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Abstract—Numerous techniques have been proposed to pro-
duce high precision blood flow or contrast-enhanced ultrasound
estimates from fast ultrasound sequences. Among them, robust
principal component analysis (RPCA)-based methods are known
as superior to most state-of-the-art techniques. In particular,
these techniques may include a deconvolution step which allows
for further improvement of the resolution of the estimated blood
flow images. However, they rely on many hyperparameters that
have to be manually adjusted to obtain the optimal solution. To
overcome this limitation, we propose a new deep unfolding neural
network based on the DRPCA iterative algorithm, which enables
the reconstruction of high-resolution and high-sensitivity blood
flow components. Compared to other state-of-the-art methods,
the proposed algorithm showed interesting performances, in
terms of PSNR and SSIM on simulation data.

Index Terms—Blind Deconvolution (BD), Blood Flow, Clut-
ter Separation, Robust Principal Component Analysis (RPCA),
Power Doppler, High Resolution

I. INTRODUCTION

In ultrafast ultrasound imaging and contrast-enhanced ultra-
sound imaging, the problem of reconstructing the blood flow
and removing clutter signals from the raw data has received
great interest from the community. For example, iterative
RPCA-based techniques consist in formulating a mathematical
model of the data and then finding a solution by optimizing the
problem related to this model [10], [13]. This allows the use of
regularizations, for example, blood sparsity or tissue low rank,
in order to leverage prior knowledge for an efficient blood
flow reconstruction. To further improve the reconstruction,
a deconvolution step was recently introduced in the RPCA
framework [1], [2]. This approach called deconvolved RPCA
(DPRCA) involves recovering the tissue reflectivity function
from the observed data using a measured or estimated point
spread function (PSF).

As mentioned above, all these methods are based on iterative
optimization algorithms to find the solution such as the alter-
nating direction method of multipliers (ADMM), Backward-
Forward, Douglas-Rachford, iterative shrinkage-thresholding
algorithm (ISTA), etc [10] [14] [15]. However, the clinical
applicability of these algorithms is limited due to the manual
tuning of the hyperparameters and the number of iterations
required to achieve the desired result. Alternatively, deep
convolutional neural networks (CNNs) have been applied
to ultrasound imaging and have shown higher performance
than the optimization methods [9]. However, these methods
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act as block-box engines which limits their interpretability.
To deal with all these issues, the unfolding (or unrolling)
approaches are increasingly used as they provide a framework
for expressing iterative algorithms as neural networks [4] - [8].
More precisely, each iteration step of an iterative algorithm is
converted into a single layer of a network, set of which forms
a deep CNN. Many unfolding algorithms have been proposed,
among which the CORONA algorithm based on an unfolding
of the ISTA, enables to efficiently separate the micro-bubbles
blood signals from the tissue signals [3].

In this work, we derive the DRPCA algorithm by inter-
preting the iterations of its ADMM steps as an unfolding
CNN that we call as DRPCANet in the sequel. However,
unlike CORONA [3], the PSF of the system is explicitly
included in the deep unfolding to achieve a high-resolution
flow estimation. The remainder of the paper is structured as
follows. After having recalled the DRPCA algorithm and its
multiple-step ADMM in Section II, we show how to unfold
this algorithm to build an unfolded CNN in Section III. Finally,
we compare the proposed approach with the CORONA and the
iterative DRPCA in Section V.

II. DRPCA ALGORITHM

A. RPCA model

The RPCA problem consists in recovering a low-rank matrix
and a sparse matrix from a noisy observation [11]. In our
case, we consider that the observation matrix corresponds to
the acquired ultrafast ultrasound (US) sequence, which we
denote S. The first step consists in rearranging the 3D ultrafast
US acquisition into a 2D matrix, called Casorati matrix. This
matrix corresponds to a spatio-temporal representation of the
acquisition, in which each column is a vectorized frame of the
US sequence. Denoting B the sparse matrix, T the low-rank
matrix and N the noise matrix associated with the observation,
the observation model is:

S = B + T +N. (1)

In the reconstruction of blood flow problem, it is assumed
that the tissue component is motionless. Then, due to space-
time invariance, in its Casorati form, all the columns of the
tissue matrix are correlated. Therefore, the tissue matrix is
assumed to have a low rank and thus corresponds to T .
Regarding the blood, since the number of blood vessels is
much lower than that of tissues, the blood is assumed to be
sparse and as such, corresponds to the B matrix. Thus, the



solutions to the RPCA problem correspond to the tissue and
blood flow matrices [10], [11].

B. A new algorithm for the DRPCA model

To improve the resolution of the reconstructed blood flow,
we incorporated a convolution in the RPCA model [1], [2].
More precisely, we considered B = Hx where H denotes
the system PSF and x the high-resolution blood flow to be
estimated. For computational efficiency, H is assumed to be
block circulant with circulant blocks [16].

