
HAL Id: hal-03787358
https://hal.science/hal-03787358

Submitted on 24 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AK-PDEMi: A failure-informed enrichment algorithm
for improving the AK-PDEM in reliability analysis

Tong Zhou, Stefano Marelli, Bruno Sudret, Yongbo Peng

To cite this version:
Tong Zhou, Stefano Marelli, Bruno Sudret, Yongbo Peng. AK-PDEMi: A failure-informed enrich-
ment algorithm for improving the AK-PDEM in reliability analysis. Mechanical Systems and Signal
Processing, 2022, 180, pp.109435. �10.1016/j.ymssp.2022.109435�. �hal-03787358�

https://hal.science/hal-03787358
https://hal.archives-ouvertes.fr


AK-PDEMI: A FAILURE-INFORMED ENRICHMENT

ALGORITHM FOR IMPROVING THE AK-PDEM IN

RELIABILITY ANALYSIS

Zhou, T. and Marelli, S. and Sudret, B. and Peng, Y.

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH
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Abstract: A failure-informed enrichment algorithm is devised to improve the performance of the existing adaptive 

Kriging-probability density evolution method (AK-PDEM) for reliability analysis. This improved method is 

named the AK-PDEMi. Contrary to empirically prescribing the sample size of representative points in the existing 

AK-PDEM, the representative point set in the AK-PDEMi is sequentially enriched by new sets of representative 

points generated by a failure-informed enrichment scheme, which aims to sequentially making fine partitions of 

the key sub-regions where the representative points make critical contributions to the failure probability. In this 

regard, a double-loop configuration is devised: the inner loop adaptively refines the accuracy of Kriging model to 

reduce the Kriging-induced error, and the outer loop involves the failure-informed enrichment process to alleviate 

the PDEM-associated discretization error. The outer and inner loops are complementary and proceed sequentially 

until both of their convergence criteria are satisfied. Three numerical examples are studied and comprehensive 

comparisons are made between the proposed AK-PDEMi and other conventional reliability algorithms. Results 

show that the AK-PDEMi shows remarkable advantage over the existing AK-PDEM. 

Keywords: Failure-informed enrichment; active learning; double-loop configuration; probability density 

evolution method; Kriging; reliability analysis 

1. Introduction 

Structural reliability analysis aims at computing the failure probability of engineering systems under various 

sources of uncertainties [1]. In the past decades, a wide variety of practical reliability methods have been 

developed and can be classified into four categories [2], i.e., (i) approximation methods; (ii) simulation methods; 

(iii) numerical integration-based methods; and (iv) active learning-based reliability methods. 

Approximation methods consist in approximating the performance function using linear or quadratic Taylor 

expansion around the most probable point (MPP), e.g., the first-/second-order reliability method (FORM/SORM) 

[3]. Unfortunately, they may perform poorly when tackling with the problems with strong nonlinearities or 

multiple MPPs [4]. Simulation methods include the Monte Carlo simulation (MCS) [5] and its advanced variants. 

The MCS is easy-to-implement and robust, but its computational cost becomes unaffordable in the case of time-

consuming computational models, such as finte-element analysis models. Then, several variance reduction 
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techniques have been proposed, e.g., the importance sampling (IS) [6] and the subset simulation (SuS) [7]. They 

attain a remarkable reduction of computational costs, in comparison with the crude MCS. The basic idea of 

numerical integration-based methods is to derive the probability density function (PDF) of the performance 

function, thereby the failure probability can be readily computed by a one-dimensional integral of that PDF. They 

can be further categorized into the method of moments [8] and the probability density evolution method (PDEM) 

[9]. In the method of moments, the target PDF is approximated by fitting an appropriate probability distribution 

model under the constraints of its statistical moments of finite orders. Hence, its performance depends on both the 

versatility of the probability distribution models and the estimation accuracy of the statistical moments [10]. In 

the PDEM, the target PDF is derived via solving a series of the so-called generalized probability density evolution 

equations (GDEEs) [11]. This nonparametric manner allows for more flexibility of the PDEM over the method of 

moments. However, the existing numerical algorithm of the PDEM still suffers from relatively high computational 

burden [2]. 

Active learning-based reliability methods [12, 13] aim to reduce the overall computational costs of those 

above-mentioned reliability methods through the use of metamodels, a.k.a. surrogate models. The metamodels are 

adaptively refined by adding new computational model evaluations to their experimental designs based on a so-

called learning function, and this iterative process is continued until a suitable convergence criterion is satisfied. 

Hence, the active learning-based framework generally involves four basic modules, namely metamodel, reliability 

algorithm, learning function and convergence criterion, and are elucidated as follows. (a) Commonly-used 

metamodels include Kriging [14], polynomial chaos expansion [15] and support vector regression [16]. Different 

from other types of metamodels, the Kriging not only provides the predicted value at an unknown point, but also 

the prediction variance. The latter serves as a built-in error measure and facilitates deriving the learning functions. 

Hence, the Kriging model has gained overwhelming popularity, and the most representative one is the adaptive 

Kriging-Monte Carlo simulation (AK-MCS) [14]. Furthermore, the multi-level [17] and multi-fidelity 

metamodels [18] have been explored in the active learning-based scheme. (b) Thanks to the generality of the MCS, 

it is naturally the most widely-used one in the active learning-based framework, such as the AK-MCS [14]. Further, 

those variance-reduction techniques are also explored, e.g., the adaptive Kriging with exploration and 

exploitation-subset simulation (AKEE-SuS) [19] and the adaptive Kriging-importance sampling (AK-IS) [20]. 

Besides, in view of the promising performance of the PDEM, it has been combined with the Kriging in the active 

learning-based framework, e.g., the adaptive Kriging-probability density evolution method (AK-PDEM) [2, 21, 

22]. (c) Learning functions lie at the core of active learning-based framework and are naturally related to both the 

reliability algorithms and the metamodel types. With respect to simulation methods, popular Kriging-related 

learning functions include the expected feasibility function (EFF) [23] and the misclassification-related U function 

[14]; besides, several learning functions that accommodate to any type of metamodels have been devised, such as 

the constrained min-max function [24] and the fraction of bootstrap replicates [15]. With respect to the PDEM, a 

learning function called Taylor expansion-based adaptive design (TEAD) was initially proposed in [2], which 

aims to ensure the overall accuracy of metamodels on the whole representative point set, so as to secure the 

accuracy of failure probability; whereas, the harsh difficulty of maintaining the global accuracy of metamodels 

incurs remarkable computational costs, especially in the complex engineering problems. Then, two Kriging-

related learning functions called the PDEM-information entropy (PIE) [21] and the PDEM-oriented expected 

improvement function (PEIF) [22] were proposed according to the requirement of the PDEM on the local accuracy 
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of metamodels, and they showed an enhancement of computational efficiency over the TEAD. (d) The 

convergence criteria generally consist of three types in the existing literature. The first one is defined based on the 

learning function values, e.g.,   3max EFF 10
x

x  in [23] and  max 2U 
x

x  in [14]. The second one is defined 

based on the confidence bound of the estimated failure probability, considering the statistical uncertainty of 

surrogate predictions, such as [22, 25]. The third one is defined according to the stabilization of the failure 

probability estimates within several consecutive iterations, such as [13, 26]. 

Basically, there are two main loops in the active learning-based scheme, namely the outer and inner loops. The 

inner loop aims to ensure sufficient accuracy of metamodels in the key sub-regions, while the outer loop intends 

to reduce the error associated with the reliability estimation algorithms. The outer and inner loops proceed 

sequentially until both of their stopping conditions are satisfied. Take the combination of adaptive matemodels 

and simulation methods for example, the simulation methods in the outer loop is considered to be converged when 

the coefficient of variation (COV) of the estimated failure probability is lower than a prescribed tolerance, e.g., 

ˆCOV 5%
fP
  [14]. In this double-loop configuration, the metamodel module in the inner loop and the reliability 

estimation module in the outer loop are generally complementary. Specifically, the sample set generated by the 

reliability estimation module in the outer loop serve as the candidate pool for the adaptive refinement of 

metamodels, and the metamodel produced in the inner loop is employed to assist the computation of failure 

probability in the reliability estimation module, such as [19, 27]. However, due to lacking the COV-like 

convergence criterion in the PDEM, the existing AK-PDEM only involves the inner loop, and the sample size of 

the PDEM-generated representative point set, i.e., the candidate pool, has to be prescribed a priori. This implies 

that, even if sufficient Kriging accuracy is gained by the inner loop, the failure probability estimated by the AK-

PDEM still has the risk of deviating from the true one, due to the probable insufficiency of the prescribed 

representative point set. Hence, a complete double-loop configuration is needed for the AK-PDEM. 

To this end, a failure-informed enrichment scheme is developed for improving the existing AK-PDEM. 

Accordingly, the AK-PDEM is renamed as the AK-PDEMi herein. The remainder of this paper is organized as 

follows. Section 2 briefly introduces the PDEM and the AK-PDEM. Section 3 elucidates the proposed AK-PDEMi. 

Three numerical examples are investigated in Section 4 to showcase the performance of the AK-PDEMi; Section 

5 provides some concluding remarks. 

