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A failure-informed enrichment algorithm is devised to improve the performance of the existing adaptive Kriging-probability density evolution method (AK-PDEM) for reliability analysis. This improved method is named the AK-PDEMi. Contrary to empirically prescribing the sample size of representative points in the existing AK-PDEM, the representative point set in the AK-PDEMi is sequentially enriched by new sets of representative points generated by a failure-informed enrichment scheme, which aims to sequentially making fine partitions of the key sub-regions where the representative points make critical contributions to the failure probability. In this regard, a double-loop configuration is devised: the inner loop adaptively refines the accuracy of Kriging model to reduce the Kriging-induced error, and the outer loop involves the failure-informed enrichment process to alleviate the PDEM-associated discretization error. The outer and inner loops are complementary and proceed sequentially until both of their convergence criteria are satisfied. Three numerical examples are studied and comprehensive comparisons are made between the proposed AK-PDEMi and other conventional reliability algorithms. Results

show that the AK-PDEMi shows remarkable advantage over the existing AK-PDEM.

Introduction

Structural reliability analysis aims at computing the failure probability of engineering systems under various sources of uncertainties [START_REF] Li | Stochastic Dynamics of Structures[END_REF]. In the past decades, a wide variety of practical reliability methods have been developed and can be classified into four categories [START_REF] Zhou | An efficient reliability method combining adaptive global metamodel and probability density evolution method[END_REF], i.e., (i) approximation methods; (ii) simulation methods;

(iii) numerical integration-based methods; and (iv) active learning-based reliability methods.

Approximation methods consist in approximating the performance function using linear or quadratic Taylor expansion around the most probable point (MPP), e.g., the first-/second-order reliability method (FORM/SORM) [START_REF] Zhao | A general procedure for first/second-order reliability method (FORM/SORM)[END_REF]. Unfortunately, they may perform poorly when tackling with the problems with strong nonlinearities or multiple MPPs [START_REF] Der Kiureghian | Multiple design points in first and second-order reliability[END_REF]. Simulation methods include the Monte Carlo simulation (MCS) [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF] and its advanced variants.

The MCS is easy-to-implement and robust, but its computational cost becomes unaffordable in the case of timeconsuming computational models, such as finte-element analysis models. Then, several variance reduction  Corresponding author.
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techniques have been proposed, e.g., the importance sampling (IS) [START_REF] Tabandeh | A review and assessment of importance sampling methods for reliability analysis[END_REF] and the subset simulation (SuS) [START_REF] Au | Engineering Risk Assessment with Subset Simulation[END_REF]. They attain a remarkable reduction of computational costs, in comparison with the crude MCS. The basic idea of numerical integration-based methods is to derive the probability density function (PDF) of the performance function, thereby the failure probability can be readily computed by a one-dimensional integral of that PDF. They can be further categorized into the method of moments [START_REF] Zhao | Structural Reliability: Approaches from Perspectives of Statistical Moments[END_REF] and the probability density evolution method (PDEM) [START_REF] Li | A PDEM-based perspective to engineering reliability: From structures to lifeline networks[END_REF]. In the method of moments, the target PDF is approximated by fitting an appropriate probability distribution model under the constraints of its statistical moments of finite orders. Hence, its performance depends on both the versatility of the probability distribution models and the estimation accuracy of the statistical moments [START_REF] Zhou | Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis[END_REF]. In the PDEM, the target PDF is derived via solving a series of the so-called generalized probability density evolution equations (GDEEs) [START_REF] Li | The principle of preservation of probability and the generalized density evolution equation[END_REF]. This nonparametric manner allows for more flexibility of the PDEM over the method of moments. However, the existing numerical algorithm of the PDEM still suffers from relatively high computational burden [START_REF] Zhou | An efficient reliability method combining adaptive global metamodel and probability density evolution method[END_REF].

Active learning-based reliability methods [START_REF] Teixeira | Adaptive approaches in metamodel-based reliability analysis: A review[END_REF][START_REF] Moustapha | Active learning for structural reliability: Survey, general framework and benchmark[END_REF] aim to reduce the overall computational costs of those above-mentioned reliability methods through the use of metamodels, a.k.a. surrogate models. The metamodels are adaptively refined by adding new computational model evaluations to their experimental designs based on a socalled learning function, and this iterative process is continued until a suitable convergence criterion is satisfied.

Hence, the active learning-based framework generally involves four basic modules, namely metamodel, reliability algorithm, learning function and convergence criterion, and are elucidated as follows. (a) Commonly-used metamodels include Kriging [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF], polynomial chaos expansion [START_REF] Marelli | An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis[END_REF] and support vector regression [START_REF] Moustapha | Comparative Study of Kriging and Support Vector Regression for Structural Engineering Applications[END_REF]. Different from other types of metamodels, the Kriging not only provides the predicted value at an unknown point, but also the prediction variance. The latter serves as a built-in error measure and facilitates deriving the learning functions.

Hence, the Kriging model has gained overwhelming popularity, and the most representative one is the adaptive Kriging-Monte Carlo simulation (AK-MCS) [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF]. Furthermore, the multi-level [START_REF] Schöbi | Structural reliability analysis for p-boxes using multi-level meta-models[END_REF] and multi-fidelity metamodels [START_REF] Yi | An active-learning method based on multi-fidelity Kriging model for structural reliability analysis[END_REF] have been explored in the active learning-based scheme. (b) Thanks to the generality of the MCS, it is naturally the most widely-used one in the active learning-based framework, such as the AK-MCS [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF]. Further, those variance-reduction techniques are also explored, e.g., the adaptive Kriging with exploration and exploitation-subset simulation (AKEE-SuS) [START_REF] Zhang | An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation[END_REF] and the adaptive Kriging-importance sampling (AK-IS) [START_REF] Xiao | A new reliability method for small failure probability problems by combining the adaptive importance sampling and surrogate models[END_REF].

Besides, in view of the promising performance of the PDEM, it has been combined with the Kriging in the active learning-based framework, e.g., the adaptive Kriging-probability density evolution method (AK-PDEM) [START_REF] Zhou | An efficient reliability method combining adaptive global metamodel and probability density evolution method[END_REF][START_REF] Zhou | A new active-learning function for adaptive Polynomial-Chaos Kriging probability density evolution method[END_REF][START_REF] Zhou | Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method[END_REF]. (c) Learning functions lie at the core of active learning-based framework and are naturally related to both the reliability algorithms and the metamodel types. With respect to simulation methods, popular Kriging-related learning functions include the expected feasibility function (EFF) [START_REF] Bichon | Efficient global reliability analysis for nonlinear implicit performance functions[END_REF] and the misclassification-related U function [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF]; besides, several learning functions that accommodate to any type of metamodels have been devised, such as the constrained min-max function [START_REF] Moustapha | Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework[END_REF] and the fraction of bootstrap replicates [START_REF] Marelli | An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis[END_REF]. With respect to the PDEM, a learning function called Taylor expansion-based adaptive design (TEAD) was initially proposed in [START_REF] Zhou | An efficient reliability method combining adaptive global metamodel and probability density evolution method[END_REF], which aims to ensure the overall accuracy of metamodels on the whole representative point set, so as to secure the accuracy of failure probability; whereas, the harsh difficulty of maintaining the global accuracy of metamodels incurs remarkable computational costs, especially in the complex engineering problems. Then, two Krigingrelated learning functions called the PDEM-information entropy (PIE) [START_REF] Zhou | A new active-learning function for adaptive Polynomial-Chaos Kriging probability density evolution method[END_REF] and the PDEM-oriented expected improvement function (PEIF) [START_REF] Zhou | Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method[END_REF] were proposed according to the requirement of the PDEM on the local accuracy of metamodels, and they showed an enhancement of computational efficiency over the TEAD. (d) The convergence criteria generally consist of three types in the existing literature. The first one is defined based on the learning function values, e.g.,