In [1], [2], we proposed a DRPCA algorithm to recover the
deconvolved high-resolution blood flow based on the above
model. However, this algorithm requires strong conditions for
its convergence. In this paper, we propose a new version of
the DRPCA algorithm which enables an easier unfolding later.
Before going into the details of this algorithm, we recall the
general ADMM framework [14].

Let f and g be convex, closed, and proper functions,
ADMM can be used to solve the following minimization
problem:

minimize f(x̂) + g(ẑ)

subject to Ax̂+Bẑ = c.
(2)

By minimizing the augmented Lagrangian:

L(x̂, ẑ, γ) =

f(x̂) + g(ẑ) +
ρ

2

∥∥∥∥Ax̂+Bẑ − c+
γ

ρ

∥∥∥∥2
2

+ cst .
(3)

Which general solution is:

x̂k+1 = argmin
x̂

f(x̂k) +
ρ

2

∥∥∥∥Ax̂k +Bẑk − c+
γk

ρ

∥∥∥∥2
2

, (4)

ẑk+1 = argmin
ẑ

g(ẑk) +
ρ

2

∥∥∥∥Ax̂k +Bẑk − c+
γk

ρ

∥∥∥∥2
2

, (5)

γk+1 = γk + (Ax̂k+1 +Bẑk+1 − c). (6)

To separate the high-resolution blood x and the tissue T
from S, we use ADMM to solve the following problem:

[x̃, T̃ ] = argmin
x,T

1

2
∥S −Hx− y∥2F + λ ∥x∥1 + µ ∥y∥∗

such that: x = Z, y = T,

(7)

where Z and y are auxiliary variables. λ, µ are two positive
hyperparameters balancing the trade-off between blood spar-
sity and tissue low rank. ∥ . ∥2F is the Frobenius norm, ∥ . ∥1
is the l1 norm, and ∥ . ∥∗ is the nuclear norm. The nuclear
norm corresponds to the l1 norm of the vector of singular
values of the considered matrix, thus it favors the appearance
of zero singular values in the matrix T , and by extension, it
favors a low rank. The l1 norm favors the sparsity of x.

In order to match (2) with our problem in (7) we define:

M1 =
[
H I

]
; M2 =

[
I 0

]
; M3 =

[
0 I

]
;

x̂ =

[
x
y

]
; ẑ =

[
Z
T

]
; γ =

[
γ1
γ2

]
;

Our equality constraint is x̂− ẑ = 0 and we can choose:

f(x̂) =
1

2
∥S −M1x̂∥2F ,

g(ẑ) = λ ∥M2ẑ∥1 + µ ∥M3ẑ∥∗ .

In this way, it is possible to separate the equations (4) to
(6) in x and T (or their associated intermediate variables Z
and y). And the solution of (7) is obtained by repeating the
following iterative step:

yk+1 = (1 + ρ)−1[S −Hxk + ρT k − γk
2 ], (8)

xk+1 = (HTH + ρI)−1[HT (S − yk) + ρZk − γk
1 ], (9)

T k+1 = SV Tµ
ρ
(yk+1 + γk

2/ρ),

Zk+1 = Softλ
ρ
(xk+1 + γk

1/ρ),

γk+1
1 = γk

1 + ρ(yk+1 − T k+1),

γk+1
2 = γk

2 + ρ(xk+1 − Zk+1),

where Softλ
µ
(x) is the soft-thresholding function and SV T

is the singular value thresholding function. The variable ρ
is a positive penalty parameter that has an influence on the
convergence speed, it is set equal to 1 in our case. In the
following, we denote by P1, P2 and P3, the three H dependent
terms in (8) and (9):

P1 = −H;

P2 = (HTH + ρI)−1;

P3 = (HTH + ρI)−1HT ;

We thus obtained the iterative solution of the new DRPCA
algorithm. The variables x̂, ẑ and γ are initialized as zero.
After N iterations, the estimated solution of (7) is [xN , TN ].

III. UNFOLDING DRPCA

The iterative solution is unfolded into a multiple-layer neu-
ral network where each layer corresponds to an iteration of the
DRPCA algorithm. To perform this conversion, we transform
the matrix multiplications by P1, P2 and P3 into convolutional
layers. Thus, in the unfolded algorithm, we replace P1, P2 and
P3 with 2D convolutional kernels. Their weights are learned
independently for each layer in a supervised manner. By doing
so, the neural network learns to perform the deconvolution of
the blood component without the knowledge of the PSF.



In addition, the regularization hyperparameters λ and µ are
converted into learnable parameters of the network, they are
also learned independently for each layer in a supervised man-
ner. The soft-thresholding and the singular value thresholding
operations are performed identically to the iterative DRPCA.
The rest of the unfolding is straightforward as only elementary
operations remain.

