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Abstract. Focusing on non-ergodic macroscopic systems we reconsider the variances δO2 of time averages
O[x] of time-series x. The total variance δO2

tot = δO2
int + δO2

ext (direct average over all time-series) is
known to be the sum of an internal variance δO2

int (fluctuations within the meta-basins) and an external
variance δO2

ext (fluctuations between meta-basins). It is shown that whenever O[x] can be expressed as
a volume average of a local field Or the three variances can be written as volume averages of correlation
functions Ctot(r), Cint(r) and Cext(r) with Ctot(r) = Cint(r) + Cext(r). The dependences of the δO2 on
the sampling time ∆τ and the system volume V can thus be traced back to Cint(r) and Cext(r). Various
relations are illustrated using lattice spring models with spatially correlated spring constants.

1 Introduction

Let us consider a stochastic dynamical variable x(τ), like
certain density or stress fields averaged over the system
volume V , characterizing a large physical system as a
function of (continuous) time τ . Extending recent work
on stationary stochastic processes in non-ergodic macro-
scopic systems [1–4] we investigate here quite generally the
variances δO2(∆τ, V ) of observables O[x] of time-series x.
As further specified in Sec. 3, a time-series x stands for
an ensemble of discrete data entries xt sampled over a
“sampling time” ∆τ and O[x] for a time-averaged mo-
ment over the data entries xt. While for ergodic systems
independently created configurations c are able in prin-
ciple given enough time to explore the complete (gener-
alized) phase space, for strictly non-ergodic systems they
are permanently trapped in meta-basins [5]. The different
time-series k of the same independent configuration c are
then correlated being all confined to the same basin even
if separated by arbitrarily long spacer (tempering) time
intervals [3]. A time-series xck must now be characterized
by two indices c and k and it becomes crucial in which
order c- and k-averages are taken. This implies that the
commonly used total variance [3]

δO2
tot(∆τ, V ) = δO2

int(∆τ, V ) + δO2
ext(∆τ, V ) (1)

becomes the sum of two independent terms: an internal
variance δO2

int, measuring the typical fluctuations within
each meta-basins, and an external variance δO2

ext, com-
paring the different meta-basins. Importantly, δOint and
δOext depend differently on ∆τ and V . For ∆τ larger
than the typical relaxation time τb of the meta-basins,
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δOint(∆τ, V ) decays as
√
τb/∆τ while δOext(∆τ, V ) be-

comes a ∆τ -independent constant. This large-∆τ limit

∆ne(V ) ≡ lim
∆τ→∞

δOext(∆τ, V ) (2)

is the “non-ergodicity parameter” [2–4], an important or-
der parameter vanishing for ergodic stochastic processes
but remaining positive definite for non-ergodic systems [3].

For macroscopic systems without long-range spatial cor-
relations it is not difficult to predict the system-size scaling
of ∆ne(V ) [3]. Quite generally, this leads to a power law
∆ne(V ) ' 1/V γ where the exponent γ naturally depends
on the considered observable O[x]. Deviations from this
exponent suggest long-range correlations. Such deviations
have, e.g., been observed for the non-ergodicity parameter
∆ne(V ) associated to the elastic shear shear modulus [2,
6] obtained by means of the stress-fluctuation formalism
[7–10] or the (closely related) variance of the shear stresses
[1–4] in viscoelastic and/or glassforming colloidal systems.
Unfortunately, it becomes numerically rapidly demanding
to precisely obtain ∆ne(V ) for increasingly large systems
and, quite generally, it gets impossible to characterize the
spatial correlations just by measuring the V -dependence
of macroscopic properties such as ∆ne(V ). It is thus cru-
cial to directly measure the correlations [11,12] and to do
this consistently with the non-ergodicity of the systems.

We assume in the present work that the macroscopic
observable O[x] can be written as a linear superposition
O[x] = ErOr of an associated local field Or. (Using the
notation introduced in Sec. 2.1, Er denotes here a spatial
average over microcells at a position r of the system.)
One main point of the present study is to show that it is
then both possible and useful to write the three different
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variances as volume averages

δO2
tot(∆τ, V ) = ErCtot(r, ∆τ, V ) (3)

δO2
int(∆τ, V ) = ErCint(r, ∆τ, V ) (4)

δO2
ext(∆τ, V ) = ErCext(r, ∆τ, V ) (5)

over the corresponding spatial correlation functions Ctot,
Cint and Cext which are properly defined below in Sec. 5.1
and Appendix A, Eqs. (68-70). Moreover, this can be done
in such a way that

Ctot(r, ∆τ, V ) = Cint(r, ∆τ, V ) + Cext(r, ∆τ, V ) (6)

holds in analogy of Eq. (1). This makes it possible to trace
back the ∆τ - and V -dependences of the three different
macroscopic variances to the two correlation functions Cint

and Cext. Various relations will be illustrated by means of
a simple “Lattice Spring Model” (LSM) characterized by
two quenched and spatially correlated lattice fields.