  3 max EFF 10   x x
in [START_REF] Bichon | Efficient global reliability analysis for nonlinear implicit performance functions[END_REF] and

  max 2 U  x x
in [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF]. The second one is defined based on the confidence bound of the estimated failure probability, considering the statistical uncertainty of surrogate predictions, such as [START_REF] Zhou | Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method[END_REF][START_REF] Schöbi | Rare Event Estimation Using Polynomial-Chaos Kriging[END_REF]. The third one is defined according to the stabilization of the failure probability estimates within several consecutive iterations, such as [START_REF] Moustapha | Active learning for structural reliability: Survey, general framework and benchmark[END_REF][START_REF] Basudhar | An improved adaptive sampling scheme for the construction of explicit boundaries[END_REF].

Basically, there are two main loops in the active learning-based scheme, namely the outer and inner loops. The inner loop aims to ensure sufficient accuracy of metamodels in the key sub-regions, while the outer loop intends to reduce the error associated with the reliability estimation algorithms. The outer and inner loops proceed sequentially until both of their stopping conditions are satisfied. Take the combination of adaptive matemodels and simulation methods for example, the simulation methods in the outer loop is considered to be converged when the coefficient of variation (COV) of the estimated failure probability is lower than a prescribed tolerance, e.g., ĈOV 5% f P  [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF]. In this double-loop configuration, the metamodel module in the inner loop and the reliability estimation module in the outer loop are generally complementary. Specifically, the sample set generated by the reliability estimation module in the outer loop serve as the candidate pool for the adaptive refinement of metamodels, and the metamodel produced in the inner loop is employed to assist the computation of failure probability in the reliability estimation module, such as [START_REF] Zhang | An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation[END_REF][START_REF] Ling | A coupled subset simulation and active learning kriging reliability analysis method for rare failure events[END_REF]. However, due to lacking the COV-like convergence criterion in the PDEM, the existing AK-PDEM only involves the inner loop, and the sample size of the PDEM-generated representative point set, i.e., the candidate pool, has to be prescribed a priori. This implies that, even if sufficient Kriging accuracy is gained by the inner loop, the failure probability estimated by the AK-PDEM still has the risk of deviating from the true one, due to the probable insufficiency of the prescribed representative point set. Hence, a complete double-loop configuration is needed for the AK-PDEM.

To this end, a failure-informed enrichment scheme is developed for improving the existing AK-PDEM.

Accordingly, the AK-PDEM is renamed as the AK-PDEMi herein. The remainder of this paper is organized as follows. Section 2 briefly introduces the PDEM and the AK-PDEM. Section 3 elucidates the proposed AK-PDEMi.

Three numerical examples are investigated in Section 4 to showcase the performance of the AK-PDEMi; Section 5 provides some concluding remarks.

The PDEM and the AK-PDEM

Section 2.1 introduces the theory of the PDEM; Section 2.2 elucidates the region of interest (ROI) for the PDEM; Section 2.3 outlines the existing AK-PDEM, as well as its drawbacks.

The PDEM

The equation of motion for a multiple-degree-of-freedom structure under dynamic loads can be expressed as

[1]                 , , , t t t t t    M X U C X U f U U X F X (1)
where M , C and f are the mass matrix, damping matrix and restoring force vector of the structure, respectively; 

  t U ,  

 

p X x . For a well-posed system, the structural response   Yt exists and depends on X , that is,

        ,, Y Y t t t H t     U U X ( 2 
)
where     is the transform operator;

  Y H  is the deterministic operator. In the first-passage problems [START_REF] Crandall | First-crossing probabilities of the linear oscillator[END_REF], the failure probability f P is defined as

      Pr 0, , fF P t T Y t      (3) 
where  Pr  denotes the probability for short; F  is the failure domain;   0,T is the time duration. Then, Eq. ( 3)

is equivalent to   EEV Pr fF PY   (4) 
where

            EEV 0, 0, ext ext , Y t T t T Y Y t H t   X ( 5 
)
is the so-called equivalent extreme-value (EEV) [START_REF] Li | The equivalent extreme-value event and evaluation of the structural system reliability[END_REF] of   Yt within   0,T ; 

  EEV ,: d Y  X (6)
and the single evaluation of Eq. ( 6) may involve the time-consuming structural analysis process.

Take a two-sided barrier problem for example, Eq. ( 3) can be rewritten as

      thr Pr 0, , f P t T Y t u     ,
and thr u is a prescribed threshold. Then, Eq. ( 5) is specified as

      EEV 0, max tT Y Y t  
and Eq. ( 4) can be evaluated via a one-dimensional integral such that

    EEV EEV thr F f Y Y u P p y dy p y dy     (7) 
where

  EEV Y py is the PDF of EEV Y . Clearly, once the   EEV Y
py is available, the original reliability assessment in Eq. ( 3) reduces to a one-dimensional integral in Eq. ( 7), and the task becomes how to derive the

 

EEV Y py with desired accuracy and efficiency.

To this end, a virtual stochastic process   V  , associated with both the EEV Y and a virtual time parameter  , needs to be constructed in the PDEM. The typical form of   V  is given as [29]    

EEV 5 sin , 0,1 2 VY            (8) 
where   0 EEV

5 sin 0 0 2 VY           and   1 EEV EEV 5 sin 1 2 V Y Y          
. Eq. [START_REF] Zhao | Structural Reliability: Approaches from Perspectives of Statistical Moments[END_REF] shows that the EEV Y is equal to the value of   V  at the time instant  = 1. Hence, the target PDF   EEV Y py equals the evolutionary

PDF of   V  , denoted by   , V pv  , at  = 1, that is,     EEV ,1 , Y V v y p y p v     (9) 
Then, the f P can be readily evaluated by Eq. [START_REF] Au | Engineering Risk Assessment with Subset Simulation[END_REF].

Clearly, the crux of the PDEM lies in deriving the evolutionary PDF

  , V pv  of   V  via solving the GDEE.
The corresponding numerical algorithm is shown in Fig. 1 and involves the following four main steps.