2. The PDEM and the AK-PDEM 

Section 2.1 introduces the theory of the PDEM; Section 2.2 elucidates the region of interest (ROI) for the 

PDEM; Section 2.3 outlines the existing AK-PDEM, as well as its drawbacks. 

2.1 The PDEM 

The equation of motion for a multiple-degree-of-freedom structure under dynamic loads can be expressed as 

[1] 

              , , ,t t t t t  M X U C X U f U U X F X  (1) 

where M , C  and f  are the mass matrix, damping matrix and restoring force vector of the structure, respectively; 

 tU  ,  tU   and  tU   are the acceleration, velocity and displacement vectors of the structure, respectively; 
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 ,tF X  denotes the dynamic loads;  1, , dX XX  is a d-dimensional vector of random variables associated 

with both structural properties and external loads, with the joint PDF  p
X

x  . For a well-posed system, the 

structural response  Y t  exists and depends on X , that is, 

       , ,YY t t t H t    U U X
 

(2) 

where     is the transform operator;  YH   is the deterministic operator. 

In the first-passage problems [28], the failure probability fP  is defined as  

    Pr 0, ,f FP t T Y t   
 

(3) 

where Pr   denotes the probability for short; F  is the failure domain;  0,T  is the time duration. Then, Eq. (3) 

is equivalent to 

 EEVPrf FP Y 
 

(4) 

where 

 
  

 
  EEV

0, 0,
ext ext ,Y

t T t T
Y Y t H t

 
  X

 (5) 

is the so-called equivalent extreme-value (EEV) [29] of  Y t   within  0,T  ; 
 


0,

ext
t T

   denotes the equivalent 

extreme-value operator. For notational clarity, the mapping of 
dX   to the scalar EEV EEVY    can be 

generalized as a computational model  such that 

 EEV , : dY  X
 

(6) 

and the single evaluation of Eq. (6) may involve the time-consuming structural analysis process. 

Take a two-sided barrier problem for example, Eq. (3) can be rewritten as     thrPr 0, ,fP t T Y t u    , 

and thru  is a prescribed threshold. Then, Eq. (5) is specified as 
 

  EEV
0,

max
t T

Y Y t


  and Eq. (4) can be evaluated 

via a one-dimensional integral such that 

   
EEV EEV

thrF
f Y Y

u
P p y dy p y dy



    
(7) 

where  
EEVYp y  is the PDF of EEVY . Clearly, once the  

EEVYp y  is available, the original reliability assessment in 

Eq. (3) reduces to a one-dimensional integral in Eq. (7), and the task becomes how to derive the  
EEVYp y  with 

desired accuracy and efficiency. 

To this end, a virtual stochastic process  V  , associated with both the EEVY  and a virtual time parameter 

 , needs to be constructed in the PDEM. The typical form of  V   is given as [29] 

   EEV

5
sin , 0,1

2
V Y


  

 
    

   
(8) 

where   0 EEV

5
sin 0 0

2
V Y 

 
    

 
 and   1 EEV EEV

5
sin 1

2
V Y Y 

 
    

 
. Eq. (8) shows that the EEVY  is 

equal to the value of  V   at the time instant   = 1. Hence, the target PDF  
EEVYp y  equals the evolutionary 
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PDF of  V  , denoted by  ,Vp v  , at   = 1, that is, 

   
EEV , 1,Y V v yp y p v   

 
(9) 

Then, the fP  can be readily evaluated by Eq. (7). 

Clearly, the crux of the PDEM lies in deriving the evolutionary PDF  ,Vp v    of  V    via solving the 

GDEE. The corresponding numerical algorithm is shown in Fig. 1 and involves the following four main steps. 

Algorithm 1: 

(1) Partition of probability space. Generate the representative point set     RP1

RP , ,
N

 x x  of size RPN  

using the GF discrepancy-based strategy [30] (Appendix A) and compute its assigned probabilities 

    RP1

RP assign assign, ,
N

p p  according to the following expression 

    assign RP, = 1, ,
j

j
p p d j N  X

x x


 (10) 

 where  
RP

assign

1

1
N

j

j

p


  ;  j
   denotes the representative volume of 

 
RP

j
x   and can be defined by the 

Voronoi cell such that [31] 

        RP: , ,
j j k kd j k       x x x x x x  (11) 

 where 
   

,
i j

i j   , and  
RP

1

N
j

j


X

  . Clearly, the assigned probability  
assign

j
p  corresponds to the 

probability over the Voronoi cell of 
 j

x  and can be numerically calculated via the MCS. 

(2) Computational model analyses. Evaluate the computational model (Eq. (7)) on each 
 

RP

j
x  to obtain 

the corresponding EEV 
 
EEV

j
y , giving rise to 

          RP1 1

RP EEV EEV, , RPN N
y y  x x . 

(3) Solving GDEEs. For each 
 

RP

j
x , the discretized form of the GDEE is expressed as 

      
   

RP

, ,
, 0, 1, ,

j j

jV Vp v p v
V j N

v

 




 
  

 
x  (12) 

 where 
      

, , ,
j

j

V Vp v p v d   X
x x


 is called the j-th partial evolutionary PDF of  V   associated with 

the 
 j

x  ;  , ,Vp v 
X

x   is the joint PDF of  ,V   X  ;  j
   is the Voronoi cell of 

 j
x  , see Eq. (11); 

  ,
j

V x   is the derivative of  V    with respect to the virtual time   ; see Eq. (8). Then, the initial 

condition of Eq. (12) is given as 

       
0 assign RP, , 1, ,

j j

Vp v v p j N     (13) 

 where     is the Dirac’s delta function. Solve Eq. (12) under Eq. (13) via the finite difference method [1], 

resulting in the numerical solution of 
    RP, , 1, ,

j

Vp v j N  . 

(4) Computation of failure probability. The evolutionary PDF  ,Vp v   is calculated as 
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     
RP

1

, ,
N

j

V V

j

p v p v 


  (14) 

 then, substituting Eq. (14) into Eq. (9), the target PDF  
EEVYp y  becomes 

              
RP RP RP

EEV EEV, 1 , 1

1 1 1

, ,
N N N

j j j

Y V v y V v y Y

j j j

p y p v p v p y     

  

 
   
 
    (15) 

where        
EEV , 1,
j j

Y V v yp y p v     is called the j-th partial PDF of EEVY  associated with the 
 j

x . Besides, 

according to the definition of the assigned probability in Eq. (10), the partial PDF    
EEV

j

Yp y  in Eq. (15) has 

the following property 

              

 

EEV , 1 assign, , , 1
j j

j j j

Y V v y Vp y dy p v dy p v d dv p d p 
  

 
  

        X Xx x x x
 

 (16) 

which implies that, for each representative point 
 j

x , the integral of    
EEV

j

Yp y  over the whole domain is 

equal to its assigned probability  
assign

j
p . Further, substituting Eq. (15) into Eq. (7), yields 

          
RP RP RP

EEV EEV
thr thr

PDEM

1 1 1

N N N
j j j

f Y Y f
u u

j j j

P p y dy p y dy P
 

  

 
   

 
     (17) 

where 
     

EEV
thr

j j

f Y
u

P p y dy


   denotes the failure probability incurred by the 
 j

x . Hence, the PDEM

fP  is the 

sum of 
 

RP, 1, ,
j

fP j N . 

 
Fig.1 Schematic of the four-step flowchart of the PDEM 

PDF

y

PDEM

fP

thry u

ROIy u

(2) Computational model evaluations

(4) Computation of failure probability

    1 1

EEVy  x

    2 2

EEVy  x

    3 3

EEVy  x

 
 

 EEV
0,

ext ,
t T

Y Y t


 X X

      
   1

EEV

1 1
, ,

, 0
V Vp v p v

V
v

y
 




 
 

 

       11

0 agn,Vp v pv  

      
   2

EEV

2 2
, ,

, 0
V Vp v p v

V
v

y
 




 
 

 

       22

0 agn,Vp v pv  

      
   3

EEV

3 3
, ,

, 0
V Vp v p v

V
v

y
 




 
 

 

       33

0 agn,Vp v pv  

(1) Generation of representative points

(3) Solving GDEEs

  ROI EEV ROIy u  x x

 
EEV

PDEM

Yp y

   
EEV

1

Yp y
 1

EEVy y

   
EEV

2

Yp y

   
EEV

3

Yp y

 2

EEVy y

 3

EEVy y

        RP

EEV EEV

1
, ,

N

Y Yp y p y

 ,Y tX
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Among the four main steps in Fig. 1, Step (2) involves RPN  runs of deterministic structural analyses and 

accounts for the majority of computational burden of the PDEM. To alleviate this, the AK-PDEM was proposed 

in [21]. As the essential prerequisite of the AK-PDEM, the notation of region of interest (ROI) for the PDEM will 

be introduced in the next section. 

