely speaking, the higher
the correlation between different locations in the index set, the fewer spatial basis functions are
needed to approximate the trajectories, and the faster the decay of the eigenvalues. Knowing
this, the KLE can be truncated at the M -th term with M chosen so that the fraction of explained
variance is sufficiently large: ∑M

k=1 λk∑∞
k=1 λk

> 1 − ϵ (10)
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for a small threshold parameter ϵ > 0 (e.g., ϵ = 0.001).

KLE is closely related to function principal component analysis (fPCA) (Besse and Ramsay,
1986; Ramsay and Silverman, 2005). To compute a solution to the integral eigenvalue problem
in Eq. (7), there are several possibilities (Ramsay and Silverman, 2005, Section 8.4): the integrals
can be approximated numerically; the eigenproblem can be discretized on a number of repre-
sentative grid points in D (this is the approach chosen by the majority of modelers, including
Azzi et al. (2019)); or the eigenproblem can be written in terms of a suitable (truncated) spatial
basis, which transforms the problem into a (finite-dimensional) discrete eigenvalue problem. The
third approach is related to orthogonal series expansion (OSE) (Zhang and Ellingwood, 1994).
It is used by Poirion and Zentner (2014), who derive the explicit discrete problem for a basis
consisting of interpolation functions, building on results by Besse and Ramsay (1986) and Besse
(1991). We use this approach together with the orthogonal basis provided by polynomial chaos
expansion (Section 3). Detailed calculations are provided in Appendix A.

2.4 Inference of the joint distribution of the Karhunen-Loève random vari-
ables

Characterizing the dependent (but uncorrelated) Karhunen-Loève random variables (KL-RV)
ξk, k = 1, . . . ,M correctly is important for the accurate modeling of a general non-Gaussian
stochastic process (Grigoriu, 2010). However, inferring the joint distribution of a random vector
is a challenging task. The main challenge is the scarcity of data: the higher the dimensionality,
the more samples are needed to be able to correctly infer the dependence structure of the data.
We need to construct a suitable parametric or non-parametric model to accurately describe the
joint distribution. In the following, we introduce the marginal-copula framework, which is a
powerful tool to represent and infer complex dependence structures between random variables
(Nelsen, 2006; Torre et al., 2019a).

Let Z be any M -dimensional random vector with multivariate cumulative distribution function
(CDF) FZ and marginal distributions FZi . The so-called Sklar’s theorem states that FZ can be
written as

FZ(z1, . . . , zM ) = C (FZ1(z1), . . . , FZM
(zM )) , (11)

where the function C : [0, 1]d → R is called copula (Sklar, 1959; Nelsen, 2006). C is a CDF with
uniform marginals, which defines the dependence structure of the random vector Z. C is unique
if all marginals FZi are continuous, and it holds that

C(u1, . . . , uM ) = FZ

(
F−1

Z1
(u1), . . . , F−1

ZM
(uM )

)
. (12)

Let an i.i.d. sample Z = {z(1), . . . ,z(N)} of the random vector Z be given. The goal is to
infer the joint distribution FZ from this sample. For this, the copula representation of Eq. (11)
is convenient, since it allows inferring the marginals and the dependence structure of the data
separately, as briefly explained in the following.
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To infer the marginal distributions, we consider two options. The first is parametric inference,
where we choose from a set of parametric probability distributions with zero mean and unit
standard deviation (see Table 1) the distribution with the smallest Akaike information criterion
(AIC). If a distribution family has more than two parameters, its remaining parameters are cho-
sen by maximum likelihood. We utilize the uncertainty quantification software UQLab (Marelli
and Sudret, 2014; Torre et al., 2021) with a modification prescribing the desired moments.

Table 1: Considered marginal families with zero mean and unit standard deviation. The last
column lists the remaining degrees of freedom k after fixing the first two moments. The Akaike
information criterion is then given as AIC = 2k − 2 log L, where L is the likelihood.

Type Parameter k

Uniform U([a, b]) a = −
√

3, b =
√

3 0
Gaussian N (µ, σ) µ = 0, σ = 1 0
Gumbel (for maxima) G(µ, β) µ ≈ −0.4501, β ≈ 0.7797 0
Gumbel (for minima) Gmin(µ, β) µ ≈ 0.4501, β ≈ 0.7797 0
Logistic P (µ, s) µ = 0, s ≈ 0.5513 0
Laplace L(µ, b) µ = 1, b = 1√

2 0
Beta B(a, b, r, s) a, b chosen according to data bounds

r = a(ab+1)
b−a , s = b(ab+1)

a−b

2

A second popular method to represent marginal behavior non-parametrically is kernel density
estimation (KDE) (Wand and Jones, 1995; Simonoff, 1996), which has also been proposed for
estimating the distribution of KL-RV (Grigoriu, 2010; Poirion and Zentner, 2014). Here the
distribution is modeled as a Gaussian mixture, where the Gaussian density functions are centered
in the data points and share the same standard deviation, called bandwidth in the case of 1D
KDE. We adopt a bandwidth estimation method optimal for data with Gaussian distribution
(Bowman and Azzalini, 1997).

To characterize the dependence structure, we use a copula. While any multivariate CDF with
uniform marginals U([0, 1]) constitutes a copula, there are a number of well-known parametric
families (see, e.g., Nelsen (2006); Joe (2014)). Besides the independence copula and the families
derived from multivariate elliptical distributions, most of these parametric families are pair
copulas, i.e., they couple only two variables. Constructing meaningful parametric copulas for
more than two variables (other than elliptical copulas) is in general difficult (Nelsen, 2006).

A solution is to decompose the M -variate copula into a product of conditional pair copulas,
which is known as vine copula construction (Bedford and Cooke, 2002). This is always possible
as a consequence of the chain rule of probability. In general, a vine copula is the product of
M(M−1)

2 pair copulas.3 The factorization into pair copulas is not unique but depends on the
ordering and grouping of variables. Two classes of vine copulas, differing in the order in which
the variables are grouped into pairs, are the drawable vine (D-vine) (Kurowicka and Cooke,
2005) and the canonical vine (C-vine) (Aas et al., 2009). For a more detailed description of the

3There are M − 1 unconditional pair copulas; M − 2 pair copulas conditioned on 1 other variable; M − 3
conditioned on 2 other variables; and so on, until there is 1 pair copula conditioned on all except 2 variables.
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vine copula construction, we refer to Aas et al. (2009) and Torre et al. (2019b).

To infer a copula from data, we first map the multivariate data to [0, 1]d by applying element-
wise the inferred marginal CDFs (see Eq. (11)). Then we infer the dependence structure by
using Kendall’s tau to determine the groupings of variables as well as their order in the vine
copula (Aas et al., 2009; Torre et al., 2019b). For each pair copula, the parameters are identified
by maximum likelihood. Finally, the best-fitting copula is chosen using AIC. This approach
is implemented in the statistical inference module of UQLab (Torre et al., 2021). The list of
available copula families can be found in Lataniotis et al. (2021, Section 1.4).