Algorithm 1:

(1) Partition of probability space. Generate the representative point set

      RP 1 RP ,, N  xx
of size RP N using the GF discrepancy-based strategy [START_REF] Chen | A GF-discrepancy for point selection in stochastic seismic response analysis of structures with uncertain parameters[END_REF] (Appendix A) and compute its assigned probabilities

      RP 1 RP assign assign ,, N pp 
according to the following expression

      assign RP , = 1, , j j p p d j N   X xx  ( 10 
)
where

  RP assign 1 1 N j j p    ;   j  denotes the representative volume of   RP j  x
and can be defined by the Voronoi cell such that [START_REF] Aurenhammer | Voronoi diagrams-a survey of a fundamental geometric data structure[END_REF] 

         RP : , , j j k k d jk         x x x x x x  (11) 
where

    , ij ij    
, and

  RP 1 N j j   X  .
Clearly, the assigned probability   (3) Solving GDEEs. For each   RP j  x , the discretized form of the GDEE is expressed as

            RP ,, , 0, 1, 
,

jj j VV p v p v V j N v         x ( 12 
)
where

        , , , j j VV p v p v d    X xx  is called the j-th partial evolutionary PDF of   V  associated with the   j x ;   ,, V pv X x is the joint PDF of  , V    X ;   j  is the Voronoi cell of   j x , see Eq. ( 11 
);     , j V  x
is the derivative of  

V  with respect to the virtual time  ; see Eq. ( 8). Then, the initial condition of Eq. ( 12) is given as

        0 assign RP , , 1, , jj V p v v p j N     (13) 
where     is the Dirac's delta function. Solve Eq. ( 12) under Eq. ( 13) via the finite difference method [1],

resulting in the numerical solution of     RP , , 1, ,

j V p v j N   .
(4) Computation of failure probability. The evolutionary PDF

 

,

V pv  is calculated as       RP 1 ,, N j VV j p v p v     (14) 
then, substituting Eq. ( 14) into Eq. ( 9), the target PDF

  EEV Y py becomes                 RP RP RP EEV EEV , 1 , 1 1 1 1 ,, N N N j j j Y V v y V v y Y j j j p y p v p v p y                   (15) 
where

        EEV ,1 , jj Y V v y p y p v     is called the j-th partial PDF of EEV Y associated with the   j x . Besides,
according to the definition of the assigned probability in Eq. ( 10), the partial PDF     EEV j Y py in Eq. ( 15) has the following property

                    EEV , 1 assign , , , 
1 jj j j j Y V v y V p y dy p v dy p v d dv p d p                    XX x x x x  (16) 
which implies that, for each representative point   j x , the integral of     EEV j Y py over the whole domain is equal to its assigned probability   assign j p

. Further, substituting Eq. ( 15) into Eq. ( 7), yields 

            RP RP RP EEV EEV thr thr PDEM 1 1 1 N N N j j j f Y Y f
j f P j N  .
      1 1 E E V y  x       2 2 E E V y  x       3 3 E E V y  x       E E V 0 , ext , t T Y Y t    X X             1 E E V 1 1 , , , 0 
V V p v p v V v y                   1 1 0 agn , V p v p v                  2 E E V 2 2
, , , 0

V V p v p v V v y                   2 2 0 agn , V p v p v                  3 E E V 3 3 , , , 0 V V p v p v V v y                   3 3 0 agn , V p v p v     
(1) Generation of representative points

(3) Solving GDEEs     ROI EEV ROI y u    x x    E E V PDEM Y p y     E E V 1 Y p y   1 E E V y y      E E V 2 Y p y     E E V 3 Y p y   2 E E V y y    3 E E V y y            RP EEV EEV 1 , , N Y Y p y p y   , Y t X
Among the four main steps in Fig. 1, Step (2) involves RP N runs of deterministic structural analyses and accounts for the majority of computational burden of the PDEM. To alleviate this, the AK-PDEM was proposed in [START_REF] Zhou | A new active-learning function for adaptive Polynomial-Chaos Kriging probability density evolution method[END_REF]. As the essential prerequisite of the AK-PDEM, the notation of region of interest (ROI) for the PDEM will be introduced in the next section.

Remark 1:

In comparison with those simulation methods, the PDEM involves two particular steps, that is, computing the assigned probabilities in Step (1) and solving the GDEEs in Step (3), as shown in Fig. 1. The samples in simulation methods are drawn from some specific statistical distributions and techniques, e.g., the joint PDF in the MCS or the Markov Chain Monte Carlo (MCMC) in the SuS. By contrast, the PDEM partitions the whole probability space into a series of mutually exclusive and collectively exhaustive subdomains, i.e., the Voronoi cells in Fig. 1; then, the representative points RP actually aim to characterize the probabilistic information associated with their corresponding Voronoi cells and are equipped with the assigned probabilities RP . In this regard, the GDEE can be discretized based on the RP accordingly; see Eqs. ( 12) and ( 13). Hence, the RP are endowed with more probabilistic information than those statistical samples in simulation methods.

The region of interest (ROI) for the PDEM

In Fig. 1, the trajectories of three typical representative points among the RP , i.e., the

  1 x ,   2 x and   3 x ,
are colored in blue, cyan and green, respectively. For each  

RP j  x , the partial PDF     EEV j Y py is centered at the vertical axis of   EEV j yy 
and decays quickly with the distance to that axis; that is, the specific value of   EEV j y dominates the main body of     EEV j Y py . Hence, according to the locations of different representative points, the whole parameter space can be divided as follows. (i) The first sub-region is covered by these representative points whose EEVs are greater than the threshold thr u , e.g., the blue point   

    ROI EEV ROI yu    xx  ( 18 
)
where ROI u is the boundary of the ROI (magenta line in Fig. 1). According to Eqs. ( 17) and ( 18), the ROI u can be quantitatively determined by the following expression

          RP RP ROI RP 11 ROI 1 NN j j j ff jj N j f j PP P        1 x  (19) 
where (Eq. ( 7)) and

  ROI Ω 1 x is
    RP , 1, , j f P j N 
(Eq. ( 17)) are gained from the PDEM. Hence, the value of ROI u is only a byproduct of the standard PDEM and is totally unknown a priori.

Remark 2:

As shown in Fig. 1, the ROI defines the sub-region in which the representative points make critical contributions to the failure probability; hence, it is an inherent property of the PDEM. Besides, as shown in Algorithm B1, the determination of ROI u depends on the set of representative points generated by the PDEM.