Remark 1: In comparison with those simulation methods, the PDEM involves two particular steps, that is, 

computing the assigned probabilities in Step (1) and solving the GDEEs in Step (3), as shown in Fig. 1. The 

samples in simulation methods are drawn from some specific statistical distributions and techniques, e.g., the joint 

PDF in the MCS or the Markov Chain Monte Carlo (MCMC) in the SuS. By contrast, the PDEM partitions the 

whole probability space into a series of mutually exclusive and collectively exhaustive subdomains, i.e., the 

Voronoi cells in Fig. 1; then, the representative points RP   actually aim to characterize the probabilistic 

information associated with their corresponding Voronoi cells and are equipped with the assigned probabilities 

RP . In this regard, the GDEE can be discretized based on the RP  accordingly; see Eqs. (12) and (13). Hence, 

the RP  are endowed with more probabilistic information than those statistical samples in simulation methods. 

2.2 The region of interest (ROI) for the PDEM 

In Fig. 1, the trajectories of three typical representative points among the RP , i.e., the 
 1

x , 
 2

x  and 
 3

x , 

are colored in blue, cyan and green, respectively. For each 
 

RP

j
x , the partial PDF    

EEV

j

Yp y  is centered at the 

vertical axis of 
 
EEV

j
y y  and decays quickly with the distance to that axis; that is, the specific value of 

 
EEV

j
y  

dominates the main body of    
EEV

j

Yp y . Hence, according to the locations of different representative points, the 

whole parameter space can be divided as follows. (i) The first sub-region is covered by these representative points 

whose EEVs are greater than the threshold thru , e.g., the blue point 
 1

x  in Fig. 1. The main body of    
EEV

1

Yp y  

lies in the failure domain and 
     

EEV
thr

1 1
0f Y

u
P p y dy



   . (ii) The second sub-region is covered by these 

representative points whose EEVs are slightly smaller than the thru , e.g., the cyan point 
 2

x  in Fig. 1. The main 

body of    
EEV

2

Yp y  lies partially in the failure domain and 
     

EEV
thr

2 2

f Y
u

P p y dy


   is mildly greater than 0. (iii) The 

third sub-region is covered by these representative points whose EEVs are far smaller than the thru , e.g., the green 

point 
 3

x  in Fig. 1. The main body of    
EEV

3

Yp y  is far away from the failure domain and 
     

EEV
thr

3 3
0f Y

u
P p y dy



  . 

Hence, the failure probabilities incurred by these representative points in the first and second sub-regions 

account for the vast majority of the 
PDEM

fP . These two sub-regions are collectively called the region of interest 

(ROI) for the PDEM and are expressed as 

  ROI EEV ROIy u  x x
 

(18) 

where ROIu  is the boundary of the ROI (magenta line in Fig. 1). According to Eqs. (17) and (18), the ROIu  can be 

quantitatively determined by the following expression 
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      

 

RP RP

ROI

RP

1 1

ROI

1

N N
j j j

f f

j j

N
j

f

j

P P

P


 



 



 



1 x

 
(19) 

where  
ROIΩ1 x  is the indicator function for the ROI , and equals 1 if ROIx  , otherwise 0; ROI  denotes a minor 

tolerance, say 510  . According to Eq. (19), the iterative algorithm for determining the ROIu   is provided in 

Appendix B. Then, Algorithm B1 implies that the value of ROIu   is only available when both 

  RP EEV RP, 1, ,
j

y j N   (Eq. (7)) and   RP, 1, ,
j

fP j N  (Eq. (17)) are gained from the PDEM. Hence, the 

value of ROIu  is only a byproduct of the standard PDEM and is totally unknown a priori. 

Remark 2: As shown in Fig. 1, the ROI defines the sub-region in which the representative points make 

critical contributions to the failure probability; hence, it is an inherent property of the PDEM. Besides, as shown 

in Algorithm B1, the determination of ROIu  depends on the set of representative points generated by the PDEM. 

Remark 3: The similarities and differences between the notation of the ROI for the PDEM and the IS are 

stated as follows. In the IS, the fP  is reformulated as [6] 

     
 

 
   

 

 F F F
X

f

p p
P p d d 

 
     

   
 1 1 1

X

X X

X

x X
x x x x x x X

x X
  

 
 (20) 

where  
F

1 x  is the indicator function of the failure domain, which equals 1 if Fx  , otherwise 0;   X  is 

the d-dimensional importance distribution;     denotes the expectation operator with respect to the  . Then, 

the fP  in Eq. (20) can be estimated by [6] 

  
  
  

 
IS IS

IS

1 1IS

1ˆ
F

j
N N

j j

f fj
j j

p
P P

N  

 


 1
X x

x
x

  (21) 

where the samples     IS1

IS , ,
N

 x x   of size ISN   are drawn from the   ; 
    

  
  IS

1
F

j

j j

f j

p
P

N



1

X x
x

x
  

denotes the failure probability raised by the 
 

IS IS, 1, ,
j

j N x . When the MPP is obtained from the FORM, 

a fair choice of   X  is the standard normal distribution centered at that MPP [6]. Similar to the PDEM in Eq. 

(17), the ISˆ
fP  in Eq. (21) is also the sum of 

 
IS, 1, ,

j

fP j N . However, only those samples in the failure domain 

F  has non-zero value of 
 j
fP  in Eq. (21). Further, for each 

 j
Fx  , the 

 j
fP  has different value and depends 

on the location of the 
 j

x , but is unrelated to the specific value of the response 
 
EEV

j
y . By contrast, Eqs. (17), (18) 

and (19) indicate that, although those representative points locating outside the ROI ROI  have negligible values 

of 
 j
fP , they theoretically has non-zero value of 

 j
fP . Besides, for each 

 
ROI

j
x  , the magnitude of 

 j
fP  relies 

on the specific value of the response 
 
EEV

j
y ; see Fig. 1. 
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2.3 The existing AK-PDEM and its drawbacks 

As stated in Section 2.2, the representative points in the ROI make critical contributions to the failure 

probability computed by the PDEM. Hence, the basic idea of the AK-PDEM is to iteratively refine the Kriging 

accuracy in the ROI, so as to ensure the accuracy of the estimated failure probability. Since the better Kriging 

accuracy is gained in the regions near the training samples, the AK-PDEM utilizes the learning function PIE to 

adaptively add the representative points within the ROI to their experimental designs until an appropriate 

convergence criterion is satisfied. For brevity, the Kriging theory is introduced in Appendix C, and the flowchart 

of the AK-PDEM is given as follows. 

Algorithm 2: 

(1) Partition of probability space. Generate the representative point set     RP1

RP , ,
N

 x x  and compute 

the assigned probabilities     RP1

RP agn agn, ,
N

p p  via the GF discrepancy-based strategy. The RP  is taken 

as the candidate pool CP  in the subsequent process. 

(2) Initialization. Generate the initial experimental design     01
, ,

N
 x x   via the Latin hypercube 

sampling (LHS) [32]; then, evaluate the computational model   on the   to gain 

     EEV RP, 1, ,
j j

y j N  x , together forming  , ; 0N  is taken as  max 10, 1d  . 

(3) Calibration. Calibrate the Kriging model 
Kˆ  according to the current training dataset ; see Appendix C. 

(4) Learning function. A new training sample newx  is selected from the current CP  via the PIE, that is, 

 
CP

new arg max PIE



x

x x

 
(22) 

and the PIE is expressed as [21] 

      

  
 

 

    

 

EEV EEVthr
ˆ ˆ

ˆthr

ˆ

ˆ

ˆthr ˆthr

ˆ

ˆ ˆ ˆPIE ln

1
ln 2 1

2

2

Y Yu

y

y

y

y y

y

p y p y dy

u

u u



 




   







 

    
            


    

   
 
 

x

x
x

x

x x

x

 
(23) 

in which  ŷ x  and  ŷ x  are the mean and standard deviation of Kriging predictor 
Kˆ ; respectively. 

thr ROIu u    denotes the margin between the thru  and the ROIu . Since the true value of ROIu  is unavailable 

(Section 2.2) in the active-learning process, the margin   is also unknown and is assumed to be proportional 

to the Kriging standard deviation, i.e.,    ŷ x x  ;      and      are the cumulative distribution 

function (CDF) and the PDF of a standard normal variable, respectively. 

(5) Convergence criterion. Check the following expression 

 new new PIEPIE PIE  x

 
(24) 

within 2 consecutive iterations, where PIE  is a specified tolerance. If Eq. (24) is satisfied, skip to Step (7), 

otherwise, continue with Step (6). 
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(6) Update. Evaluate the   on the newx  , i.e.,  new newy  x  , then,  new new, y x   and 

CP CP new\ x . 

(7) Termination of active-learning process. Evaluate the final Kriging model 
Kˆ  on the whole RP , resulting 

in the predicted EEVs 
          RP RP1 1K K

RP EEV EEV
ˆ ˆ ˆˆ ˆ, ,

N N
y y  x x . 

(8) GDEEs. According to both the 
RP
ˆ  in Step (7) and the RP  in Step (1), solve the associated RPN  GDEEs, 

resulting in     RP1ˆ ˆ, ,
N

f fP P ; see Eqs. (12) and (13). 

(9) Computation of failure probability. The ˆ
fP  is obtained based on     RP1ˆ ˆ, ,

N

f fP P  via Eq. (17). 