3 Surrogating a stochastic simulator from a set of samples

We are now ready to describe the construction of our spectral surrogate model for a stochastic
simulator. Assume that discrete samples of the stochastic simulator M are available in the
following form:

Tr =
{(

x(r,i),M(
x(r,i), ω(r))) : i = 1, . . . , Nr

}
, r = 1, . . . , R (13)

i.e., in the form of discrete evaluations of the stochastic simulator on R trajectories, where for
every r, {x(r,i) : i = 1, . . . , Nr} is an i.i.d. sample from the input distribution fX , the so-called
experimental design. In particular, for different trajectories the samples can be taken at different
locations, i.e., for r1 ̸= r2 we can have x(r1,i) ̸= x(r2,i) and in principle even different numbers of
samples Nr1 ̸= Nr2 . However, here we assume for notational simplicity that Nr = N for all r.

Our proposed method consists of the following steps (see also Fig. 2):

1. Approximate each discrete trajectory Tr by a sparse PCE MPCE
r in L2

fX
(D):

MPCE
r (x) =

∑

α∈A(r)

a(r)
α ψα(x) (14)

with A(r) the set of regressors with nonzero associated coefficient a(r)
α . We use a total-

degree basis with degree- and q-norm adaptivity to determine the truncation set A(r)

(Blatman and Sudret, 2011; Lüthen et al., 2022) and apply the least-angle regression
solver to compute the coefficients (sparse PCE) (Blatman and Sudret, 2011; Lüthen et al.,
2021).

2. Determine a set A of regressors that jointly represents all trajectories well:
• Identify the union A = ⋃R

r=1 A(r) of all chosen regressors.
• To keep the size of the basis manageable, discard the regressors with the smallest

sum of squares of coefficients over all trajectories (∑R
r=1

(
a

(r)
α
)2) until P = |A| ≤ N

2
regressors or less are left in A.

• To avoid discontinuous behavior resulting from sparse selection, recompute the coef-
ficients of every trajectory by ordinary least squares (OLS), using the chosen set of
regressors A.

This results in R PCE trajectories, where each trajectory uses the same set of P PCE
basis functions.
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3. Center the PCE trajectories by subtracting the sample mean

µ̂PCE(x) = 1
R

R∑

r=1
MPCE

r (x) =
∑

α∈A

(
1
R

R∑

r=1
a(r)

α

)
ψα(x) (15)

which is itself a PCE. We denote by M̃PCE
r (x) = MPCE

r (x) − µ̂PCE(x) the centered PCE
trajectories. Extract the coefficients ã(r)

α of the centered trajectories and store them in a
P ×R matrix ã.

4. Apply extended KLE to the set of PCE trajectories. The sample covariance function
has the form

ĉ(x,x′) = 1
R− 1

R∑

r=1
M̃PCE

r (x)M̃PCE
r (x′). (16)

Computing the eigenfunctions ϕ(x) of the associated integral eigenvalue problem in Eq. (7)
is equivalent to computing a PCA on the PCE coefficients, i.e., equivalent to solving the
following P -dimensional eigenproblem for ã:

Σb = λb, (17)

where Σ = 1
R−1 ããT (see Appendix A for the derivation of this equivalence). The eigen-

vectors b contain the coefficients of the eigenfunctions represented in the PCE basis:
ϕ(x) = ∑

α∈A bαψα(x).
5. Identify the truncation order K ≪ P for the KLE based on a given threshold for the

explained variance. We use a threshold of 99.9% (see Eq. (10)).
6. Compute the realizations of the KL-RV ξi from the sample trajectories by projecting

onto the eigenfunctions. Due to the orthonormality of the PCE basis, this can be done
analytically (see Appendix A.2). Denote the realizations by ξ(r) ∈ R

K .
7. Infer the joint distribution fξ of random KL coefficients from the data set {ξ(r)}r=1, ... ,R.

We will test four methods consisting of the techniques described in Section 2.4:
(a) Option 1: assume standard Gaussian marginals, which implies independence;
(b) Option 2: parametric inference of the marginals (with moment constraints) and of

the copula;
(c) Option 3: 1D kernel density estimation of each marginal, assuming independence;
(d) Option 4: 1D kernel density estimation of each marginal and parametric inference of

the copula.

The resulting stochastic model for the random field M is

M̂(x, ·) = µ̂(x) +
K∑

k=1

√
λk Zk(·)

(∑

α∈A
b(k)

α ψα(x)
)

︸ ︷︷ ︸
=ϕk(x)

(18)

where Z = (Z1, Z2, . . . , ZK) is a random vector distributed according to the inferred joint
distribution fξ.

The full procedure is visualized in Fig. 2.

Using the stochastic emulator constructed in Eq. (18), we can easily compute the following
quantities.
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Figure 2: Sketch of our stochastic emulator, starting with stochastic simulator samples (discrete trajec-
tories) at the top and resulting in the stochastic emulator at the bottom, which is a KLE that includes
a probabilistic model of the KL-RV. The sketch is purely for illustration and does not display real data.
Note that there are two equivalent ways to arrive at the third box: through extended KLE and through
PCA on the coefficients.
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• The mean function µ̂ is given by the sample mean of the approximated trajectories (PCE
trajectories), see Eq. (15).

• The covariance function ĉ(·, ·) can be computed from the KLE eigenfunctions using the
truncated version of Eq. (9). Note that this relation does not involve the KL-RV.

• New trajectories (i.e., realizations of the random field) can be generated by drawing new
samples of the KL-RV ξk, and evaluating Eq. (6).

• A histogram of the marginal pdf fMx′ of the random field at any input space location x′

can be created by generating many new trajectories and evaluating them at x′.

Remark 1 (Another stochastic emulator). A simple stochastic emulator able to model
marginal distributions fMx′ can be constructed by evaluating all PCE trajectories from Step 2
above at the new location x′ and computing a kernel density estimate on the resulting set
of predictions. This method will be used as a comparison method for marginal estimation in
Section 4. However, unlike our stochastic emulator in Eq. (18), this simple emulator is not able
to resample trajectories.

Remark 2 (Alternatives to PCE). We choose PCE to approximate the sampled trajectories
because it is a powerful method for deterministic surrogate modeling. However, the choice
of PCE in the above method is not crucial: without any changes to the methodology, PCE
could be replaced by any other spectral expansion onto an orthonormal basis of L2

fX
(D), e.g., a

Poincaré basis (Lüthen et al., 2022) or a spline basis (Rahman, 2020). From the orthonormality
of the basis it follows that functional PCA in L2

fX
(D) becomes traditional (unweighted) PCA

in the coefficient space (see Appendix A), which avoids the expensive numerical solution of the
integral eigenvalue problem in d dimensions, and instead solves an inexpensive discrete eigenvalue
problem.