Remark 3:

The similarities and differences between the notation of the ROI for the PDEM and the IS are stated as follows. In the IS, the

f P is reformulated as [6]                   F F F X f pp P p d d            1 1 1 X XX X xX x x x x x x X xX     (20) 
where

  F 1 x 
is the indicator function of the failure domain, which equals 1 if

F  x  , otherwise 0;    X is the d-dimensional importance distribution;
    denotes the expectation operator with respect to the  . Then, the f P in Eq. ( 20) can be estimated by [START_REF] Tabandeh | A review and assessment of importance sampling methods for reliability analysis[END_REF] 

             IS IS IS 11 IS 1 ˆF j NN jj ff j jj p PP N     1 X x x x  ( 21 
)
where the samples

      IS 1 IS ,, N  xx of size IS N are drawn from the  ;               IS 1 F j jj f j p P N   1 X x x x  denotes the failure probability raised by the   IS IS , 1, , j jN  x
. When the MPP is obtained from the FORM, a fair choice of    X is the standard normal distribution centered at that MPP [6]. Similar to the PDEM in Eq. ( 17), the IS ˆf P in Eq. ( 21) is also the sum of   IS , 1, ,

j f P j N 
. However, only those samples in the failure domain

F  has non-zero value of   j f P in Eq. (21). Further, for each   j F  x
 , the   j f P has different value and depends on the location of the   j x , but is unrelated to the specific value of the response   EEV j y . By contrast, Eqs. ( 17), (18) and [START_REF] Zhang | An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation[END_REF] 

The existing AK-PDEM and its drawbacks

As stated in Section 2.2, the representative points in the ROI make critical contributions to the failure probability computed by the PDEM. Hence, the basic idea of the AK-PDEM is to iteratively refine the Kriging accuracy in the ROI, so as to ensure the accuracy of the estimated failure probability. Since the better Kriging accuracy is gained in the regions near the training samples, the AK-PDEM utilizes the learning function PIE to adaptively add the representative points within the ROI to their experimental designs until an appropriate convergence criterion is satisfied. For brevity, the Kriging theory is introduced in Appendix C, and the flowchart of the AK-PDEM is given as follows.

Algorithm 2:

(1) Partition of probability space. Generate the representative point set

      RP 1 RP ,, N  xx
and compute the assigned probabilities

      RP 1 RP agn agn ,, N pp 
via the GF discrepancy-based strategy. The RP is taken as the candidate pool CP in the subsequent process.

(2) Initialization. Generate the initial experimental design

      0 1 ,, N  xx
via the Latin hypercube sampling (LHS) [START_REF] Park | Optimal Latin-hypercube designs for computer experiments[END_REF]; then, evaluate the computational model on the to gain

        EEV RP , 1, , jj y j N    x , together forming   ,  ; 0 N is taken as   max 10, 1 d  .
( [START_REF] Zhou | Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method[END_REF] and the PIE is expressed as [START_REF] Zhou | A new active-learning function for adaptive Polynomial-Chaos Kriging probability density evolution method[END_REF]  12) and ( 13).

                       EEV EEV
(9) Computation of failure probability. The ˆf P is obtained based on

      RP 1 ˆ,, N ff PP
via Eq. ( 17).

According to the parametric study in [START_REF] Zhou | A new active-learning function for adaptive Polynomial-Chaos Kriging probability density evolution method[END_REF], it is desirable to specify    

1 y   xx and 2 PIE 10   
, which enables the AK-PDEM (PIE) to provide a comparable estimate of failure probability to the standard PDEM.

In Algorithm 2, Step [START_REF] Li | Stochastic Dynamics of Structures[END_REF] shows that the sample size of representative points RP needs to be prescribed empirically in the existing AK-PDEM. This means that, although a Kriging with sufficient accuracy can be gained by the PIE, the inadequate size of RP may give rise to the resultant ˆf P deviating from the true one. Hence, a sequential PDEM that allows enriching sequentially the representative points is needed, serving as the outer loop of the existing AK-PDEM. This will be elucidated in Section 3.

The proposed AK-PDEMi

Section 3.1 outlines the sequential PDEM. Then, according to the sequential PDEM, a failure-informed enrichment algorithm is built in Section 3.2 to sequentially enrich the representative points in the outer loop. On this basis, the original AK-PDEM is improved by adding this outer loop. This is called the AK-PDEMi, and its numerical flowchart is presented in Section 3.3.

Sequential PDEM

As stated in Algorithm A1, the GF discrepancy-based strategy is employed to generate representative points in the standard PDEM, which involves both the iso-probabilistic transformation of Sobol sequence in the unit hypercube and the point set rearrangement, so as to minimize the GF-discrepancy of the point set (i.e., better uniformity). Clearly, the sequential PDEM still needs to follow this strategy.

The basic idea of the sequential PDEM is to enrich an initial representative point set RP of size RP N with another new representative point set

      E, 1 E, ,, k N k  xx of size E,k N , that is, RP RP E,k  and RP RP E,k N N N , 1, 2, k 
. During this process, the updated RP repartitions the whole probability space and the assigned probabilities RP are recomputed by Eq. [START_REF] Zhou | Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis[END_REF]. Then, the failure probability is recalculated by solving the increased number of GDEEs. This sequential process continues until a desired convergence criterion is fulfilled.

For illustration, Fig. 2 shows a toy example of a bivariate function To avoid this, the sub-region covered by the enriched representative points need to be extended to some degree, and this is called the region of enrichment (ROE) such that

  22 1 2 1 2 , Y X X X X    ,
    ROE EEV ROE yu    xx  ( 25 
)
where Hence, Scenario-2 is chosen in the sequential PDEM.

As shown in Figs. 2 (j-l), the implementation of Scenario-2 is based on the true value of ROI u (further ROE u ); whereas, the true value of ROI u is a byproduct of the standard PDEM and totally unknown a priori. Moreover, the process of selecting the ROE E from the E via Eq. ( 25) entails E N runs of computational model evaluations. This implies that, in comparison with the enrichment in the whole probability space (Figs. 2(d-f)), Scenario-2 actually does not reduce the number of computational model evaluations at all. These two issues will be addressed when the enrichment scheme of Scenario-2 is implemented in the outer loop of the AK-PDEM, and are stated in the next section.

Remark 4:

The separate utilities of the ROE and the ROI are elucidated as follows. The ROI defines the subregion where the representative points make critical contributions to the failure probability (Section 2.2), thereby the inner loop tries to adaptively refine the Kriging accuracy in the ROI via the learning function PIE, so as to alleviate the Kriging-induced error in the estimated failure probability. By contrast, Eqs. ( 25) and [START_REF] Basudhar | An improved adaptive sampling scheme for the construction of explicit boundaries[END_REF] show that the range of the ROE is slightly greater than that of the ROI, and the extra margin between the ROE u and the ROI u aims to guarantee that, in the range of the ROI, both the magnitude of the assigned probabilities and the partial PDF curves of the representative points in Figs. 2(j-l) are consistent with those of the representative points enriched in the whole probability space (Figs. 2(d-f)). In essence, the notation of the ROE aims to ensure that the representative points located in the ROI still follows the GF discrepancy-based criterion, so as to reduce the PDEM-associated discretization error.

Failure-informed enrichment algorithm

When the enrichment scheme of Scenario-2 is implemented in the outer loop of the AK-PDEM, the sequential enrichment in the ROE and the adaptive refinement of Kriging model are complementary. Specifically, when a Kriging model K ˆ is trained at the end of the existing AK-PDEM, both the RP ˆ and the As stated in Section 1, the PDEM is not equipped with the COV-like matric; hence, the outer-loop convergence criterion is defined based on the stabilization of the estimated failure probabilities, that is,

      11 ˆf j j j f f f P P P P    (27) 
within 2 successive loops, where   ˆj f P and   1 ˆj f P  denote the failure probability computed at the j-th and (j-1)-th outer loop, respectively; the tolerance ˆf P  is taken as 0.5% here.