According to the parametric study in [21], it is desirable to specify    ˆ1 y  x x  and 
2

PIE 10  , which 

enables the AK-PDEM (PIE) to provide a comparable estimate of failure probability to the standard PDEM. 

In Algorithm 2, Step (1) shows that the sample size of representative points RP   needs to be prescribed 

empirically in the existing AK-PDEM. This means that, although a Kriging with sufficient accuracy can be gained 

by the PIE, the inadequate size of RP  may give rise to the resultant ˆ
fP  deviating from the true one. Hence, a 

sequential PDEM that allows enriching sequentially the representative points is needed, serving as the outer loop 

of the existing AK-PDEM. This will be elucidated in Section 3. 

3. The proposed AK-PDEMi 

Section 3.1 outlines the sequential PDEM. Then, according to the sequential PDEM, a failure-informed 

enrichment algorithm is built in Section 3.2 to sequentially enrich the representative points in the outer loop. On 

this basis, the original AK-PDEM is improved by adding this outer loop. This is called the AK-PDEMi, and its 

numerical flowchart is presented in Section 3.3. 

3.1 Sequential PDEM 

As stated in Algorithm A1, the GF discrepancy-based strategy is employed to generate representative points 

in the standard PDEM, which involves both the iso-probabilistic transformation of Sobol sequence in the unit 

hypercube and the point set rearrangement, so as to minimize the GF-discrepancy of the point set (i.e., better 

uniformity). Clearly, the sequential PDEM still needs to follow this strategy. 

The basic idea of the sequential PDEM is to enrich an initial representative point set RP  of size RPN  with 

another new representative point set     E,1

E, , , kN

k  x x   of size E,kN  , that is, RP RP E,k   and 

RP RP E,kN N N  , 1,2,k  . During this process, the updated RP  repartitions the whole probability space and 

the assigned probabilities RP  are recomputed by Eq. (10). Then, the failure probability is recalculated by solving 

the increased number of GDEEs. This sequential process continues until a desired convergence criterion is fulfilled. 

For illustration, Fig. 2 shows a toy example of a bivariate function   2 2

1 2 1 2,Y X X X X   , where both 

1X  and 2X  are standard uniform variables. The failure probability is defined as  thrPrfP y u , with the thru  

being taken as 1.71, and the crude MCS is performed as reference. First, an initial representative point set 
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    1 40

RP , , x x  of size 40 is shown in Fig. 2(a), where the Voronoi cells of these representative points are 

plotted to graphically represent their assigned probabilities. Note that the assigned probability of a point is equal 

to the area of its Voronoi cell in the case of uniform distribution; see Eqs. (10) and (11). Due to the sparsity of 

RP , only 1 representative point is located in the ROI, and the assigned probability,  
assign

j
p , of each representative 

point has significant value; see Fig. 2(b). According to Eq. (16), the area enclosed by    
EEV

j

Yp y  and the horizontal 

axis is exactly equal to the  
assign

j
p . Hence, the main body of    

EEV

j

Yp y  is very steep, and the resultant  
EEVYp y  

deviates from the histogram of the MCS, as shown in Fig. 2(c). Clearly, the insufficient size of RP  gives rise to 

a poor performance of the PDEM. 

To enhance the performance of the PDEM, the existing RP  is enriched with another new representative point 

set     1 1200

E , , x x  , that is, RP RP E  . As shown in Fig. 2(d), the updated RP   repartitions the 

whole probability space and the values of assigned probabilities are reduced significantly; see Fig. 2(e). Then, the 

partial PDF    
EEV

j

Yp y  becomes flat and the resultant  
EEVYp y  is consistent with the histogram of the MCS, as 

shown in Fig. 2(f). Clearly, as the sample size of RP   increases, the performance of PDEM is improved 

accordingly. 

Fig. 2(d) shows that the enriched representative points E   are scattered in the whole probability space. 

Among the E , only a small amount of representative points in the ROI, denoted by 
    

ROI
E1ROI

E , ,
N

 x x  of 

size 
ROI

EN , make critical contributions to the 
PDEM

fP  (Section 2.2). In view of this, it seems more efficient to enrich 

the existing RP   with only the representative points 
ROI

E   in the ROI, that is, 
ROI

RP RP E  , and 

ROI

RP RP EN N N  . This enrichment treatment is called Scenario-1, and the sample distribution of the updated 

RP  in Scenario-1 is shown in Fig. 2(g). In comparison with Fig. 2(d), the Voronoi cells of representative points 

near the boundary of the ROI are much greater. This difference is attributed to that the boundary of ROI lies in 

the interface between the sparse RP  and the dense 
ROI

E , and the Voronoi cells of the representative points in 

this interface take up some extra areas out of the ROI. As a result, their assigned probabilities are greater than 

those in other regions; see Fig. 2(h), and the main bodies of their partial PDFs are far greater than others, giving 

rise to the slight overestimate of  
EEVYp y  near the vertical axis of thry u , as enclosed by red dashed ellipse in 

Fig. 2(i). 
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(a) sample distribution of the 

existing representative points 

(b) assigned probabilities of the 

existing representative points 

(c)  
EEVYp y  produced by the 

existing representative points 

   

(d) sample distribution of the 

enriched representative points  

(e) assigned probabilities of the 

enriched representative points  

(f)  
EEVYp y  produced by the 

enriched representative points 

   

(g) sample distribution of the 

updated representative points in 

Scenario-1 

(h) assigned probabilities of the 

updated representative points in 

Scenario-1 

(i)  
EEVYp y  produced by the 

updated representative points in 

Scenario-1 

   

 (j) sample distribution of the 

updated representative points in 

Scenario-2 

(k) assigned probabilities of the 

updated representative points in 

Scenario-2 

(l)  
EEVYp y  produced by the 

updated representative points in 

Scenario-2 

Fig.2 Comparison of different enrichment scenarios 

To avoid this, the sub-region covered by the enriched representative points need to be extended to some degree, 

and this is called the region of enrichment (ROE) such that 

  ROE EEV ROEy u  x x
 

(25) 

where ROEu   is the boundary of the ROE. Obviously, the range of the ROE   varies with the problems under 

consideration. Hence, the interval ROI ROEu u   is assumed to be proportional to the interval thr ROIu u   herein. 
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Based on the authors’ experience, it is feasible to specify    ROI ROE thr ROI 0.5u u u u   , yielding  

ROE ROI thr1.5 0.5u u u     (26) 

Among the E , the enriched representative points in the ROE are denoted by 
    

ROE
E1ROE

E , ,
N

 x x  of 

size 
ROE

EN ; then, the initial representative point set RP  is enriched with the 
ROE

E , i.e., 
ROE

RP RP E , and 

ROE

RP RP EN N N  . This enrichment treatment is called Scenario-2, and the sample distribution of the updated 

RP  in Scenario-2 is shown in Fig. 2(j). Thanks to these extra representative points located between the ROEu  and 

the ROIu , the Voronoi cells of representative points in the ROI have approximate sizes. As a result, similar values 

of the assigned probabilities in the ROI are shown in Fig. 2(k). Then, the main body of    
EEV

j

Yp y  in the ROI is 

similar to each other, and the  
EEVYp y  agrees well with the histogram of MCS near the vertical axis of thry u , 

see Fig. 2(l). Thanks to the enrichment of representative points in the ROE, Scenario-2 makes fine partitions of 

the ROI and yields consistent failure probability to the treatment of enrichment in the whole probability space. 

Hence, Scenario-2 is chosen in the sequential PDEM. 

As shown in Figs. 2 (j-l), the implementation of Scenario-2 is based on the true value of ROIu  (further ROEu ); 

whereas, the true value of ROIu  is a byproduct of the standard PDEM and totally unknown a priori. Moreover, the 

process of selecting the 
ROE

E  from the E  via Eq. (25) entails EN  runs of computational model evaluations. 

This implies that, in comparison with the enrichment in the whole probability space (Figs. 2(d-f)), Scenario-2 

actually does not reduce the number of computational model evaluations at all. These two issues will be addressed 

when the enrichment scheme of Scenario-2 is implemented in the outer loop of the AK-PDEM, and are stated in 

the next section. 

Remark 4: The separate utilities of the ROE and the ROI are elucidated as follows. The ROI defines the sub-

region where the representative points make critical contributions to the failure probability (Section 2.2), thereby 

the inner loop tries to adaptively refine the Kriging accuracy in the ROI via the learning function PIE, so as to 

alleviate the Kriging-induced error in the estimated failure probability. By contrast, Eqs. (25) and (26) show that 

the range of the ROE is slightly greater than that of the ROI, and the extra margin between the ROEu  and the ROIu  

aims to guarantee that, in the range of the ROI, both the magnitude of the assigned probabilities and the partial 

PDF curves of the representative points in Figs. 2(j-l) are consistent with those of the representative points 

enriched in the whole probability space (Figs. 2(d-f)). In essence, the notation of the ROE aims to ensure that the 

representative points located in the ROI still follows the GF discrepancy-based criterion, so as to reduce the 

PDEM-associated discretization error. 