4 Numerical experiments

To analyse the performance of our stochastic emulator, we apply it to three models of increasing
complexity: the three-dimensional Ishigami function with two random parameters (Section 4.1),
the borehole model with five hidden (latent) variables (Section 4.2), and finally the Heston
stochastic volatility model, a system of two stochastic ODEs with six inputs that has already
been used by Zhu and Sudret (2021b) as a stochastic emulator benchmark model (Section 4.3).

We first investigate the pointwise approximation capabilities of our emulator by plotting the
stochastic simulator and emulator responses at selected points throughout the input domain.
Then, we investigate the convergence behavior of our stochastic emulator using the following
global error measures:

• The global convergence of the marginal distributions is assessed using the averaged nor-
malized Wasserstein distance. The Wasserstein distance of order two between two random
variables Y1, Y2 with quantile functions (inverse CDF) Q1, Q2 is defined by (Villani, 2009)

dWS(Y1, Y2) = ∥Q1 −Q2∥2 =
√∫ 1

0
(Q1(u) −Q2(u))2 du. (19)
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To measure the global quality of marginal approximation, we consider the quantity

ϵmarg = EX

[
dWS

(M(X, ·),M̂(X, ·))

σ(M(X, ·))

]
, (20)

computed by Monte-Carlo integration on a validation set with Nval = 1, 000 points and
Rval = 10, 000 replications (Zhu and Sudret, 2021a).

• The global error between the true covariance function c and the emulated one ĉ is computed
by

ϵcov = ∥c− ĉ∥L2
fX

(D)×L2
fX

(D) ≈ 1
Nval

∥∥∥C − Ĉ
∥∥∥

F
(21)

where C and Ĉ denote the true and emulated covariance matrices for a validation sample
{x(i) : i = 1, . . . , Nval}, and ∥·∥F is the Frobenius norm.

4.1 Stochastic Ishigami function

4.1.1 Problem statement

The Ishigami function is a a well-known benchmark function for deterministic surrogate models.
It is highly non-linear and has significant interaction terms. It becomes a stochastic simulator
by treating its parameters a and b, which are usually fixed at a = 0.7 and b = 0.1, as additional
random variables:

f(X;A,B) = sin(X1) +A sin(X2)2 +BX4
3 sin(X1). (22)

A and B have here the role of so-called hidden or latent random variables. In other words,
we assume that they cannot be observed, and that therefore their values cannot be utilized in
the surrogate modeling process. They introduce stochasticity into the otherwise deterministic
Ishigami model. Here we model A and B as lognormal random variables with mean 7 and
standard deviation 0.7, and mean 0.1 and standard deviation 0.1, respectively. We assume that
both variables are coupled with a Clayton pair copula with parameter 1.5. The non-hidden
(explicit) input variables are as usual X = (X1, X2, X3), which are independent and uniformly
distributed in [−π, π]. A Sobol’ analysis of f(X;A,B) in Eq. (22) reveals that the main effect
of the group of explicit input parameters (M1 in Eq. (28)) is approx. 75%, while the interaction
effect between the explicit and the latent group is approx. 25%, and the main effect of the group
of latent variables is negligible. Samples of the input space and the latent space are displayed
in Fig. 3.

We use different experimental design sizes N ∈ {50, 100, 150} and a maximum degree of p = 14
for the PCE trajectories (with degree-adaptivity (Blatman and Sudret, 2011)). This results in a
relative mean-squared error in the order of 10−3/10−5/10−10, respectively. We also test different
numbers of trajectories R ∈ {10, 30, 100, 300}, and use a different experimental design for each
trajectory. For each combination of experimental design size and number of trajectories, we
conduct 50 independent repetitions. All resulting stochastic emulators are evaluated on the
same validation set, consisting of Rval = 10, 000 trajectories of the true stochastic simulator,
each evaluated on a set of Nval = 1, 000 points in the input space.
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Figure 3: Samples of the input space (left) and the latent space (right). The red line in Fig. 3a is the
trajectory along which the simulator/emulator response is plotted in Fig. 9. The red dots annotated by
small numbers denote the five points that are used for visualization in the following. Fig. 3b shows a
sample of the latent space (A,B in Eq. (22)).

4.1.2 Analysis of the KL-RV samples

To illustrate the type of result obtained with our proposed stochastic emulator described in
Section 3, we now present scatterplots showing realizations of the following random quantities:
1) the KL-RV (compressed representation of PCE coefficients) resulting from step 7; 2) the
PCE coefficients resulting from transforming the KL-RV samples to the PCE coefficient space.
Detailed results for the prediction M(x′, ·) at a new location x′ for a number of new trajectories
are presented in Section 4.1.3 below. The results shown here are based on parametric inference
of marginals and copula (Option (b) of Step 7).

The truncation of the KLE (Step 5 of our algorithm) typically results in two modes with eigen-
values λ1 ∈ [3, 5] and λ2 ≈ 0.1 depending on the size and realization of the experimental design.
We display a specific example in Fig. 4, which is computed from 100 trajectories with 150 sam-
ples each, and has eigenvalues λ1 = 4.46 and λ2 = 0.10. The figure shows resampled values
for the KL-RV: in black, samples computed from validation trajectories by projecting first onto
the truncated PCE space and then onto the eigenfunctions; in red, new samples drawn from
the input object inferred in Step 7 of our algorithm (Section 3). We see that their inferred
joint distribution (Beta and Gumbel marginals, with a Clayton copula) visually matches the
validation data well.

The KL-RV are the compressed representation of the random PCE coefficients (which in turn
encode trajectories). Mapping the realizations of the KL-RV back to the PCE coefficient space,
we obtain the samples displayed in Fig. 5 for N = 150 and R = 100. Validation samples from the
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Figure 4: KL-RV coefficient samples computed from validation trajectories (black) and new samples
from the stochastic emulator (red). This is data from one experiment with N = 150 and R = 100, max
degree p = 14. Number of validation trajectories and resampled PCE coefficients: 200 each. Number of
KL modes: M = 2. Inferred distribution of KL-RV: Beta and Gumbel, with Clayton copula (parameter
0.32). The corresponding eigenvalues are λ1 = 4.46 and λ2 = 0.10.

original stochastic simulator (generated by regressing them onto the truncated PCE basis) are
displayed in black, while 200 resampled PCE coefficient vectors generated from the stochastic
emulator are shown in red. We only show the 5 coefficients with maximal mean absolute value.
We see that the validation samples have a slightly larger spread than the emulator samples, but
that overall the behavior is matched well. Some parameters have linear functional dependence,
e.g., a1, a8 and a17, which is perfectly reproduced by the emulator. These parameters correspond
to the basis functions α1 = (0, 0, 0) (constant term), α8 = (0, 4, 0) and α17 = (0, 6, 0) and are
needed to emulate the second term of the stochastic Ishigami model in Eq. (22). There are no
interactions with the other terms, therefore a different value of A just proportionally changes the
relative weighting of these terms. A similar explanation holds for a2 and a6 with α2 = (1, 0, 0)
and α6 = (1, 0, 2), which are involved in emulating the first and the third term of Eq. (22) and
change proportionally with B.