Since this enrichment process entails the valuable failure-associated information provided by the Kriging model in the previous inner loop, this is called the failure-informed enrichment scheme. As stated in Section 3.1, the generation of the enriched representative points by the failure-informed enrichment scheme still needs to follow the GF discrepancy-based criterion (Appendix A). Hence, both the iso-probabilistic transformation of Sobol sequence in the unit hypercube (Eq. (A4)) and the point set rearrangement (Eq. (A5)) are naturally involved in the failure-informed enrichment scheme accordingly. The corresponding flowchart is provided in Algorithm 3. 

      0 1 0 ,, N  uu
from the Sobol sequence in the unit hypercube.

6:

Convert the 0 to the

      0 1 0 ,, N  xx
via the isoprobabilistic transformation in Eq. (A4).

7:

Evaluate the K ˆ on the 0 , yielding

      0 1 0 EEV EEV ˆˆ,, N yy  .

8:

According to the 0 ˆ, select the points in the ROE, i.e., the 1 of size 1 N , from the 0 . 9:

If 27) ensures that at least 3 loops will be performed in the initial stage of the AK-PDEMi. Hence, despite a poor Kriging may be initially calibrated, the outer and inner loops continue and the Kriging accuracy in the range of the ROE will be gradually improved by continuously adding new training samples to the experimental designs. Obviously, these two treatments, i.e., fulfilling Eq. ( 27) within 2 consecutive loops and specifying a relatively minor tolerance ˆf P  , attempt to avoid the undesired premature termination.

Remark 6:

The inner-loop convergence criterion in Eq. ( 24) aims to minimize the Kriging-induced error as much as possible, while the outer-loop convergence criterion in Eq. ( 27) pursues reducing the PDEM-associated discretization error. With respect to the inner-loop convergence criteria, three basic types are available in the existing literature, i.e., the ones based on learning function values, the ones based on the confidence bound of the estimated failure probability, and the ones based on the stabilization of failure probability estimates, as stated in Section 1. The stopping condition in Eq. ( 24) is defined based on the learning function PIE values and was shown to provide a desired performance in previous study [START_REF] Zhou | A new active-learning function for adaptive Polynomial-Chaos Kriging probability density evolution method[END_REF]. With respect to the outer-loop convergence criteria, the convergence of simulation methods is generally assessed according to the COV of failure e.g., ĈOV 5% f P 

; on the contrary, the PDEM is not equipped with the COV-like metric. In view of this, the convergence criterion (Eq. ( 27)) associated with the stabilization of failure probability estimates is employed here.

Note that this convergence criterion reflects the variation of failure probabilities within 2 consecutive loops, rather than 2 iterative steps of the inner loop. Hence, this aims to measure the influence of the sequential generation of new representative points by the outer loop on the failure probability, and it is necessary to distinguish this outerloop convergence criterion from those inner-loop stopping condition associated with the stabilization of failure probability estimates in the existing literature. Clearly, Eqs. ( 24) and ( 27) together attempt to ensure the convergence of the AK-PDEMi.

Numerical procedure of the proposed AK-PDEMi

When the failure-informed enrichment scheme in Section 3.2 is added into the existing AK-PDEM in Section 2.3, serving as the outer loop, the outer and inner loops are complementary and proceed sequentially until both of their convergence criteria are satisfied. This is called the AK-PDEMi. The corresponding flowchart is presented in Fig. 3, with the main steps given as follows.

Algorithm 4:

(1) The partition of probability space. Generate the representative point set RP and compute its assigned probabilities RP using the GF discrepancy-based strategy; see Appendix A. The RP is taken as the candidate pool CP .

(2) Initialization. Generate the initial experimental design (4) Learning function. Select the new x from the current CP via the PIE; see Eq. ( 22).

(5) The inner-loop convergence criterion. If the PIE-related stopping condition in Eq. ( 24) is not satisfied, go to Step [START_REF] Tabandeh | A review and assessment of importance sampling methods for reliability analysis[END_REF], otherwise, skip to Step [START_REF] Au | Engineering Risk Assessment with Subset Simulation[END_REF].

( 12) and ( 13).

(9) Computation of failure probability.

The f P is computed based on       RP 1 ˆ,, N ff PP
via Eq. ( 17).

(10) The outer-loop convergence criterion. If Eq. ( 27) is not satisfied, continue to Step [START_REF] Li | The principle of preservation of probability and the generalized density evolution equation[END_REF], otherwise, skip to

Step [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF]. . Then, the assigned probabilities RP of the updated RP are recomputed via Eq. ( 10); finally, return to Step (3). ( 14) Termination of the outer loop. The ˆf P at the current loop is taken as the final result of the AK-PDEMi.

Fig. 3 Flowchart of the proposed AK-PDEMi

Remark 7: In comparison with the existing AK-PDEM that only partitions the probability space at the first step (green blocks in Fig. 3), the AK-PDEMi enables to sequentially repartition the probability space based on the additional representative points generated by the failure-informed enrichment scheme in each outer loop (blue blocks in Fig. 3). Since most of the enriched representative points are expected to be located in the ROE, fine partitions are made in the range of the ROI, thereby the PDEM-associated discretization error is expected to be reduced accordingly. Hence, the AK-PDEMi not only reduces the Kriging-induced error, but also alleviates the PDEM-associated discretization error.

Illustrating examples

Three numerical examples are studied to show the efficacy of the proposed AK-PDEMi. The crude MCS is performed to provide the reference value MCS ˆf P . Comprehensive comparisons are made between the proposed AK-PDEMi and other existing reliability analysis algorithms, including the FORM, the IS, the SuS, the AK-MCS, the APCK-IS, the APCK-SuS, the standard PDEM and the existing AK-PDEM.

Start

(2) Initi alization. Generate the initial experimental design .

(5) Inner-loop convergence criterion (Eq. ( 24)) is met ? 

Substitute both and into

Algorithm B1, yielding the ; then, the is gained from Eq . ( 26). 

End

In the IS, the MPP is obtained from the result of the FORM, then, the importance distribution takes the standard normal distribution centered at the MPP [START_REF] Tabandeh | A review and assessment of importance sampling methods for reliability analysis[END_REF]. In the SuS, the conditional probability is 0.1 and the sample size of each subset is taken as 2000. In the AK-MCS, the U learning function is employed, and the stopping condition is

defined such that   min 2 U  x x
. In both the APCK-IS and the APCK-SuS, the Polynomial Chaos-Kriging (PCK) model [START_REF] Schöbi | Rare Event Estimation Using Polynomial-Chaos Kriging[END_REF] and the U learning function are adopted; the stopping condition is defined in terms of the bound of the estimated failure probability in 2 successive iterations, with the tolerance being -2 1 10  [START_REF] Moustapha | Active learning for structural reliability: Survey, general framework and benchmark[END_REF]; the sample size of each subset in the SuS is taken as 5 10 . For more details, the reader is referred to [START_REF] Moustapha | Active learning for structural reliability: Survey, general framework and benchmark[END_REF]. In the standard PDEM, the sample size of representative points is taken as 2000, exactly equal to the initial representative point size of the AK-PDEMi; the AK-PDEM corresponds exactly to the first run of the AK process in the AK-PDEMi, which is denoted as the 0-th loop hereafter. Moreover, the maximum number of computational model evaluations for these active learning-based algorithms is set as 500.