3.2 Failure-informed enrichment algorithm 

When the enrichment scheme of Scenario-2 is implemented in the outer loop of the AK-PDEM, the sequential 

enrichment in the ROE and the adaptive refinement of Kriging model are complementary. Specifically, when a 

Kriging model 
Kˆ  is trained at the end of the existing AK-PDEM, both the 

RP
ˆ  and the     RP1ˆ ˆ, ,

N

f fP P  can be 

obtained from Steps (7) and (8) in Algorithm 2, respectively. Then, substitute them into Algorithm B1, an estimate 
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of the ROIu , i.e., ROIû , can be obtained readily. Moreover, since the 
Kˆ  serves as a cheap proxy of the actual 

computational model , the process of selecting the representative points in the ROE 
ROE

E  from the E  can 

be conducted based on the Kriging 
Kˆ , and this treatment incurs no extra computational model evaluations. 

However, these two treatments may incur the following potential risk. If the Kriging 
Kˆ  is not sufficiently 

accurate, the value of ROIû  (further ROEû ) may not be accurate enough. In this case, the resultant 
ROE

E  may be 

not totally located in the ROE. Whereas, after several runs of the outer-loop enrichment in the ROE and the inner-

loop adaptive refinement of Kriging model, the Kriging accuracy in the ROI is expected to be improved, and the 

ROIû , as well as the ROEû , gradually coincides with the true one. In this regard, the Kriging-assisted enrichment 

process becomes gradually consistent with Scenario-2. For clarity, the representative points 
ROE

E  in the ROE are 

reformulated as the 
RP

 hereinafter. Based on the authors’ experience, the sample size of initial representative 

point set RP  is taken as 2000, and the number of the enriched representative points 
RP

 in each loop is taken as 

10. 

As stated in Section 1, the PDEM is not equipped with the COV-like matric; hence, the outer-loop convergence 

criterion is defined based on the stabilization of the estimated failure probabilities, that is, 

     1 1

ˆ
ˆ ˆ ˆ

f

j j j

f f f P
P P P 

 
   (27) 

within 2 successive loops, where 
 ˆ j

fP  and 
 1ˆ j

fP


 denote the failure probability computed at the j-th and (j-1)-th 

outer loop, respectively; the tolerance ˆ
fP

  is taken as 0.5% here.  

Since this enrichment process entails the valuable failure-associated information provided by the Kriging 

model in the previous inner loop, this is called the failure-informed enrichment scheme. As stated in Section 3.1, 

the generation of the enriched representative points by the failure-informed enrichment scheme still needs to 

follow the GF discrepancy-based criterion (Appendix A). Hence, both the iso-probabilistic transformation of 

Sobol sequence in the unit hypercube (Eq. (A4)) and the point set rearrangement (Eq. (A5)) are naturally involved 

in the failure-informed enrichment scheme accordingly. The corresponding flowchart is provided in Algorithm 3. 

Algorithm 3: Generation of new representative points in the failure-informed enrichment scheme 

1: Input: The ROEû , the Kriging 
Kˆ  and the RP  in the previous inner loop. 

2: Initialization: 

3: The target sample size target 10N  , the initial 0 100N  , and the increment inc 100N  . 

4: Iterative algorithm: In step k = 1, 2, …, 

5: Generate the point set     01

0 , ,
N

 u u  from the Sobol sequence in the unit hypercube. 

6: Convert the 0  to the     01

0 , ,
N

 x x  via the isoprobabilistic transformation in Eq. (A4). 

7: Evaluate the 
Kˆ  on the 0 , yielding     01

0 EEV EEV
ˆ ˆ ˆ, ,

N
y y . 

8: According to the 
0
ˆ , select the points in the ROE, i.e., the 1  of size 1N , from the 0 . 

9: If 1 targetN N , then 

10: Break. 

11: else 

12: 0 0 incN N N  , and 1k k    

13: End 

14: According to Eq. (A5), conduct the rearrangement of 1 , yielding the rearranged point set 2 . 
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15: Return: The final enriched representative point set 
RP 2 . 

Remark 5: In the failure-informed enrichment scheme, the Kriging 
Kˆ  is employed to provide the ROIû  

based on Algorithm B1, and the trial-and-error approach in Algorithm B1 ensures that the value of the ROIû  is 

equal to or less than the threshold thru  . If an ill-calibrated Kriging is produced in the initial stage, the ROI 

 ROI EEV ROIŷ u x   and, further, the ROE  ROE EEV ROEŷ u x   estimated by this poor Kriging are 

different from the true ones. Whereas, the outer-loop stopping condition in Eq. (27) ensures that at least 3 loops 

will be performed in the initial stage of the AK-PDEMi. Hence, despite a poor Kriging may be initially calibrated, 

the outer and inner loops continue and the Kriging accuracy in the range of the ROE will be gradually improved 

by continuously adding new training samples to the experimental designs. Obviously, these two treatments, i.e., 

fulfilling Eq. (27) within 2 consecutive loops and specifying a relatively minor tolerance ˆ
fP

 , attempt to avoid the 

undesired premature termination. 

Remark 6: The inner-loop convergence criterion in Eq. (24) aims to minimize the Kriging-induced error as 

much as possible, while the outer-loop convergence criterion in Eq. (27) pursues reducing the PDEM-associated 

discretization error. With respect to the inner-loop convergence criteria, three basic types are available in the 

existing literature, i.e., the ones based on learning function values, the ones based on the confidence bound of the 

estimated failure probability, and the ones based on the stabilization of failure probability estimates, as stated in 

Section 1. The stopping condition in Eq. (24) is defined based on the learning function PIE values and was shown 

to provide a desired performance in previous study [21]. With respect to the outer-loop convergence criteria, the 

convergence of simulation methods is generally assessed according to the COV of failure probability, e.g., 

ˆCOV 5%
fP
  ; on the contrary, the PDEM is not equipped with the COV-like metric. In view of this, the 

convergence criterion (Eq. (27)) associated with the stabilization of failure probability estimates is employed here. 

Note that this convergence criterion reflects the variation of failure probabilities within 2 consecutive loops, rather 

than 2 iterative steps of the inner loop. Hence, this aims to measure the influence of the sequential generation of 

new representative points by the outer loop on the failure probability, and it is necessary to distinguish this outer-

loop convergence criterion from those inner-loop stopping condition associated with the stabilization of failure 

probability estimates in the existing literature. Clearly, Eqs. (24) and (27) together attempt to ensure the 

convergence of the AK-PDEMi. 

3.3 Numerical procedure of the proposed AK-PDEMi 

When the failure-informed enrichment scheme in Section 3.2 is added into the existing AK-PDEM in Section 

2.3, serving as the outer loop, the outer and inner loops are complementary and proceed sequentially until both of 

their convergence criteria are satisfied. This is called the AK-PDEMi. The corresponding flowchart is presented 

in Fig. 3, with the main steps given as follows. 

Algorithm 4: 

(1) The partition of probability space. Generate the representative point set RP  and compute its assigned 

probabilities RP   using the GF discrepancy-based strategy; see Appendix A. The RP   is taken as the 

candidate pool CP . 
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(2) Initialization. Generate the initial experimental design     01
, ,

N
 x x  and obtain the corresponding 

computational model evaluations     01

EEV EEV, ,
N

y y , resulting in  , . 

(3) Calibration. Train the Kriging model 
Kˆ  based on the current ; see Appendix C. 

(4) Learning function. Select the newx  from the current CP  via the PIE; see Eq. (22). 

(5) The inner-loop convergence criterion. If the PIE-related stopping condition in Eq. (24) is not satisfied, go 

to Step (6), otherwise, skip to Step (7).  

(6) Update. Evaluate the computational model   on the newx  , i.e.,  new newy  x  ; then,

 new new, y x  and CP CP new\ x . 

(7) Termination of the inner loop. Evaluate the final Kriging model 
Kˆ  on the current RP , resulting in the 

predicted EEVs 
     RP

RP EEV RP
ˆ ˆˆ , 1, ,

j N
y j N  x . 

(8) GDEEs. According to both the predicted EEVs 
RP
ˆ  in Step (7) and the assigned probabilities RP , solve the 

associated RPN  GDEEs, resulting in     RP1ˆ ˆ, ,
N

f fP P ; see Eqs. (12) and (13). 

(9) Computation of failure probability. The fP  is computed based on     RP1ˆ ˆ, ,
N

f fP P  via Eq. (17). 

(10) The outer-loop convergence criterion. If Eq. (27) is not satisfied, continue to Step (11), otherwise, skip to 

Step (14). 

(11) Determination of both the ROIû  and the ROEû . Substitute both the 
RP
ˆ  in Step (7) and the     RP1ˆ ˆ, ,

N

f fP P  

in Step (8) into Algorithm B1, resulting in the ROIû ; then, the ROEû  is calculated via Eq. (26). 

(12) Failure-informed enrichment process. Generate another new set of representative points 

    RP1

RP , ,
N

 x x  via Algorithm 3. 

(13) The repartition of probability space. Enrich both the RP   and the CP   with the 
RP

 , that is, 

RP RP RP  , 
CP CP RP  , and 

RP RP RPN N N   . Then, the assigned probabilities RP   of the 

updated RP  are recomputed via Eq. (10); finally, return to Step (3). 