We begin by addressing in Sec. 2 some technicalities
such as useful conventions (Sec. 2.1 and Sec. 2.2), the de-
scription of the LSM (Sec. 2.3 and Sec. 2.6) and the deter-
mination and use of spatial correlation functions (Sec. 2.4
and Sec. 2.5). We construct then in Sec. 3 from the instan-
taneous stochastic processes xt and fields xtr (Sec. 3.1) the
time-averaged observables O[x] and fields Or (Sec. 3.2)
Summarizing Refs. [2–4] we remind in Sec. 4.1 various fea-
tures of the three variances δO2. The corresponding ∆τ -
and V -dependences are illustrated in, respectively, Sec. 4.3
and Sec. 4.4 using numerical results obtained by means of
LSM simulations. We turn in Sec. 5 to the spatial corre-
lation functions. Examples from the LSM simulations are
discussed in Sec. 5.2. We conclude the paper in Sec. 6. The
derivation of Eqs. (3-6) is presented in Appendix A. Some
details on the internal correlation function Cint(∆τ, V ) of
a specific field associated with the variance of time-series
are given in Appendix B.

2 Conventions and technicalities

2.1 Notations

We use the same compact operator notations as in Refs. [3,
4]. The arithmetic l-average operator

ElOlmn... ≡
1

Nl

Nl∑
l=1

Olmn... (7)

takes a property Olmn... depending possibly on several in-
dices l,m, . . . and projects out the specified index l, i.e.
the l-average Omn...(Nl) ≡ ElOlmn... does not depend on
l, but as marked by the argument may depend on the
upper bound Nl. The l-variance operator Vl is defined by

VlOlmn... ≡ ElO2
lmn... −

(
ElOlmn...

)2
≡ 1

Nl

Nl∑
l=1

(Olmn... −Omn...)2 . (8)
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Fig. 1. Sketch of a two-dimensional (d = 2) square lattice with
ngrid = L/agrid = 23. The filled circles indicate microcells of
the principal box, the open circles some periodic images. The
spatial position r of a microcell is either given by the rx- and
ry-coordinates (in the principle box) or by the distance r = |r|
from the origin (large circle) and the angle θ.

Note that the “empirical variance” δO2
mn...(Nl) ≡ VlOlmn...

vanishes

δO2
mn...(Nl)→ 0 for Nl → 1. (9)

In many cases Omn...(Nl) and δOmn...(Nl) converge for
large Nl or become stationary for a large Nl-window of
the experimentally or numerically accessible Nl-range. To
simplify notations we often denote this limit by Omn... and
δOmn... without the argument Nl. As discussed in Ref. [3],
we have defined the empirical variance as an uncorrected
(biased) sample variance without the usual Bessel correc-
tion [13], i.e. we normalize in Eq. (8) with Nl and not with
Nl − 1. This implies

δO2
mn...(Nl) '

(
1− 1

Nl

)
δO2

mn... (10)

for variances obtained with finite Nl. This relation is used
below to extrapolate finite-Nl observables to Nl →∞.

2.2 Periodic grid of microcells

We shall illustrate below various properties by means of
(real and discrete) fields fr (r labeling the microcell po-
sition) corresponding to Nr microcells on regular grids in
d = 2 dimensions as sketched in Fig. 1. For simplicity we
assume square periodic lattices of linear dimension L =
ngridagrid, i.e. of (d-dimensional) volume V = Ld = NrδV
with δV = adgrid being the microcell volume. To character-

ize spatial correlations (cf. Sec. 2.4) it is convenient [14]
to focus not on fr but on its discrete Fourier transform

fq = F{fr} = Erfr exp(iq · r) (11)
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with Er being the average over all Nr microcells, using
the notation Eq. (7), and q the discrete wavevectors (being
commensurate with the periodic grid).1 Due to our Fourier
transform convention the sum rule fq=0 = Erfr holds. We
denote by f the field irrespective of its representation and
specific values while fr refers to the instantaneous field
in real space and fq to the corresponding discrete field
in reciprocal space. Fast Fourier Transforms (FFT) [14]
are naturally used for the efficient transformation between
real and reciprocal space and it is thus convenient to set
ngrid to be an integer power of 2. Moreover, we set agrid =
1, i.e. L = ngrid and V = Nr.

2.3 Lattice spring model

We present below MC simulations of a “Lattice Spring
Model” (LSM) with xr being the linear length of the ideal
springs and ar and br = 1/kr > 0 two quenched fields im-
posing, respectively, the average length of a spring and its
variance. In addition, neighboring springs may be coupled
by tuning a “coupling parameter” J . The energy Er of a
microcell at r is thus given by

Er =
kr
2

(xr − ar)2 +
J

2

∑
r′

(xr′ − xr)2 (12)

where the sum over r′ runs over the 2d nearest-neighbors
of r on the periodic grid. In the limit where the inter-
actions between springs are switched off (J = 0) or are
small, this implies the thermal averages 〈xr〉 = ar and〈
δx2r
〉

= brT > 0 with T being the imposed temperature
and setting Boltzmann’s constant kB to unity. T = 1 in all
presented simulations. A summary of the studied model
variants is given in Table 1. How spatially correlated fields
f = a and f = b are imposed is explained in Sec. 2.6. Using
these fields we perform Metropolis MC simulations with
local moves [13,15]. Results are recorded in time intervals
δτ = 10 measured in MC steps.