4.1.3 Marginal performance on selected validation points

We now investigate the performance of the stochastic emulator with parametric inference of
KL-RV marginals and copulas (choice 7b) on a selection of out-of-sample validation points, i.e.,
points that were not used for training.

Fig. 6 shows the histograms and pairwise scatterplots of samples from the output random vari-
ables Yi = M(x(i), ·) and Ŷi = M̂(x(i), ·) of the stochastic simulator and emulator, respectively.
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Figure 5: PCE coefficient samples computed from validation trajectories (black) and new samples from
the stochastic emulator (red). This is data from one experiment with N = 120 and R = 100, max degree
p = 14. Number of validation trajectories and resampled PCE coefficients: Rval = 200 each. The PCE
coefficients are sorted by mean magnitude, and we only display the largest 5 out of total 75 nonzero
coefficients.

The five selected validation locations {x(i)}5
i=1 in the input space are visualized in Fig. 3a by

red dots. Each black (resp. red) point in Fig. 6 is a new trajectory of the stochastic simulator
(resp. emulator) evaluated at the five given points. Both samples have the same size (200 new
trajectories). Overall, the model behavior is captured well, but the stochastic simulator has a
slightly larger spread (see e.g. Y2 vs. Y3).

From the data in the off-diagonal scatter plots in Fig. 6, we can compute the sample covariance
matrix. However, we can also compute the covariance analytically from the KLE eigenfunctions,
using Eq. (9). In Fig. 7, we use the five illustrative points shown in Fig. 3a to compare this
covariance estimate to a validation covariance matrix computed empirically from 10, 000 trajec-
tories of the stochastic simulator. Qualitatively, the covariance is reproduced well, although the
KLE-based covariance is slightly smaller in magnitude than the empirical covariance.

In Fig. 8, we visualize the marginal distribution fY1 of Y1 = M(x(1), ·) at one validation point
(the point marked with “1” in Fig. 3a) for an increasing number of trajectories in the training set,
and 4 independent repetitions of each experiment. The estimates for the marginal distribution
fY1 are computed by KDE from 10, 000 samples from the constructed stochastic emulator, while
the histogram and the dashed curve represents a validation set of 10, 000 samples of the original
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Figure 6: Scatterplot of output Yi = M(x(i), ·) of the stochastic simulator (black) and of output Ŷi =
M̂(x(i), ·) of the parametric stochastic emulator (red, created from training set with N = 150, R = 100)
for five validation points sampled from the input space. The location of these five points is illustrated in
Fig. 3a.

stochastic simulator. As expected, we observe that with an increasing number R of trajectories,
the shape of the predicted marginal becomes closer to the kernel density estimate of the validation
set and shows less variation.

Finally, to assess visually how well the resampled trajectories match the behavior of the original
stochastic model, we plot in Fig. 9 a 1D slice of 10 new trajectories generated by the stochastic
simulator (left) and the stochastic emulator (middle). The slice through the input space is shown
in Fig. 3a by a red line. On the right, data for the same slice is shown, but this time we show
quantiles aggregated over 10, 000 new trajectories each. The trajectory slices look qualitatively
similar, although there is a lot of variability between individual realizations. From the aggregated
data on the left, we see that the bulk of the distribution (10%-90% quantile) is predicted quite
accurately. Interestingly, in Fig. 9c it seems that the trajectories of the stochastic emulator
(red) have a larger spread than the ones of the simulator (black), contrary to the results earlier
in this section, which always showed the simulator having a larger spread than the emulator.
This illustrates the difficulty of inferring global behavior from local observations. Theoretically,
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Figure 8: Prediction of Y -marginal at validation point x
(1)
val = (− π

2 ,
π
2 ,− π

2 ) for the Ishigami model and
R = {10, 30, 100, 300} trajectories with the parametric stochastic emulator for 4 independent repetitions.
Visualization of predicted marginals by KDE using 10, 000 samples. Number of experimental design points
N = 150, max degree p = 14. The approximation error is in the order O(10−10).

the emulator should have a smaller variance than the simulator, because terms are missing from
Eq. (9) due to truncation.

4.1.4 Convergence with the number of trajectories

To assess the global performance of our proposed method, we now construct stochastic emulators
for all combinations of input space experimental design sizes N ∈ {50, 100, 150} and numbers
of trajectories in the range R ∈ {10, 30, 100, 300}. We then evaluate each of the resulting
stochastic emulators Rval = 10, 000 times at Nval = 1, 000 validation points in the input space
(out-of-sample, i.e. not used for training) and compute the errors as described in Section 4.
Each combination is independently repeated 50 times to account for the statistical uncertainty
of the sampling of both experimental design and trajectories, which allows us to display results
in the form of Tukey boxplots.

In Fig. 10a, we display the global convergence of marginal predictions for the parametric stochas-
tic emulator in terms of ϵmarg defined in Eq. (20). Each boxplot represents one experiment (i.e.,
a specific number of experimental design points and number of trajectories), repeated indepen-
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(b) Stochastic emulator
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(c) Comparison of quantiles for both models

Figure 9: Visualization of stochastic simulator/emulator response Y when following a 1D slice through
the input space, which is illustrated with a red line in Fig. 3a. N = 150, R = 100. The left and middle
plots show 10 trajectories each. The right plot aggregates the values from 10, 000 trajectories to show
quantile information.

dently 50 times. The value of the averaged and normalized Wasserstein distance ϵmarg is, by
itself, difficult to interpret. To aid the interpretation and give an idea of the quality of the
approximation, we add two auxiliary quantities to the plot:

• The averaged and normalized Wasserstein distance is computed based on samples. As a
lower bound, we independently sample 100 × 2 validation sets (each consisting of Rval =
10, 000 trajectories evaluated at Nval = 1, 000 points in the input domain; each pair of
validation sets shares the same points in the input domain). We then compute the error
in Eq. (20) for each of the 100 pairs. The median and quantiles (0.25–0.75 and 0.05–0.95)
of this value are displayed in Fig. 10a in gray, indicating the best possible error that can
be achieved due to the natural variability of the sample estimates.

• A priori, it is unclear which value of the (averaged) normalized Wasserstein distance corre-
sponds to predicted marginals that are visually close to the true marginals. To have some
concrete examples on what a specific value of the normalized Wasserstein distance means,
we consider the marginals predicted at one chosen validation point, shown in Fig. 10b.
We add the corresponding value of the normalized Wasserstein distance between simulator
and emulator prediction as a small colored circle to the plot in Fig. 10a.

We observe that the quality of the marginal estimates improves as we increase the size of the
input parameter sample, which is expected since the PCE approximation of the trajectories
becomes better with increasing experimental design size. N = 50 points are clearly too few to
achieve a good estimate, whereas N = 100 and N = 150 show convergence with the number
of trajectories, indicating that the error from statistical inference is the dominating one. While
the convergence of the marginals with the number of trajectories looks slow, the improvement
of the marginal shapes is actually significant (compare the values with Fig. 10b).