(14) Termination of the outer loop. The ˆ
fP  at the current loop is taken as the final result of the AK-PDEMi. 
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Fig. 3 Flowchart of the proposed AK-PDEMi 

Remark 7: In comparison with the existing AK-PDEM that only partitions the probability space at the first 

step (green blocks in Fig. 3), the AK-PDEMi enables to sequentially repartition the probability space based on the 

additional representative points generated by the failure-informed enrichment scheme in each outer loop (blue 

blocks in Fig. 3). Since most of the enriched representative points are expected to be located in the ROE, fine 

partitions are made in the range of the ROI, thereby the PDEM-associated discretization error is expected to be 

reduced accordingly. Hence, the AK-PDEMi not only reduces the Kriging-induced error, but also alleviates the 

PDEM-associated discretization error. 

4. Illustrating examples 

Three numerical examples are studied to show the efficacy of the proposed AK-PDEMi. The crude MCS is 

performed to provide the reference value MCSˆ
fP . Comprehensive comparisons are made between the proposed 

AK-PDEMi and other existing reliability analysis algorithms, including the FORM, the IS, the SuS, the AK-MCS, 

the APCK-IS, the APCK-SuS, the standard PDEM and the existing AK-PDEM. 

Start

(2) Initialization. Generate the initial experimental

design .

(5) 

Inner-loop convergence 

criterion (Eq. (24)) is met ? 

 new new, ,y x

 new new ,y  x

End

(4) Learning function. Select a new training sample   

from the current        via the PIE; see Eq. (22). 

(7) Termination of inner

loop. Obtain the Kriging

predictions at the ,

i.e., .

newx

CP

YesNo

(3) Calibration. Train the Kriging model accord ing

to the current training dataset ; see Appendix C.

CP CP new\ . x

 ,

(6)

RP

    RP1

RP EEV EEV
ˆ ˆ ˆ, ,

N
y y

(8) GDEEs . According to both the and the ,

solve the GDEEs, yielding ; see

Eqs. (12) and (13).

RPN

RP
ˆ

RP

(9) Computation of failure probability. The is

evaluated by Eq. (17).

ˆ
fP

(1) Partition of probability space. Generate the

representative point set and compute the

assigned probabilit ies . Then, the is taken as

the candidate pool .

RP

RP

(11) Determination of both the and the .

Substitute both and into

Algorithm B1, yielding the ; then, the is

gained from Eq. (26).

ROIû ROEû

(12) Failure-informed enrichment. Generate the 

new representatative point set 

of size      via Algorithm 3.

    RP1

RP , ,
N

 x x
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Outer-loop convergence 

criterion (Eq. (27)) is met ?

 
RP RP RPN N N 

RP

CP

    RP1
, ,

N

f fP P

Update .

RP
ˆ     RP1

, ,
N

f fP P

ROIû ROEû

(13) Repartition of probability space.                          

,

and the of the updated is recomputed

by Eq. (10).

 RP RP RP  CP CP RP

 RP  RP

End
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In the IS, the MPP is obtained from the result of the FORM, then, the importance distribution takes the standard 

normal distribution centered at the MPP [6]. In the SuS, the conditional probability is 0.1 and the sample size of 

each subset is taken as 2000. In the AK-MCS, the U learning function is employed, and the stopping condition is 

defined such that  min 2U 
x

x . In both the APCK-IS and the APCK-SuS, the Polynomial Chaos-Kriging (PCK) 

model [25] and the U learning function are adopted; the stopping condition is defined in terms of the bound of the 

estimated failure probability in 2 successive iterations, with the tolerance being -21 10  [13]; the sample size of 

each subset in the SuS is taken as 510 . For more details, the reader is referred to [13]. In the standard PDEM, the 

sample size of representative points is taken as 2000, exactly equal to the initial representative point size of the 

AK-PDEMi; the AK-PDEM corresponds exactly to the first run of the AK process in the AK-PDEMi, which is 

denoted as the 0-th loop hereafter. Moreover, the maximum number of computational model evaluations for these 

active learning-based algorithms is set as 500. 

The simulation methods and active learning-based methods are replicated 10 times to consider their statistical 

uncertainties; then, the median, the 25-th and the 75-th quantiles, denoted as 25q  and 75q , of the 10 replications 

are provided. The accuracy of different reliability analysis algorithms is measured by the relative error against the 

MCS

fP , that is, MCS MCS

ˆ
ˆ ˆ ˆ 100%

f
f f fP

P P P    ; the efficiency of various reliability methods is quantified by the 

total number, callN , of calls to computational model. 

4.1 A series system with four branches 

The fP  for a series system with four branches is defined as [14] 

    
    

 

 

2

1 2 1 2

2

1 2 1 2

2 1

1 2

0.1 2

0.1 2
Pr

2

2

f

X X X X a

X X X X a
P

X X b

X X b

     
 
 

     
  

  
 
  
 

 
(28) 

where 1X  and 2X  are standard normal variables, respectively; the constants a  and b  are taken as 3.5 and 7.5, 

respectively. Then, Eq. (28) is equivalent to  
EEVEEV

2

Pr
2

bf Y

b
P Y p y dy

 
   

 
 , with the EEVY  expressed as 

   

   

2

1 2 1 2

2

1 2 1 2
EEV

2 1

1 2

0.1 2 2

0.1 2 2
max

X X X X b a

X X X X b a
Y

X X

X X

      
 
      

  
 

  

 
(29) 

Fig. 4 shows the performance of the proposed AK-PDEMi for Example 1, and a total of loop 7N   outer and 

inner loops are involved. In Fig. 4(a), the enriched representative points generated in each outer loop are plotted 

as the colored markers, which are generally located in the range of the ROE. As a result, the Voronoi cells of these 

representative points in the ROI are reduced rapidly, and their assigned probabilities in the ROI are far smaller 

than those in other regions; see Fig. 4(b). Then, Fig. 4(c) shows the convergence performance of the inner loops 

of the AK-PDEMi. As given in Eq. (24), the inner loop is converged when new PIEPIE   in 2 successive iterations, 
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and there are 7 descending branches in the PIE curves. In each outer loop, at least 10 new representative points 

are generated by the failure-informed enrichment scheme (Algorithm 3); whereas, only a fraction of these new 

representative points will be selected as training samples in the inner loop. This is attributed to that these outer-

loop-generated representative points are scattered in the ROE, but the inner loop aims to only select training 

samples in the ROI, so as to secure the Kriging accuracy in the ROI; see Fig. 4(d). As a result, the Kriging 

predictions 
RP
ˆ  coincide well with the true counterparts RP  in the ROI; see Fig. 4(e). The  

EEVYp y  curves in 

the all loops of the AK-PDEMi are shown in Fig. 4(f). As stated above, the AK-PDEM corresponds to the 0-st 

loop of the AK-PDEMi. The  
EEVYp y  produced by the AK-PDEM accords with that produced by the standard 

PDEM, but deviates from the histogram of the crude MCS, owing to the insufficiency of the initial 2000 

representative points. On the contrary, as the outer and inner loops of the AK-PDEMi proceed sequentially, the 

resultant  
EEVYp y  finally coincides with the histogram of the MCS. The evolution of both ROIû  and ˆ

fP  against 

loopN  are shown in Figs. 4(g) and 4(h), respectively, and the ˆ
fP  converges gradually to the reference value MCSˆ

fP . 

   

(a) sample distribution of the 

enriched representative points 
(b) RP  

(c) evolution of both newy  and 

newPIE  against callN  

   
(d) sample distribution of training 

samples 
(e) RP  vs. 

RP
ˆ  (f)  

EEVYp y  
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(g) evolution of ROIû  against loopN  (h) evolution of ˆ

fP  against loopN  

Fig. 4 Performance of the AK-PDEMi for Example 1 

Table 1 lists the results of different reliability analysis algorithms for Example 1. Both the FORM and the IS 

fail to produce fair estimates of failure probability, due to the existence of multiple MPPs. The median of the 

failure probability estimates provided by the SuS also deviates from the reference value MCSˆ
fP . Similar to the IS, 

all the 10 replicates of the APCK-IS only identify one limit state, giving rise to a poor estimate of failure 

probability. Among the 10 repeated runs of the AK-MCS and the APCK-SuS, the number of limit states identified 

by them varies from 1 to 4, and the median of the failure probability estimates deviates from the MCSˆ
fP . The AK-

PDEM provides a comparable estimate of failure probability to the standard PDEM, but diverges from the MCSˆ
fP . 

By comparison, the ˆ
fP  offered by the AK-PDEMi becomes consistent with the crude MCS with fair efficiency. 