Thereby, we obtain a single layer derived from an iteration
of the DRPCA algorithm. The diagram of this layer is given in
Fig. 1. The overall neural network, referred to as DRPCANet,
is obtained by concatenating several of these layers.
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Fig. 1. Single Layer Diagram

DRPCANet was implemented in Python (PyTorch) using its
automatic differentiation framework for training. It consists
of 20 layers. We trained the network over 400 simulated
US sequences (see Section IV), 300 sequences were used
for training and 100 for performance assessment. The loss
function was a weighted sum of the mean squared errors
between the predicted [xN , TN ] elements and their ground
truth. DRPCANet was trained using the Adam optimizer for
100 epochs with a learning rate of 0.01 and a batch size
fixed equal to 25. The experiments were performed on a high
computation server with 32 GB RAM and 4 GTX-1080-TI
GPUs.

During the training, we initialize the sparsity parameter
λ as zero and the low-rank parameter µ equal to 5. The
actual thresholding values for the soft-thresholding operations
is σ(λ) = 1/(1 + exp(−λ)) which is the sigmoid of λ. We
use the sigmoid function because we observe that it increases
stability during training, especially when the hyperparameters
are badly initialized.

IV. SIMULATION DATA

In order to make a fair comparison with CORONA [3], we
used their code to generate the US image sequences with slight
changes to match our model. Compared to the original data,
we doubled the tissue amplitude, changed the size of the PSF
to be odd, and used only the real part of the data.

We can summarize the data simulation as follows. The
ground truth of the blood component is represented by contrast

agents (CAs) identified as bubbles. The number of contrast
agents, their initial positions and their trajectories are random.
The magnitude of the CAs are drawn from a normal distribu-
tion. The ground truth of the tissue is created from a mixture
of Gaussians. The result is then post-processed and filtered to
add a low motion. Finally, the sum of the tissue and CAs is
convolved by the PSF and a Gaussian noise is added with a
signal-to-noise ratio of 30dB.

We generated a total of 400 image-sequences of size
128×128 pixels and each composed of 50 frames. In Fig. 2 (a)
and Fig. 3 (a), we show the raw data. In the next image we
show the ground truth of the CAs (Fig. 2 (b) and Fig. 3 (b)).
Fig. 2 depicts the Bmode a single frame of the US sequence
while Fig. 3 shows the Power Doppler flow.

V. RESULTS

In this section, we provide reconstruction results for DR-
PCANet trained and tested on the simulated data. Fig. 2
and Fig. 3 present blood flow reconstruction results of the
different methods against the ground truth image. Respectively,
Fig. 2 (c) and Fig. 3 (c) are the CAs and Power Doppler
obtained with the state-of-the-art CORONA neural network,
Fig. 2 (d) and Fig. 3 (d) are the CAs and Power Doppler
obtained with the iterative DRPCA algorithm, Fig. 2 (e) and
Fig. 3 (e) are the CAs and Power Doppler obtained with
DRPCANet. The CORONA network performs worse than our
algorithms mainly because it does not perform deconvolution.
Nevertheless, CORONA manages to separate the CAs from
the tissue. As for DRPCA, both the iterative and the unfolded
version achieved very clean results.

We compare our approach quantitatively using peak signal-
to-noise ratio (PSNR) and multiscale structural similarity
(SSIM3) measurements on estimated CAs (Bubbles) in Tab. I.
One can see that the unfolded DRPCA network outperforms
the other algorithms by a large margin. As our approach
differentiates by learning the deconvolution, we also trained
CORONA on deconvolved data, but the results obtained were
worse than the initial ones.

TABLE I
PSNR AND SSIM COMPARISON FOR THE ESTIMATIONS OF FIG. 3.

CORONA [3] DRPCA [1] DRPCAnet (Ours)

PSNR (dB) 24.41 30.32 36.17

SSIM3 0.13 0.71 0.94

VI. CONCLUSION

Combining a model for the separation problem with a data-
driven approach leads to improved separation of blood and
tissue signals, together with noise reduction compared to pop-
ular optimization approaches. However, unlike CORONA, the
PSF of the system is explicitly included in our deep unfolding
process making the results more interpretable. Moreover, for
DRPCANet, up to twenty layers have proven to be sufficient
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(e) DRPCANet

Fig. 2. Bmodes of a single frame of the estimated sequences of the blood component.

20 40 60 80 100 120

20

40

60

80

100

120

-35

-30

-25

-20

-15

-10

-5

0

(a) US Data

20 40 60 80 100 120

20

40

60

80

100

120

-35

-30

-25

-20

-15

-10

-5

0

(b) Ground Truth

20 40 60 80 100 120

20

40

60

80

100

120

-35

-30

-25

-20

-15

-10

-5

0

(c) Corona

20 40 60 80 100 120

20

40

60

80

100

120

-35

-30

-25

-20

-15

-10

-5

0

(d) DRPCA ADMM

20 40 60 80 100 120

20

40

60

80

100

120

-35

-30

-25

-20

-15

-10

-5

0

(e) DRPCANet

Fig. 3. Power Doppler images of the estimated blood component from the simulated data.

whereas the iterative DRPCA method requires a hundred
iterations to achieve a similar result.
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