In addition to marginal predictions, our stochastic emulator can also emulate the covariance
function, using Eq. (9). Since this equation relies only on the KL eigenfunctions, not on the
KL-RV, the choice of inference method in Step 7 of our algorithm in Section 3 does not affect
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Figure 10: Convergence of ϵmarg and ϵcov (Eqs. (20) and (21)) for increasing number of available trajec-
tories and parameter locations. Results for the stochastic emulator with parametric inference (choice 7b
of our algorithm in Section 3) and 50 replications. The errors are computed based on a validation set
of size Nval = 1, 000, Rval = 10, 000. The gray areas and the dashed line represent quantiles and the
median of a lower bound estimate for the respective error measure computed from 100 × 2 independent
MC samples of size Rval = 10, 000 generated by the true stochastic simulator. The colored points in
Fig. 10a correspond to the results for a single replication and validation point as shown in Fig. 10b and
help assess the meaning of the numerical error measures.

these results. In Fig. 10c we display the convergence of ϵcov from Eq. (21). We observe that the
error decreases with increasing numbers of trajectories. For the largest numbers of trajectories
and experimental design points, the error is already in the range of the rough lower bound on
achievable accuracy (obtained as described above by empirical sampling of the true model).
Interestingly, unlike the marginal error in Fig. 10a, an increasing number N of input parameter
samples does not lead to a smaller covariance error. This indicates that the covariance esti-
mate is less sensitive to the quality of the trajectory approximation, while the inference of the
distribution of the KL-RV is more sensitive to it.

So far, we showed results for the stochastic emulator with parametric inference only (Option
7b). Now, in Fig. 11 we compare the four inference options described in Step 7 of the algorithm
in Section 3 with the results of a fifth method described in Remark 1, which we call here PCE-
KDE. We use the experimental design size N = 100, which yields PCE approximations with
relative validation error of 10−5. Due to this close fit, the PCE-KDE estimate can be considered
as near-optimal estimate given the available data.
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The error ϵmarg is again computed on a validation set consisting of Rval = 10, 000 trajectories
evaluated at Nval = 1, 000 points in the input space.

We observe that for 20 trajectories, the five methods show almost identical performance. This
suggests that 20 trajectories are not yet enough to infer a distribution that is able to generalize
to unseen data, so that any marginal distribution with mean zero and unit standard deviation
provides a reasonable approximation. Comparing with the results for PCE-KDE, we see that
our emulator is similarly accurate in prediction at an unseen point as a kernel density estimate
using the training set of highly accurate PCE trajectories. This suggests that we do not lose
much accuracy by applying our KLE approach on top of the PCE approximation, which can be
seen as a form of dimension reduction in the stochastic space.

For the larger number of trajectories, R = 100 and R = 500, we do observe a difference between
the performance of the different marginal inference methods: standard Gaussians perform worst,
while kernel density estimation without copula performs best of all the inference methods con-
sidered. Kernel density estimation with independence assumption performs almost on par with
the PCE-KDE estimate. This suggests that the KL-RV are close to independent in this case,
and that fitting a vine copula (using the available pair copulas) does not improve the overall
inference, at least in the considered cases of limited data. It also demonstrates that the true
KL-RV distribution is not well approximated by independent standard Gaussians nor by other
currently available parametric families, but that it can be approximated well by the more flexible
kernel density estimation. Parametric inference, offering a variety of standard marginal shapes,
performs slightly better than Gaussian random variables.

20 100 500
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10 0

m
ar

g

lower bound
Gaussian
Parametric
Kernel indep
Kernel dep
PCE-KDE

Figure 11: Convergence of average normalized Wasserstein distance. Comparison of the four different
methods for inferring the joint distribution of KL-RV described in Step 7 with the method PCE-KDE
described in Remark 1. N = 100 and p = 14. Errors are computed based on Nval = 1, 000, Rval = 10, 000,
for 50 replications. The gray areas and dashed line have the same meaning as in Fig. 10.

4.2 Borehole function with latent variables

As a second example, we consider the well-known borehole function, which computes the water
flow between two aquifers that are connected by a borehole (Harper and Gupta, 1983). It
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depends on eight parameters and is defined by

B(Rw, Hu,Kw, R, Tu, Tl, Hl, L) = 2πTu(Hu −Hl)
ln (R/Rw)

(
1 + 2LTu

ln(R/Rw)R2
wKw

+ Tu
Tl

) . (23)

Its input random variables and their distributions are provided in Table 2.

We consider five parameters (Ξ = (R, Tu, Tl, Hl, L)) of the borehole function to be latent, re-
sulting in the three-dimensional stochastic simulator B̃(rw, hu, kw) = B(rw, hu, kw; Ξ).

For the three-dimensional input space, we use N = {20, 30, 60} input samples and a maximal
PCE degree of p = 6. The accuracy of the borehole approximation in terms of relative mean-
squared validation error is in the order of 10−3/10−7/10−10 for the different experimental design
sizes. The number of trajectories is in the range R = {10, 30, 100, 300}.

This results in typically M = 2 KL modes for an explained variance threshold of 99.9%. The
eigenvalues of the KLE are approximately λ1 ≈ 170 and λ2 ≈ 0.5. The first mode alone covers
more than 99.5% of the total variance, even though five independent parameters are used as
latent variables. Two of these have a significant total Sobol’ index, and the sum of the first-
order indices of the latent group is 19%. We will investigate this phenomenon in more detail in
Section 5 below.

Table 2: Borehole function: Input random variables and their distributions. For the borehole
stochastic simulator with hidden variables, five of the eight variables (marked by italic letters)
are considered latent.

Variable Distribution Description Total Sobol’ index
Rw N (0.10, 0.0161812) borehole radius 6.94e-01
Hu U([990, 1110]) potentiometric head of upper aquifer 1.06e-01
Kw U([9855, 12045]) borehole hydraulic conductivity 2.51e-02
R Lognormal([7.71, 1.0056]) radius of influence 2.77e-06
Tu U([63070, 115600]) transmissivity of upper aquifer 2.10e-08
Tl U([63.1, 116]) transmissivity of lower aquifer 8.23e-06
Hl U([700, 820]) potentiometric head of lower aquifer 1.06e-01
L U([1120, 1680]) borehole length 1.03e-01

As before, we analyze the global convergence of the marginal and covariance approximation for
increasing numbers of input samples and trajectories, and we compare different methods for
inferring the distribution of the KL-RV as described in Step 7 of our algorithm (Section 3).
For the detailed explanation of the error measures, the setup of the convergence study, and the
interpretation of the plots, see Sections 4 and 4.1.