Table 1. Comparisons of different reliability algorithms in Example 1 

Method 
callN  ˆ

fP  ( 410 ) 
ˆ

fP
 (%) 

Median [ 25q , 75q ] Median [ 25q , 75q ] 

MCS 75 10  - 4.704 - - 

FORM 12 - 2.326 - 50.54 

IS 4012 [4012, 4012] 1.454 [1.403, 1.490] 69.09 

SuS 6919 [6913, 6930] 3.208 [2.820, 4.820] 31.81 

AK-MCS 44.5 [43, 57] 3.040 [2.685, 4.175] 35.37 

APCK-IS 50.5 [41, 57] 0.896 [0.872, 1.428] 80.95 

APCK-SuS 153.5 [62, 226] 3.056 [2.106, 3.773] 35.03 

PDEM 2000 - 6.001 - 27.58 

AK-PDEM 29 [28, 29.5] 6.001 [6.001, 6.001] 27.58 

AK-PDEMi 60.5 [59, 64.5] 4.565 [4.489, 4.598] 2.95 

4.2 A 20-dimensional nonlinear function 

The second example considers a 20-dimensional nonlinear function such that [33] 

    
20

2 2

1 2 1

1

1
4 1 cos 5

20
k

k

Y X X X X


      (30) 

where  1 20, ,X XX  is a vector of normal random variables, and each iX  has the mean of 1 and the standard 

deviation of 0.2. Then, the fP  is defined as 

 thrPrfP Y u   (31) 

where the threshold thru  is set as 27.5. Obviously, the EEV EEVY  is equal to the Y  itself. 



 

21 

Fig. 5 shows the performance of the AK-PDEMi for Example 2, and a total of loop 10N   outer and inner loops 

are needed. As shown in Fig. 5(a), the PIE curve consists of 10 descending branches, and the EEVs of new training 

samples are grossly greater than the ROIu , that is, locating inside the ROI. As a result, a good accordance between 

the Kriging predictions 
RP
ˆ  and the true counterparts RP  is achieved in the ROI, see Fig. 5(b). Thanks to the 

failure-informed enrichment scheme in the outer loop, the assigned probabilities of the representative points in 

the ROI are reduced significantly; see Fig. 5(c). As the outer and inner loops proceed sequentially, the  
EEVYp y  

yielded by the AK-PDEMi is gradually consistent to the histogram of the crude MCS; see Fig. 5(d). As shown in 

Figs. 5(e) and 5(f), the ROIû  and the ˆ
fP  converges to their reference values at the end of the AK-PDEMi. 

   
(a) evolution of both newy  and 

newPIE  against callN  
(b) RP  vs. 

RP
ˆ  (c) RP  

   
(d)  

EEVYp y  (e) evolution of ROIû  against loopN  (f) evolution of ˆ
fP  against loopN  

Fig. 5 Performance of the proposed AK-PDEMi in Example 2 

Table 2 lists the results of different reliability analysis algorithms for Example 2. The FORM still performs 

poorly. Both the IS and the SuS gain relatively fair estimates of failure probability, but their computational costs 

are too high. On the contrary, the AK-MCS, the APCK-IS and the APCK-SuS reduce remarkably the number of 

computational model evaluations, while gaining fair estimates of failure probability, especially in the APCK-SuS. 

In comparison with the AK-PDEM, the ˆ
fP  provided by the AK-PDEMi is more consistent with the MCSˆ

fP . 

Table 2. Comparisons of different methods in Example 2 

Method 
callN  ˆ

fP  ( 410 ) 
ˆ

fP
 (%) 

Median [ 25q , 75q ] Median [ 25q , 75q ] 

MCS 75 10  - 2.024 - - 

FORM 816 - 0.465 - 77.04 

IS 4816 [4816, 6816] 1.802 [1.754, 1.823] 10.95 
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SuS 7400 [7400, 7400] 1.998 [1.795, 2.335] 1.31 

AK-MCS >500 [>500, >500] 1.855 [1.770, 1.980] 8.35 

APCK-IS 395.5 [337, 489] 1.863 [1.791, 1.969] 7.97 

APCK-SuS >500 [>500, >500] 2.020 [1.957, 2.058] 0.20 

PDEM 2000 - 0.571 - 71.78 

AK-PDEM 88.5 [88, 91] 0.571 [0.571, 0.572] 71.78 

AK-PDEMi 126 [123, 133.5] 1.985 [1.979, 2.001] 1.92 

Moreover, in order to testify the efficacy of the AK-PDEMi in the case of smaller failure probabilities, the 

threshold thru  in Eq. (31) is reset as 28.7, and the reference value MCSˆ
fP  provided by the crude MCS with 75 10  

trials is equal to 52.171 10 . Then, Fig. 6 shows the performance of the AK-PDEMi, which involves loop 10N   

outer and inner loops. A good accordance between the 
RP
ˆ  and the RP  in the ROI is observed in Fig. 6(b). The 

magnitude of the assigned probabilities of representative points in the ROI is reduced in Fig. 6(c), owing to the 

failure-informed enrichment scheme. As both the outer and inner loops proceed, the  
EEVYp y  provided by the 

AK-PDEMi gradually converges to the histogram of the crude MCS; see Fig. 6(d). Finally, Fig. 6(f) shows that 

the ˆ
fP  in the last loop is equal to 52.296 10 , with the ˆ

fP
  being 5.76%. Hence, the AK-PDEMi still achieves 

relatively fair results in the failure probability level of 510 . 

   
(a) evolution of both newy  and 

newPIE  against callN  
(b) RP  vs. 

RP
ˆ  (c) RP  

   
(d)  

EEVYp y  (e) evolution of ROIû  against loopN  (f) evolution of ˆ
fP  against loopN  

Fig. 6. Performance of the proposed AK-PDEMi in the case of smaller failure probability 

When dealing with even smaller failure probabilities, e.g., 
7 910 10fP   , the AK-PDEMi may become 

more challenging, and the reasons are stated as follows. Eq. (16) shows that the integral of the partial PDF 

   
EEV

j

Yp y  over the whole domain is equal to the assigned probability 
 
assign

j
p . If the target failure probability fP  is 
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much smaller, the magnitude of the assigned probabilities of representative points in the ROI also needs to be 

decreased to a comparable level. To reduce the assigned probabilities to such a small level, a large number of 

representative points are needed to be enriched to the ROE. Accordingly, the number of training samples will be 

increased remarkably. Besides, as shown in Fig. 6(f), the outer-loop convergence criterion may give rise to the 

premature termination of the AK-PDEMi. Hence, a more appropriate convergence criterion for terminating the 

failure-informed enrichment scheme may be needed in the case of much smaller failure probabilities. 

4.3 Seismic reliability analysis of a shear-frame structure 

The third example addresses the seismic reliability analysis of a 10-story shear-frame structure, as sketched in 

Fig. 6(a). The lumped masses of each floor are valued as: 1m  = 3.487, 2m  = 3.225, 3m  = 2.887, 4m  = 2.667, 

5 10m m   = 2.558 ( 510  kg). The initial inter-story stiffnesses of each floor are considered as lognormal 

random variables, and their means and COVs are provided in Table 3. The height of each floor is taken as 3.7 m. 

The nonlinear inter-story hysteretic behavior is described by the extended Bouc-Wen model [34,35], and the 13 

involved parameters are valued by: BW  = 0.04, BWA  = 1, BWn  = 1, BW  = 320, BW  = 150, 
BWv  = 2000, 

BW  

= 2000, BWp   = 1000, BWq   = 0.25, BW   = 0.05, 
BW   = 5, BW   = 0.5, 

BWs   = 0.99. Then, a typical hysteretic 

curve of the first floor is shown in Fig. 6(b). 

Table 3. Initial inter-story stiffnesses (
810 N m ) 

Variables 1k  2k  3k  4k  5k  6k  7k  8k  9k  10k  

Mean 1.962 1.875 1.758 1.754 1.662 1.662 1.662 1.662 1.662 1.662 

COV 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

The input excitation takes the El-Centro ground motion (N-S component), of which the peak ground 

acceleration is scaled to 3.45 
2m s  (Fig. 6(c)). Rayleigh damping a b C M K  is adopted, where M  and K

denotes the mass and initial stiffness matrices, respectively; then, the two coefficients, a and b, are taken as 0.2904 

1s  and 0.0066 s, respectively. Hence, a total of 10 random variables are involved in the dynamic system, i.e., 

 1 2 10, , ,k k kX . 

   
(a) geometric layout (b) hysteretic curve of first floor (c) the scaled El-Centro accelerogram  

Fig. 7. Illustration of the shear-frame structure 

The system reliability of this structure is of concern and the fP  is defined as 

    
10

thr

1

Pr 0,20s , ,f j

j

P t U t u


  
    

  
X  (32) 
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where  ,jU tX , j = 1, …, 10, denotes the inter-story drift of the j-th story; thru  is the threshold and is assumed 

as 74 mm. Then, Eq. (32) is equivalent to    
EEV

thr
EEV thrPrf Y

u
P Y u p y dy



    , with the EEVY  defined as 

 
 EEV

1 10 0,20s
max max ,j

j t
Y U t

  

   
 

X  (33) 

Fig. 8 presents the performance of the AK-PDEMi for Example 3, and a total of loop 11N   outer and inner 

loops are involved. As shown in Fig. 8(a), there are 11 descending branches in the PIE curve and most of new 

training samples are located in the ROI. Consequently, the Kriging predictions 
RP
ˆ  are in a good accordance with 

the RP   in the ROI; see Fig. 8(b). Due to the enrichment of representative points in the ROE, the assigned 

probabilities of representative points in the ROI are smaller than those in other regions, as shown in Fig. 8(c). The 

convergence performance of the  
EEVYp y  curves produced by the AK-PDEMi is shown in Fig. 8(d), and the 

 
EEVYp y  finally achieves a good accordance with the histogram of the crude MCS. Both the ROIû  and the ˆ

fP  

converge to their reference values at the end of AK-PDEMi, see Figs. 8(e) and (f). 