The simulation methods and active learning-based methods are replicated 10 times to consider their statistical uncertainties; then, the median, the 25-th and the 75-th quantiles, denoted as 25 q and 75 q , of the 10 replications are provided. The accuracy of different reliability analysis algorithms is measured by the relative error against the

MCS f P , that is, MCS MCS ˆˆˆˆ1 00% f f f f P P P P    
; the efficiency of various reliability methods is quantified by the total number, call N , of calls to computational model.

A series system with four branches

The f P for a series system with four branches is defined as [START_REF] Echard | AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF] 

               2 1 2 1 2 2 1 2 1 2 21 12 0.1 2 0.1 2 Pr 2 2 f X X X X a X X X X a P X X b X X b                       (28)
where 1

X and 2 X are standard normal variables, respectively; the constants a and b are taken as 3.5 and 7.5, respectively. Then, Eq. ( 28) is equivalent to 

  EEV EEV 2 Pr 2 b fY b P Y p y dy         , with the EEV Y expressed as         2 1 2 1 2 2 1 2 1 2 EEV 21 12 0.1 2 2 0.1 2 2 max X X X X b a X X X X b a Y XX XX                      (29) 

A 20-dimensional nonlinear function

The second example considers a 20-dimensional nonlinear function such that [START_REF] Li | Deep learning for high-dimensional reliability analysis[END_REF]     

20 22 1 2 1 1 1 4 1 cos 5 20 k k Y X X X X        (30) 
where

  1 20
,, XX  X is a vector of normal random variables, and each i X has the mean of 1 and the standard deviation of 0.2. Then, the f P is defined as

  thr Pr f P Y u  ( 31 
)
where the threshold thr u is set as 27.5. Obviously, the EEV EEV Y is equal to the Y itself. 2 lists the results of different reliability analysis algorithms for Example 2. The FORM still performs poorly. Both the IS and the SuS gain relatively fair estimates of failure probability, but their computational costs are too high. On the contrary, the AK-MCS, the APCK-IS and the APCK-SuS reduce remarkably the number of computational model evaluations, while gaining fair estimates of failure probability, especially in the APCK-SuS.

In comparison with the AK-PDEM, the ˆf P provided by the AK-PDEMi is more consistent with the MCS ˆf P . Moreover, in order to testify the efficacy of the AK-PDEMi in the case of smaller failure probabilities, the threshold thr u in Eq. ( 31) is reset as 28.7, and the reference value MCS ˆf P provided by the crude MCS with . If the target failure probability f P is much smaller, the magnitude of the assigned probabilities of representative points in the ROI also needs to be decreased to a comparable level. To reduce the assigned probabilities to such a small level, a large number of representative points are needed to be enriched to the ROE. Accordingly, the number of training samples will be increased remarkably. Besides, as shown in Fig. 6(f), the outer-loop convergence criterion may give rise to the premature termination of the AK-PDEMi. Hence, a more appropriate convergence criterion for terminating the failure-informed enrichment scheme may be needed in the case of much smaller failure probabilities.

Seismic reliability analysis of a shear-frame structure

The third example addresses the seismic reliability analysis of a 10-story shear-frame structure, as sketched in 3. The height of each floor is taken as 3.7 m.

The nonlinear inter-story hysteretic behavior is described by the extended Bouc-Wen model [START_REF] Ma | Parameter analysis of the differential model of hysteresis[END_REF][START_REF] Li | Nonlinear stochastic optimal control strategy of hysteretic structures[END_REF], and the 13 Pr 0, 20s , ,

fj j P t U t u           X ( 32 
) 1 M 2 M 3 M 8 M 9 M 1 0 M 1 K 2 K 3 K 9 K 1 0 K   g u t where   , j
Ut X , j = 1, …, 10, denotes the inter-story drift of the j-th story; thr u is the threshold and is assumed as 74 mm. Then, Eq. ( 32) is equivalent to in the physical space. The assigned probabilities RP,0 of the 0 are numerically computed via Eq. [START_REF] Zhou | Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis[END_REF].

Then, the rearrangement of point set is conducted based on both the 0 and the RP,0 such that [START_REF] Chen | A GF-discrepancy for point selection in stochastic seismic response analysis of structures with uncertain parameters[END_REF] ,, N  xx, and its assigned probabilities RP are then recomputed by Eq. [START_REF] Zhou | Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis[END_REF]. In this regard, both the representative point set RP and its assigned probabilities RP are obtained for the PDEM. 

           

Appendix C: Kriging model

The Kriging model K ˆ interprets the computational model in Eq. ( 7) as a realization of Gaussian process such that [START_REF] Lataniotis | The Gaussian Process Modeling Module in UQLab[END_REF]       Here, the Matern-3/2 correlation function [37] is adopted such that  

, ; 1 3 exp 3  depend on the  through the matrix R . Hence, the  needs to firstly calibrated by the maximum likelihood method [37], that is,

dd k k k k kk kk x x x x R                                        xx ( C2 
        1 2 ˆârg min det N      R     (C5)
Finally, the Kriging predictor at an unknown point x follows normal distribution, i.e.,       2 ˆÊEV ˆ, yy y  xx , with the prediction mean and variance given by [37]       

2 )

 2 Voronoi cell of   j x and can be numerically calculated via the MCS. (Computational model analyses. Evaluate the computational model (Eq. (7)) on each  

Fig. 1

 1 Fig.1 Schematic of the four-step flowchart of the PDEM

1 x in Fig. 1 . 2 x 2 Y 3 x in Fig. 1 . 3 Y

 1122313 The main body of     ) The second sub-region is covered by these representative points whose EEVs are slightly smaller than the thr u , e.g., the cyan point   in Fig.1. The main body of     EEV py lies partially in the failure domain and   than 0. (iii) The third sub-region is covered by these representative points whose EEVs are far smaller than the thr u , e.g., the green point  The main body of     EEV py is far away from the failure domain and   failure probabilities incurred by these representative points in the first and second sub-regions account for the vast majority of the PDEM f P . These two sub-regions are collectively called the region of interest (ROI) for the PDEM and are expressed as

  indicate that, although those representative points locating outside the ROI ROI  have negligible values of   j f P , they theoretically has non-zero value of   j f P . Besides, for each   ROI j  x  , the magnitude of   j f P relies on the specific value of the response   EEV j y ; see Fig.