In Fig. 12a, we see that our method converges in both global error metrics (ϵmarg and ϵcov)
towards the rough empirical lower bound indicated by the gray area and dashed line. For ϵmarg,
the difference between the results for the three experimental design sizes N = 20, 30, and 60 is
small. This indicates that at least for this model, a validation mean-squared error smaller than
O(10−3) does not lead to significantly more accurate results, and that below this accuracy the
error is dominated by the inference error.
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The convergence of the emulated covariance function is displayed in Fig. 12c. As expected,
the global error become smaller with an increasing number of trajectories, and approaches the
lower bound representing the variability due to the error being computed from samples. Again,
the difference in the results for the three experimental design sizes N = 20, 30, 60 is small.
Since the first mode accounts for more than 99.5% of the explained variance, the first KLE
eigenfunction has the dominating influence on the covariance estimation (Eq. (9)). The results
indicate that the first eigenfunction and its eigenvalue are estimated accurately already for the
smallest experimental design sizes.

The comparison of the different inference methods for the distribution of the KL-RV (Step 7 of
the algorithm) is displayed in Fig. 13. Similarly as for the Ishigami function, we observe that for
a small number of trajectories (R = 10 and 30) the four inference methods and PCE-KDE show
almost the same performance. Modeling the KL-RV with standard Gaussian distributions seems
to offer a slight advantage (resulting in a slightly smaller median error and smaller variability)
for small numbers of trajectories, probably because they make the strongest assumptions on the
distribution shape, which is advantageous for generalizability in the case of small data. As the
number of trajectories grows, a similar pattern as in Section 4.1 emerges: standard Gaussian
inference shows the worst performance, followed by parametric inference. Inference with kernel
density estimation (dependent and independent) shows the best performance, on par with the
PCE-KDE estimate, which (due to the high accuracy of the PCE approximations for N = 60)
represents the near-optimal estimate given the available training data.

Interestingly, there is no significant difference between the performance of KDE with and without
the independence assumption. Here the magnitude of the eigenvalues might offer an explanation:
with more than two orders of magnitude difference between λ1 and λ2, the dependence between
the two random variables ξ1 and ξ2 does not influence the resulting predictions as much as the
correct identification of the marginal shape of the first KL-RV ξ1.
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Figure 12: Convergence of the ϵmarg and ϵcov (Eqs. (20) and (21)) for an increasing number of avail-
able trajectories and parameter locations. Results for the stochastic emulator with parametric inference
(Option 7b) and 50 replications. The errors are computed based on a validation set of size Nval = 1, 000,
Rval = 10, 000. The gray areas and the dashed line represent quantiles and the median of a lower
bound estimate for the respective error measure computed from 100 × 2 independent MC samples of size
Rval = 10, 000 generated by the true stochastic simulator. The colored points in Fig. 12a correspond to
the results for a single replication and validation point as shown in Fig. 12b and help assess the meaning
of the numerical error measures.
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Figure 13: Convergence of ϵmarg. Comparison of the four different methods for inferring the joint
distribution of KL-RV described in Step 7 with PCE-KDE described in Remark 1. N = 60 and p = 6.
Errors are computed based on Nval = 1, 000, Rval = 10, 000, and 50 replications. The gray areas and
dashed line have the same meaning as in Fig. 12.
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4.3 Heston stochastic volatility model for a stock price

As a third example, we consider the Heston stochastic volatility model, which describes a stock
price Yt (Heston, 1993) with its volatility νt modeled as stochastic process:

dUt = µUtdt+ √
νtUtdW (1)

t , (24)

dνt = κ(θ − νt)dt+ σ
√
νtdW (2)

t (25)

with two Wiener processes W (1)
t and W

(2)
t with correlation coefficient ρ. This model has six

uniformly distributed parameters X = (µ, κ, θ, σ, ρ, ν0) detailed in Table 3, the bounds of which
are calibrated from real data as described in Zhu and Sudret (2021b). The quantity of interest
is

Yx = U1(X = x), (26)

i.e., the stock price after 1 year. As proposed by Zhu and Sudret (2021b), we set U0 = 1 and use
the Euler-Maruyama method to integrate the system of stochastic differential equations (SDEs)
and replace νt by max(νt, 0) to avoid negative values of νt. This model is a stochastic simulator
due to the stochasticity induced by the two Wiener processes W (1)

t and W (2)
t driving the SDEs.

A trajectory in the parameter space D is obtained by fixing the realizations of these processes
and evaluating Eqs. (24) and (25) for x ∈ D.

For the six-dimensional input space, we use N = {50, 100, 150} input samples and a maximal
PCE degree of p = 7. The accuracy of the approximation in terms of relative mean-squared
validation error is ca. O(0.03)/O(0.02)/O(0.006) for the different experimental design sizes. This
means that the Heston model is not particularly well approximated by PCE, even for rather
large experimental designs. We use a number of trajectories in the range R = {10, 30, 100, 300}.

This results in typically M = 4 to 6 KL modes for an explained variance threshold of 99.9%.
The first eigenvalue is λ1 ≈ 0.05 and usually covers more than 97% of the variance.

Table 3: Parameters and their distributions for the Heston SDE model.

Variable Distribution Description
µ U([0, 0.1]) Expected return rate
κ U([0.3, 2]) Mean reversion speed of the volatility
θ U([0.02, 0.07]) Long term mean of the volatility
σ U([0.2, 0.4]) Volatility of the volatility
ρ U([−1,−0.5]) Correlation coefficient between dW (1)

t and dW (2)
t

ν0 U([0.02, 0.07]) Initial volatility

Again, we analyze the global convergence of the marginal and covariance approximation in the
same way as in the preceding sections. The marginal approximations of the parametric stochas-
tic emulator converge with increasing experimental design size and number of trajectories, but
slowly, as displayed in Fig. 14a. There is no significant difference between the three experimen-
tal design sizes N = 50, 100, 150. This indicates that the improvement due to a better PCE
approximation for an increasing number of experimental design points is overshadowed by the
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inaccuracy due to the inference of the KL-RV. This, in turn, could be because the PCE approx-
imation is not yet sufficiently accurate (note that the relative validation error is in the order of
10−2 for all ED sizes.) Even for the largest number of trajectories, the averaged and normalized
Wasserstein distance between the responses of the true model and the emulator is still much
larger than the variability resulting from sampling the true model, which is illustrated by the
gray areas and the dashed line in Fig. 14a (quantiles and median, respectively). Comparing the
boxplots to the colored points corresponding to the marginal estimates illustrated in Fig. 14b,
we observe that the marginal shape of the stochastic response for one validation point x

(1)
val is

already captured quite well for 100-300 trajectories (with the value for R = 300 being a bit of
an outlier).

The convergence of the covariance function is shown in Fig. 14c. As expected, the covariance
estimate becomes better with increasing number of trajectories, even approaching the lower
bound obtained by resampling the original model. However, we observe again that an increasing
number of experimental design points does not influence the estimate much, which indicates that
the covariance estimate is quite robust against the trajectory approximation quality. Since the
first mode is also dominant for this example (accounting for ca. 97% of the explained variance),
it indicates that the first eigenfunction is well estimated already for small experimental design
sizes.