   
(a) evolution of both newy  and 

newPIE  against callN  
(b) RP  vs. 

RP
ˆ  (c) RP  

   
(d)  

EEVYp y  (e) evolution of ROIû  against loopN  (f) evolution of ˆ
fP  against loopN  

Fig. 8. Performance of the AK-PDEMi for Example 3 

Table 4 provides the results of different reliability analysis algorithms for Example 3. Both the IS and the SuS 

achieve good estimates of failure probability at the expense of extremely large number of deterministic structural 

analyses. The AK-MCS, the APCK-IS and the APCK-SuS provide inferior results in this example. In comparison 

with the existing AK-PDEM, the proposed AK-PDEMi enables to improve the accuracy of failure probability with 

fair efficiency. 
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Table 4. Comparisons of different reliability methods in Example 3 

Method 
callN  ˆ

fP  ( 410 ) 
ˆ

fP
 (%) 

Median [ 25q , 75q ] Median [ 25q , 75q ] 

MCS 65 10  - 8.362 - - 

FORM 1574 - 52.031 - 519.05 

IS 17574 [15574, 19574] 8.311 [8.137, 8.485] 1.11 

SuS 7400 [5600, 7400] 8.732 [7.460, 11.150] 3.89 

AK-MCS >500 [>500, >500] 4.925 [4.580, 5.225] 41.10 

APCK-IS >500 [>500, >500] 4.734 [4.133, 5.071] 43.39 

APCK-SuS >500 [>500, >500] 4.516 [4.295, 4.997] 46.00 

PDEM 2000 - 5.183 - 38.02 

AK-PDEM 76 [71.5, 78] 5.183 [5.170, 5.172] 38.02 

AK-PDEMi 174.5 [170.5, 183] 8.302 [8.293, 8.305] 0.72 

5 Concluding remarks 

An efficient reliability method called the AK-PDEMi was proposed. In the AK-PDEMi, a failure-informed 

enrichment scheme is devised to sequentially enrich the representative points with another new sets of 

representative points, and its convergence criterion is defined based on the stabilization of failure probability 

estimates. This scheme is featured by sequentially making fine partitions of the ROI, so as to reduce the PDEM-

associated discretization error. Both the failure-informed enrichment scheme and the adaptive refinement of the 

Kriging are complementary and serve as the outer and inner loops of the AK-PDEMi, respectively. Then, the outer 

and inner loops proceed sequentially until both of their convergence criteria are satisfied. Comparisons are made 

between the AK-PDEMi and other conventional reliability analysis algorithms, including the FORM, the IS, the 

SuS, the AK-MCS, the APCK-IS, the APCK-SuS, the standard PDEM and the existing AK-PDEM. Some 

concluding remarks are given as follows. 

(1) The existing AK-PDEM agrees well with the standard PDEM, but may yield unsatisfactory performance, due 

to the empirical setting of the sample size of representative points. 

(2) In comparison with the existing AK-PDEM, the AK-PDEMi consists of two loops, i.e., the outer loop 

sequentially making fine partitions of the key sub-region in the ROI by enriching new representative points 

to the ROE, and the inner loop adaptively refining the Kriging accuracy in the ROI by placing training samples 

in such area. The two loops are complementary and enable to reduce both the PDEM-associated discretization 

error and the Kriging-incurred error. 

(3) In comparison with other existing reliability methods, the AK-PDEMi has significant superiority in terms of 

both computational accuracy and efficiency. 

It is admitted that how to further tackle with the case of much smaller failure probabilities using the AK-

PDEMi still needs investigations, and a more pertinent convergence criterion for the outer loop of the AK-PDEMi 

is also needed to ensure the fair termination of the AK-PDEMi. 
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Appendix A: GF discrepancy-based strategy 

Consider a representative point set     RP1

RP , ,
N

 x x   and its assigned probabilities 

    RP1

RP assign assign, ,
N

p p , the worst error raised by the PDEM satisfies the extended Koksma-Hlawka inequality 

[36] 

           
RP

GF RP

1

, , , TV
N

j

V V

j

p v d p v d D 


   
X

X
x x


 (A1) 

where  d  denotes the same order of the magnitude of d , and d  is the dimension of X ;  TV  is the total 

variation related to the irregularity of the computational function ;  GF RPD  is the GF-discrepancy of the 

point set RP  and is defined as 

      E

GF RP
1
max sup

k kX X
k d x

D F x F x
   

 

 
(A2) 

where   , 1, , ,
kXF k d   is the marginal CDF of the k-th variable kX ;  E

kXF   is the empirical marginal CDF of 

kX , accounting for the effects of the assigned probabilities RP , that is, 

      
RP

E

assign

1
k

N
j j

X k

j

F x p I x x


  
 

(A3) 

where  j
kx  is the k-th component of  

RP

j
x . 

Eq. (A1) indicates that the point set with the minimal GF discrepancy is taken as the representative point set 

of the PDEM. To this end, a GF discrepancy-based point rearrangement strategy was developed in [30]. First, an 

initial point set     RP1

0 , ,
N

 u u  of size RPN  is generated from the Sobol sequence in the unit hypercube; 

and the isoprobabilistic transformation is performed such that 

    1

RP, 1, , .
j j

F j N Xx u  (A4) 

which converts the 0   to the initial point set     RP1

0 , ,
N

 x x   in the physical space. The assigned 

probabilities RP,0  of the 0  are numerically computed via Eq. (10). 

Then, the rearrangement of point set is conducted based on both the 0  and the RP,0  such that [30] 

          
RP

1

assign assign RP

1

1
, 1, , , 1, ,

2

N
l j j l j

k k k k

j

x F p I x x p k d l N



 
      

 


 
(A5) 

so as to reduce the GF-discrepancy of the 0 . The rearranged point set is denoted by     RP1

RP , ,
N

 x x , and 

its assigned probabilities RP  are then recomputed by Eq. (10). In this regard, both the representative point set 

RP  and its assigned probabilities RP  are obtained for the PDEM. 

Appendix B: Iterative determination of the boundary of ROI 

Algorithm B1: Iterative determination of the ROIu  
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1: Input: 
    RP1

, ,
N

f fP P , 
    RP1

RP EEV EEV, ,
N

y y  and the threshold thru . 

2: Initialization: 

3: The increment inc thr 100u u ; the initial ROI thru u . 

4: Iterative algorithm: In step k = 1, 2, …, 

5: If Eq. (19) is satisfied, then 

6: Break. 

7: Else 

8: ROI ROI incu u u  , 1k k  . 

9: End 

10: Return: ROIu . 

Appendix C: Kriging model 

The Kriging model 
Kˆ   interprets the computational model   in Eq. (7) as a realization of Gaussian 

process such that [37] 

     K T 2

EEV
ˆŷ Z  x f x x

 
(C1) 

where  T f x  is the trend of Kriging model and the ordinary Kriging is utilized, that is,   1f x  and   is 

unknown; 2  is the process variance;  Z x  is a zero-mean, unit-variance Gaussian process represented by a 

correlation function  ,R x x . Here, the Matern-3/2 correlation function [37] is adopted such that 

 
2 2

1 1

, ; 1 3 exp 3
d d

k k k k
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x x x x
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                

      
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 x x 

 
(C2) 

where  
1

0
d

k k



   denotes the correlation parameters. 

Consider a training dataset  ,  consisting of the experimental design     1
, ,

N
 x x  and the 

corresponding computational model evaluations     1

EEV EEV, ,
N

y y , both the   and the 2  are estimated by 

   
1

T 1 T 1̂


  1 1 1R R

 

(C3) 
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T

2 T 1 T1 ˆ ˆˆ
N

    1 1R

 
(C4) 

where 1  is vector filled with 1 of length N ; R  is the correlation matrix with elements       ,
, ;

i j i j
R R x x  , i, 

j = 1, …, N. Eqs. (C3) and (C4) show that both the ̂  and the 2̂  depend on the   through the matrix R . Hence, 

the   needs to be firstly calibrated by the maximum likelihood method [37], that is, 

     
1

2ˆ ˆarg min det N
 

  
 

R

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(C5) 

Finally, the Kriging predictor at an unknown point x   follows normal distribution, i.e., 

    2

ˆ ˆEEV
ˆ ,y yy  x x , with the prediction mean and variance given by [37] 

     T 1

ˆ
ˆ ˆ

y    x r x R 

 
(C6) 
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where        
T

1
, , , ,

N
R R 
 

r x x x x x  , and    T 1 1u  1x R r x  . The UQLab software [38] is used to 

calibrate the Kriging model. 
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