  1

  .

where both 1 X and 2 XFig. 2 (NFig. 2

 1222 Fig. 2(d) shows that the enriched representative points E are scattered in the whole probability space.

  treatment is called Scenario-2, and the sample distribution of the updated RP in Scenario-2 is shown in Fig. 2(j). Thanks to these extra representative points located between the ROE u and the ROI u , the Voronoi cells of representative points in the ROI have approximate sizes. As a result, similar values of the assigned probabilities in the ROI are shown in Fig. 2(k). Then, the main body of     EEV j Y py in the ROI is similar to each other, and the   EEV Y py agrees well with the histogram of MCS near the vertical axis of thr yu  , see Fig. 2(l). Thanks to the enrichment of representative points in the ROE, Scenario-2 makes fine partitions of the ROI and yields consistent failure probability to the treatment of enrichment in the whole probability space.

Algorithm 3 : 4 :

 34 Generation of new representative points in the failure-informed enrichment scheme 1: Input: The ROE û , the Kriging K ˆ and the RP in the previous inner loop. Iterative algorithm: In step k = 1

3 )

 3 Calibration. Train the Kriging model K ˆ based on the current ; see Appendix C.

( 11 )( 12 )( 13 )

 111213 Determination of both the ROI ûand the ROE û . Substitute both the RP ˆ in Step[START_REF] Au | Engineering Risk Assessment with Subset Simulation[END_REF] and the  into Algorithm B1, resulting in ROI û ; then, the ROE û is calculated via Eq.[START_REF] Basudhar | An improved adaptive sampling scheme for the construction of explicit boundaries[END_REF]. Failure-informed enrichment process. Generate another new set of representative points The repartition of probability space. Enrich both the RP and the CP with the RP , that is,

4 )( 7 ) 3 ) 9 )( 1 ) 11 )

 4739111 Learning function. Select a new training sample from the current via the PIE; see Eq. (22). Terminati on of inner loop. Cali brati on. Train the Kriging model accord ing to the current training dataset ; see Appendix C. Computation of failure probability. The is evaluated by Eq . (17). ˆf P Partition of probability space. Determinati on of both the and the .

Fig. 4 Fig. 4

 44 Fig.4shows the performance of the proposed AK-PDEMi for Example 1, and a total of loop 7N  outer and inner loops are involved. In Fig.4(a), the enriched representative points generated in each outer loop are plotted as the colored markers, which are generally located in the range of the ROE. As a result, Voronoi cells of these representative points in the ROI are reduced rapidly, and their assigned probabilities in the ROI are far smaller than those in other regions; see Fig.4(b). Then, Fig.4(c) shows the convergence performance of the inner loops of the AK-PDEMi. As given in Eq. (24), the inner loop is converged when

Fig. 5 Fig. 5

 55 Fig. 5 shows the performance of the AK-PDEMi for Example 2, and a total of loop 10 N  outer and inner loops are needed. As shown in Fig. 5(a), the PIE curve consists of 10 descending branches, and the EEVs of new training samples are grossly greater than the ROI u , that is, locating inside the ROI. As a result, a good accordance between the Kriging predictions RP ˆ and the true counterparts RP is achieved in the ROI, see Fig. 5(b). Thanks to the failure-informed enrichment scheme in the outer loop, the assigned probabilities of the representative points in the ROI are reduced significantly; see Fig. 5(c). As the outer and inner loops proceed sequentially, the

Fig. 6 .

 6 Fig. 6 shows the performance of the AK-PDEMi, which involves loop 10 N  outer and inner loops. A good accordance between the RP ˆ and the RP in the ROI is observed in Fig. 6(b). The magnitude of the assigned probabilities of representative points in the ROI is reduced in Fig. 6(c), owing to the failure-informed enrichment scheme. As both the outer and inner loops proceed, the   EEV Y py provided by the AK-PDEMi gradually converges to the histogram of the crude MCS; see Fig. 6(d). Finally, Fig. 6(f) shows that the ˆf P in the last loop is equal to 5 2.296 10   , with the ˆf P  being 5.76%. Hence, the AK-PDEMi still achieves relatively fair results in the failure probability level of Performance of the proposed AK-PDEMi in the case of smaller failure probability When dealing with even smaller failure probabilities, e.g., AK-PDEMi may become more challenging, and the reasons are stated as follows. Eq. (16) shows that the integral of the partial PDF     EEV j Y py over the whole domain is equal to the assigned probability   assign j p

Fig. 6 ( 3

 63 Fig. 6(a). The lumped masses of each floor are valued as: 1 m = 3.487, 2 m = 3.225, 3 m = 2.887, 4 m = 2.667,



  involved parameters are valued by: BW  = 0.04, BW A = 1, BW n = 1, BW  = 320, BW  = 150, = 0.99. Then, a typical hysteretic curve of the first floor is shown in Fig. 6(b).

1 s 7 .P

 17 takes the El-Centro ground motion (N-S component), of which the peak ground acceleration is scaled to 3.45 2 ms (Fig. 6(c)). Rayleigh damping ab  C M K is adopted, where M and K denotes the mass and initial stiffness matrices, respectively; then, the two coefficients, a and b, are taken as 0.2904  and 0.0066 s, respectively. Hence, a total of 10 random variables are involved in the dynamic system, i.e., hysteretic curve of first floor (c) the scaled El-Centro accelerogram Fig. Illustration of the shear-frame structure The system reliability of this structure is of concern and the f

Fig. 8 Fig. 8 .Fx

 88 Fig. 8 presents the performance of the AK-PDEMi for Example 3, and a total of loop 11 N  outer and inner loops are involved. As shown in Fig. 8(a), there are 11 descending branches in the PIE curve and most of new training samples are located in the ROI. Consequently, the Kriging predictions RP ˆ are in a good accordance with the RP in the ROI; see Fig. 8(b). Due to the enrichment of representative points in the ROE, the assigned probabilities of representative points in the ROI are smaller than those in other regions, as shown in Fig. 8(c). The convergence performance of the

  reduce the GF-discrepancy of the 0 . The rearranged point set is denoted by

2 

 2 of Kriging model and the ordinary Kriging is utilized, that is,   1  fx and  is unknown; is the process variance;   Z x is a zero-mean, unit-variance Gaussian process represented by a correlation function   , R  xx .

1 

 1 is vector filled with 1 of length N ; R is the correlation matrix with elements   …, N. Eqs. (C3) and (C4) show that both the  and the2 

  

  the indicator function for the ROI  , and equals 1 if

							ROI x  , otherwise 0; ROI  	denotes a minor
	tolerance, say	5 10  . According to Eq. (19), the iterative algorithm for determining the ROI u	is provided in
	Appendix B. Then, Algorithm B1 implies that the value of ROI u	is only available when both
	RP	  EEV j y   , j	1, ,	N	RP	

  Among the E , the enriched representative points in the ROE are denoted by

	Based on the authors' experience, it is feasible to specify 	ROI u		ROE u	 	thr u		ROI u			0.5	, yielding
			u	ROE		1.5		u	ROI		0.5		u	thr	(26)
														ROE E	  1  xx  ,,	  ROE E N		of
	size ROE E N ; then, the initial representative point set RP is enriched with the ROE E	, i.e.,	RP		RP	ROE E	, and
			ROE										
	RP	RP	E										

ROE u is the boundary of the ROE. Obviously, the range of the ROE  varies with the problems under consideration. Hence, the interval ROI ROE uu  is assumed to be proportional to the interval thr ROI uu  herein.