Fig. 15 shows the comparison between the different methods for KL-RV inference (Step 7 of the
algorithm in Section 3) as described in Section 4.1.4. All four methods perform comparably. The
independent standard Gaussian approximation performs slightly better than the other methods
in the case of few trajectories and slightly worse for the case of many trajectories, which is
consistent with the previous cases. Again, KDE with and without dependence shows almost
identical performance, indicating that the either the true copula is the independence copula, or
that the existing parametric copulas are not suitable for capturing the dependence structure.
While the inference methods show a similar performance to PCE-KDE for smaller numbers of
trajectories, PCE-KDE finds a better marginal approximation when R = 300 trajectories are
available. This indicates that some information is lost in the KLE procedure of Section 3.
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Figure 14: Convergence of ϵmarg and ϵcov (Eqs. (20) and (21)) for an increasing number of avail-
able trajectories and parameter locations. Results for the stochastic emulator with parametric inference
(choice 7b) and 50 replications. The errors are computed based on a validation set of size Nval = 1, 000,
Rval = 10, 000. The gray areas and the dashed line represent quantiles and the median of a lower
bound estimate for the respective error measure computed from 100 × 2 independent MC samples of size
Rval = 10, 000 generated by the true stochastic simulator. The colored points in Fig. 14a correspond to
the results for a single replication and validation point as shown in Fig. 14b and help assess the meaning
of the numerical error measures.
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Figure 15: Convergence of marginals (Wasserstein distance). Comparison of the four different methods
for inferring the joint distribution of KL-RV described in Step 7 with PCE-KDE described in Remark 1.
N = 150 and p = 5. Errors are computed based on Nval = 1, 000, Rval = 10, 000, and 50 replications.
The gray areas and dashed line have the same meaning as in Fig. 14.
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5 Considerations on the number of modes

In this section we investigate how many modes K we can expect in the stochastic emulator of
Eq. (18). We consider here a certain class of stochastic simulators that arise from a deterministic
model z 7→ M(z) by considering some of its variables as hidden (or latent). In other words,
the stochastic simulator is M(X,Ξ), where X are the explicit input variables, and Ξ the
latent variables inducing the stochasticity (the random events, see Section 2.1). Assume that all
components of Z = (X,Ξ) are independent, and denote by fk the marginal distribution of Zk.

Assume further that the deterministic simulator M has finite variance under fZ . Then it can be
decomposed into the Hoeffding-Sobol’ decomposition (a.k.a. ANOVA decomposition, analysis of
variance) (Hoeffding, 1948; Sobol and Gresham, 1995) as

M(Z) = m0 +
∑

1≤i≤d

mi(Zi) +
∑

1≤i<j≤d

mi,j(Zi, Zj) + · · · +m1,...,d(Z1, . . . , Zd) (27)

where the terms satisfy
∫
mI(ZI)fk(zk)dzk = 0 for all k ∈ I ⊂ {1, . . . , d}. m0 is the mean

of M(Z). The univariate terms mi are called main effects, and the remaining summands are
interaction terms of increasing order.

Now we group the summands of Eq. (27) according to whether they involve only input vari-
ables, only latent variables, or some variables from both groups. This results in the following
decomposition:

M(X,Ξ) = m0 + M1(X) + M2(Ξ) + M12(X,Ξ) (28)

where, e.g., M1(x) = ∑
I:ZI⊂X mI(zI). The last summand of Eq. (28) contains all interaction

terms from Eq. (27) that involve at least one input and at least one latent variable.

It is a rather common phenomenon in uncertainty quantification that engineering models actually
have near-zero interaction terms. In that case, the model is essentially additive with respect to
the two groups of variables X and Ξ:

M(X,Ξ) ≈ m0 +m1(X) +m2(Ξ). (29)

This means that any realization ξ of the unknown latent variables Ξ results in a constant
shift of M(·, ξ) regardless of the value of the input parameters x, a behavior that can be
accurately modeled by a single KL mode: if equality holds in Eq. (29), the mean function is
µ(x) = EΞ [M(x,Ξ)] = m0 +m1(X), the covariance function is c(x,x′) = Var [m2(Ξ)], and the
only nonzero eigenvalue of Eq. (7) is λ1 = Var [m2(Ξ)] with eigenfunction ϕ1(x) = 1.

We have observed this in the numerical examples in Section 4, e.g., for the case of the borehole
model with hidden variables. The deterministic borehole model defined in Eq. (23) has relatively
low interaction: despite its nonlinearity, under the input uncertainties in Table 2 its first order
Sobol’ indices (Sobol’, 1993) sum up to ∑8

i=1 S
1
i ≈ 96.7%. The interaction effect between the

explicit and the latent group is around 2%. Therefore, only one mode is sufficient to model the
stochastic simulator that results from treating several of the model’s variables as latent.
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6 Discussion and conclusions

We presented a spectral surrogate model for stochastic simulators, a special class of compu-
tational models whose response for a given input is a random variable. Our method relies
on several advanced techniques for modeling uncertainties, such as polynomial chaos expansion
(PCE), Karhunen-Loève expansion (KLE), and statistical inference of multivariate distributions.
The resulting surrogate model is not only able to emulate the marginal distributions and the
covariance structure, but it can also generate new trajectories.

The form of our surrogate model provides insight into the model structure. The number of
expansion modes indicates how high-dimensional the underlying stochasticity is. The eigen-
functions of the KLE, which are polynomials, give information about how the input parameters
influence the stochastic simulator output. Even though our numerical examples were chosen to
represent a range of cases of increasing complexity, we found that one mode was usually sufficient
to explain more than 95% of the variance of the stochastic simulator. We were able to explain
this phenomenon for the common case of stochastic simulators that arise from finite-dimensional
deterministic models with independent inputs and finite variance by treating some of their input
variables as latent. Considering the Hoeffding-Sobol’ decomposition of the underlying determin-
istic simulator, we found that if the interaction terms between the explicit and latent variables
are negligible, one single KL mode will be sufficient to emulate the behavior of the stochastic
simulator. Indeed, by experience, this is a common occurrence in applications of uncertainty
quantification. Interactions are rarely dominant in engineering problems, and so one KL mode
might suffice in many cases.

From our numerical experiments, we found that the Gaussian (or more generally, parametric)
approximation of marginals of the KL-random variables (KL-RV) can be preferable if the number
of available trajectories is very small. When more trajectories are available, the better choice
is kernel density estimation. Since the first mode was dominant in our numerical examples, the
characterization of the dependence between KL-RV turned out not to be crucial, at least for the
class of applications considered.

Our numerical tests reveal that the emulator is able to capture the true model behavior rea-
sonably well, as long as enough input samples and trajectories are used. Due to the sequential
nature of our approach, it is important to use enough points in the experimental design: if the
PCE approximation is not accurate enough, also the inferred distribution for the KL-RV will be
inaccurate. Interestingly, we observed in all three examples that the covariance estimate was not
heavily influenced by using a larger experimental design, even though the latter typically results
in more accurate PCE approximations of the trajectories. This indicates that the number of
trajectories is more important for the covariance approximation than the quality of the PCE
approximation. Also, it seems that (since the first mode was dominant for all investigated mod-
els) the first KLE eigenfunction can be identified accurately already from a small experimental
design.

Note that our surrogate relies on the assumption that the trajectories are well approximated by
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sparse PCE, an assumption not fulfilled by some stochastic simulators, e.g., ones with discontin-
uous or non-differentiable trajectories in the input parameter space. This could be circumvented
by using another basis specially adapted to the purpose, such as wavelets. Furthermore, by con-
struction, our emulator is only suitable for stochastic simulators whose response is correlated
throughout the input domain. If there is little to no correlation between the responses at dif-
ferent points in the input space, KLE (which is ultimately a dimension reduction technique),
would need infeasibly many modes to converge.

Our methodology can be extended in several ways. The computation of the sparse PCE ap-
proximation of the trajectories could be done jointly for all trajectories, instead of fitting each
trajectory separately and later discarding regressors. While in our study the dependence be-
tween KL-RV was not crucial for the accuracy of the emulator, an improved estimation of the
dependence structure would be desirable if for future models more modes turn out to be impor-
tant. Furthermore, an interesting question is under which circumstances one mode is enough to
represent the underlying stochasticity of stochastic simulators, and how the methodology can
be adapted to take advantage of this phenomenon. The general idea of representing trajectories
by their coefficients, and after dimension reduction modeling their joint distribution, can also
be applied outside spectral expansions, e.g. for Bayesian neural networks, at the cost of losing
some of the analytical properties following from orthogonality. Finally, in the spirit of common
random numbers (Pearce et al., 2022), the applicability of our stochastic emulator for purposes
such as optimization should be explored.
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A Analytical derivations for extended KLE on PCE trajectories

The following is a detailed exposition of the analytical computations for extended KLE using
the PCE basis in L2

fX
(D). A less detailed derivation for L2(D) can be found in Ramsay and

Silverman (2005, Section 8.4.2).
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We show in Appendix A.1 that if the trajectories x 7→ M(x, ω) are represented by PCE, and
extended KLE is applied, then the sample covariance function is a polynomial, the integral
eigenvalue problem reduces to PCA in the expansion coefficients, and the eigenfunctions are
polynomials. In Appendix A.2, we show that the realizations of the random KLE coefficients
can be determined analytically.

Let for r = 1, . . . , R
M̃PCE

r (x) =
∑

α∈A
ãαψα(x) (30)

be the centered PCE trajectory computed from discrete evaluations of the trajectory Tr (Eq. (13)).
The sample covariance function is a polynomial given by

ĉ(x,x′) = 1
R− 1

R∑

r=1
M̃PCE

r (x)M̃PCE
r (x′). (31)

A.1 Analytical solution of the extended KLE eigenvalue problem

Computing an extended KLE in the function space L2
fX

(D) corresponds to solving the following
eigenproblem:

⟨ĉ(x, ·), ϕi(·)⟩L2
fX

(D) =
∫

D
ĉ(x,x′)ϕi(x′)fX(x′) dx′ = λiϕi(x). (32)

Since ĉ is polynomial, also the eigenfunctions will be polynomials and can be represented in
terms of the PCE basis as follows:

ϕi(x) =
∑

α∈A
b(i)

α ψα(x). (33)

Solving Eq. (32) reduces to finding (λi, (b(i)
α )α∈A) for i = 1, . . . ,M .

Dropping the i-subscript of the eigenfunction for convenience, we compute

∫

D
ĉ(x,x′)ϕ(x′)fX(x′) dx′ =

∫

D

1
R− 1

R∑

r=1
M̃PCE

r (x)M̃PCE
r (x′)ϕ(x′)fX(x′) dx′

= 1
R− 1

R∑

r=1
M̃PCE

r (x)
∫

D
M̃PCE

r (x′)ϕ(x′)fX(x′) dx′

= 1
R− 1

R∑

r=1
M̃PCE

r (x)
∫

D

(∑

α∈A
ãr

αψα(x′)
)
∑

β∈A
bβψβ(x′)


 fX(x′) dx′

= 1
R− 1

R∑

r=1
M̃PCE

r (x)
(∑

α∈A
ãr

αbα

)
(orthonormality of PCE basis)

= 1
R− 1

R∑

r=1


∑

β∈A
ãr

βψβ(x)



(∑

α∈A
ãr

αbα

)

=
∑

β∈A

(
1

R− 1

R∑

r=1
ãr

β

(∑

α∈A
ãr

αbα

))
ψβ(x).
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The eigenvalue problem reduces to

∑

β∈A

(
1

R− 1

R∑

r=1
ãr

β

(∑

α∈A
ãr

αbα

︸ ︷︷ ︸
=(ãr)Tb ∈R

))
ψβ(x) != λ

∑

β∈A
bβψβ(x).

Because the PCE basis functions ψβ are of different orders, we can rewrite this into matrix form:

1
R− 1

R∑

r=1




ãr
β1

(ãr)T

ãr
β2

(ãr)T

...
ãr

βP
(ãr)T




b =
(

1
R− 1

R∑

r=1
ãr (ãr)T

)
b =

( 1
R− 1 ã ãT

)
b

!= λb, (34)

where ã is the P × R-matrix of active and centered PCE trajectory coefficients. Defining the
matrix Σ = 1

R−1 ã ãT , which is the empirical covariance matrix of the centered PCE coefficients,
we see that Eq. (34) is nothing else than principal component analysis (PCA) on the coefficients.

Note that it was necessary to apply KLE in L2
fX

(D) to arrive at this equation, since the PCE
basis is orthonormal in L2

fX
(D) but in general not in L2(D).

The solution vectors b(i) to the eigenvalue problem Σb(i) = λib
(i) are the PCE coefficients of

the KLE eigenfunctions: ϕi(x) = ∑
α∈A b

(i)
α ψα(x). Since the PCE basis is orthonormal, and

assuming that the eigenvectors b(i) are normalized to unit norm, it follows that the eigenfunctions
{ϕi} are orthonormal.

A.2 Analytical computation of the realizations of the KL-RV

Let λi be an eigenvalue and
ϕi(x) =

∑

α∈A
b(i)

α ψα(x) (35)

the associated eigenfunction expressed in the PCE basis. The projection of the PCE trajectories
onto the KLE basis is given by

ξr
i = 1√

λi

∫

D
M̃PCE

r (x)ϕi(x)fX(x) dx

= 1√
λi

∑

α∈A
ãr

αb
(i)
α = 1√

λi
(ãr)T b(i) ∈ R.

Let ã ∈ R
P ×R the matrix of coefficients of centered PCE trajectories and b ∈ R

P ×M the matrix
of PCE coefficients of the KLE functions. Then we can compute the matrix Ξ ∈ R

M×R of KLE
coefficient realizations by

Ξ =
(

diag
( 1√

λ1
, . . . ,

1√
λM

)
b

)T

ã. (36)
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