  Based on the authors' experience, the sample size of initial representative point set RP is taken as 2000, and the number of the enriched representative points RP in each loop is taken as 10.

	of the ROI u , i.e., ROI û , can be obtained readily. Moreover, since the	K ˆ serves as a cheap proxy of the actual
	computational model	, the process of selecting the representative points in the ROE ROE E	from the E can
	be conducted based on the Kriging	K ˆ, and this treatment incurs no extra computational model evaluations.
	However, these two treatments may incur the following potential risk. If the Kriging	K ˆ is not sufficiently
	accurate, the value of ROI û	(further ROE û ) may not be accurate enough. In this case, the resultant ROE E	may be
	not totally located in the ROE. Whereas, after several runs of the outer-loop enrichment in the ROE and the inner-
	loop adaptive refinement of Kriging model, the Kriging accuracy in the ROI is expected to be improved, and the
	ROI û , as well as the ROE û , gradually coincides with the true one. In this regard, the Kriging-assisted enrichment
	process becomes gradually consistent with Scenario-2. For clarity, the representative points ROE E	in the ROE are
	reformulated as the RP hereinafter.	
						  ff   RP 1 ˆ,, N PP		can be
	obtained from Steps (7) and (8) in Algorithm 2, respectively. Then, substitute them into Algorithm B1, an estimate

  According to Eq. (A5), conduct the rearrangement of 1 , yielding the rearranged point set 2 . In the failure-informed enrichment scheme, the Kriging K ˆ is employed to provide the ROI û based on Algorithm B1, and the trial-and-error approach in Algorithm B1 ensures that the value of the ROI û is equal to or less than the threshold thr u . If an ill-calibrated Kriging is produced in the initial stage, the ROI

	1 NN  Break. else 0 N N N target , then 0 inc  , and End Remark 5:   EEV ROI ŷu  x and, further, the ROE 1 kk  14: 15: Return: The final enriched representative point set RP 10: 11: 12: 13: ROI   ROE  x  different from the true ones. Whereas, the outer-loop stopping condition in Eq. (2  .  EEV ROE ŷu  estimated by this poor Kriging are

Table 1

 1 lists the results of different reliability analysis algorithms for Example 1. Both the FORM and the IS fail to produce fair estimates of failure probability, due to the existence of multiple MPPs. The median of the failure probability estimates provided by the SuS also deviates from the reference value MCS ˆf P . Similar to the IS, all the 10 replicates of the APCK-IS only identify one limit state, giving rise to a poor estimate of failure probability. Among the 10 repeated runs of the AK-MCS and the APCK-SuS, the number of limit states identified by them varies from 1 to 4, and the median of the failure probability estimates deviates from the MCS ˆf P . The AK-PDEM provides a comparable estimate of failure probability to the standard PDEM, but diverges from the MCS ˆf P .By comparison, the ˆf P offered by the AK-PDEMi becomes consistent with the crude MCS with fair efficiency.

Table 1 .

 1 Comparisons of different reliability algorithms in Example 1

	Method	Median	N	call [ 25 q , 75 q ]	ˆf P ( Median	4 10   [ 25 q , 75 ) q ]	ˆf  (%) P
	MCS	7 5 10 		-	4.704	-	-
	FORM	12		-	2.326	-	50.54
	IS	4012	[4012, 4012] 1.454 [1.403, 1.490]	69.09
	SuS	6919	[6913, 6930] 3.208 [2.820, 4.820]	31.81
	AK-MCS	44.5		[43, 57]	3.040 [2.685, 4.175]	35.37
	APCK-IS	50.5		[41, 57]	0.896 [0.872, 1.428]	80.95
	APCK-SuS	153.5		[62, 226]	3.056 [2.106, 3.773]	35.03
	PDEM	2000		-	6.001	-	27.58
	AK-PDEM	29		[28, 29.5]	6.001 [6.001, 6.001]	27.58
	AK-PDEMi	60.5		[59, 64.5]	4.565 [4.489, 4.598]	2.95

Table 2 .

 2 Comparisons of different methods in Example 2

	Method	Median	N	call [ 25 q , 75 q ]	ˆf P ( Median	4 10   [ 25 q , 75 ) q ]	ˆf  (%) P
	MCS	7 5 10 		-	2.024	-	-
	FORM	816		-	0.465	-	77.04
	IS	4816	[4816, 6816]	1.802 [1.754, 1.823]	10.95

Table 3 .

 3 Initial inter-story stiffnesses (

1 :

 1 Input:

				  1 ,, N   RP ff PP, 	RP			  1 EEV yy EEV   RP ,, N		and the threshold thr u .
	2: Initialization:			
	3:	The increment inc uu 	thr 100	; the initial ROI uu 	thr	.
	4: Iterative algorithm: In step k = 1, 2, …,
	5:	If Eq. (19) is satisfied, then
	6:	Break.			
	7:	Else						
	8:	u	ROI	ROI  u	inc u	,	1 kk .
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Concluding remarks

An efficient reliability method called the AK-PDEMi was proposed. In the AK-PDEMi, a failure-informed enrichment scheme is devised to sequentially enrich the representative points with another new sets of representative points, and its convergence criterion is defined based on the stabilization of failure probability estimates. This scheme is featured by sequentially making fine partitions of the ROI, so as to reduce the PDEMassociated discretization error. Both the failure-informed enrichment scheme and the adaptive refinement of the Kriging are complementary and serve as the outer and inner loops of the AK-PDEMi, respectively. Then, the outer and inner loops proceed sequentially until both of their convergence criteria are satisfied. Comparisons are made between the AK-PDEMi and other conventional reliability analysis algorithms, including the FORM, the IS, the SuS, the AK-MCS, the APCK-IS, the APCK-SuS, the standard PDEM and the existing AK-PDEM. Some concluding remarks are given as follows.

(1) The existing AK-PDEM agrees well with the standard PDEM, but may yield unsatisfactory performance, due to the empirical setting of the sample size of representative points.

(2) In comparison with the existing AK-PDEM, the AK-PDEMi consists of two loops, i.e., the outer loop sequentially making fine partitions of the key sub-region in the ROI by enriching new representative points to the ROE, and the inner loop adaptively refining the Kriging accuracy in the ROI by placing training samples in such area. The two loops are complementary and enable to reduce both the PDEM-associated discretization error and the Kriging-incurred error.

(3) In comparison with other existing reliability methods, the AK-PDEMi has significant superiority in terms of both computational accuracy and efficiency.

It is admitted that how to further tackle with the case of much smaller failure probabilities using the AK-PDEMi still needs investigations, and a more pertinent convergence criterion for the outer loop of the AK-PDEMi is also needed to ensure the fair termination of the AK-PDEMi.

Appendix A: GF discrepancy-based strategy

Consider a representative point set

and its assigned probabilities

, the worst error raised by the PDEM satisfies the extended Koksma-Hlawka inequality

where   d denotes the same order of the magnitude of d , and d is the dimension of X ;  