2.4 Spatial correlation functions

In this work we shall impose or sample auto-correlation
functions C[f ](r) = 〈K[fr](r)〉 − 〈Erfr〉2 of various fields
f .2 〈. . .〉 stands here for some general average (to be spec-
ified below), r for any site (microcell) of the principal sim-
ulation box and

K[fr](r) ≡ Er′fr+r′fr′ (13)

for the unaveraged correlation function of one given field
fr. All correlation functions are even and periodic (Fig. 1).
Periodicity is most readily implemented in reciprocal space
using the Wiener-Khinchin theorem (WKT) [14]

K[fq](q) ≡ F{K[fr](r)} = |fq|2 = fqf−q (14)

1 The inverse Fourier transform is fr =
∑

q exp(−iq · r).
2 We note f for the functional argument of the averaged

correlation function C and fr for the functional argument of
the unaveraged correlation function K.

for fq = F{fr}. The Fourier transformed auto-correlation
functions are thus positive for all wavevectors q.

All (averaged) correlation functions C[f ](r) or C[f ](q)
considered here have in addition x↔ y-symmetry, but are
not necessarily radial symmetric (isotropic) [4]. Instead
of the d-dimensional fields C[f ](r) we present below the
weighted projections

C[f, p](r = |r|) ≡ 〈C[f ](r, θ) cos(2pθ)〉θ (15)

averaged over all lattice sites (angles θ) at the same (or
similar) r with p = 0, 1, 2, . . . Due to the x↔ y-symmetry
only even p = 0, 2, 4, . . . are allowed. We focus here on
p = 0 (“isotropic projection”) and p = 2 (“anisotropic
projection”) [4]. If not stated otherwise p = 0 is assumed.

2.5 V -dependence of observables

As explained in the Introduction it is a general problem
to explain or predict the system-size dependence of an
observable P(V ) for asymptotically large volumes V . The
idea is to express P(V )2 = ErC[f ](r) as an average of a
suitable correlation function C[f ](r) of a field f which can
be independently obtained numerically or understood on
theoretical grounds. Using the isotropic (p = 0) projection
C[f ](r) of C[f ](r) we have

V P(V )2 ≈ I(V ) ≡
∫

dr rd−1 C[f ](r) (16)

in d dimensions. Let us write P(V ) ∼ 1/V γ for large V
using the phenomenological exponent γ. Several cases are
important. If C[f ](r) vanished more rapidly then 1/rd,
the integral I(V ) is dominated by its lower bound and
V P2(V ) becomes constant, hence, γ = 1/2 if the lower
bound does not explicitly dependent on V . If on the other
hand C[f ](r) ' c0 > 0 for large r with c0 being a constant,
I(V ) ' c0V for large V and, hence, γ = 0 if c0 is V -
independent. More generally, LSM-C (Table 1) illustrates
power-law correlations with

C[f ](r) ' c0/rα for 1� r � L/2 (17)

with c0 being a V -independent constant. While (as already
said) γ = 1/2 for α > d, this implies γ = α/2d < 1/2 for
long-range correlations (α < d), i.e. γ → 0 for α → 0.
Finally, we note that the intermediate case with α = d
yields the logarithmic relation

P(V ) '
√

(c1 + c2 ln(V ))/V for V →∞ (18)

with c1 and c2 > 0 being again V -independent constants.

2.6 Imposing C[a](r) and C[b](r)

As indicated in Table 1 the frozen fields f = a and f = b
of LSM-A, our simplest LSM variant, are spatially decor-
related and uniformly distributed random variables. In all
other considered cases these fields are spatially correlated
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LSM description C[a](r) C[b](r) J
A uncorrelated sites ar ∈ U [−0.1, 0.1] br ∈ U [0.1, 1.9] 0
B exponential decay C[a](r) ≈ c0 exp(−r/ξ) cr = ar,br = 1 + c2r 0, 0.1, 1
C power law decay C[a](r) ≈ c0/rα with α = 1, 2, 3 cr = ar,br = (1 + 0.1cr)

2 0
D anisotropic decay C[a](q) = 8πc0(qxqy/q

2)2/Nr cr = ar,br = (1 + 0.1cr)
2 −1, 0, . . . , 10

Table 1. LSM variants studied with the third column indicating the imposed C[a](r) and the forth C[b](r). The uncorrelated
random fields ar and br of LSM-A are taken from the given uniform distributions U [. . .]. In all other cases br is computed using
the indicated relation from an auxiliary field cr. Naturally, the inverse spring constant br = 1/kr is always positive. The coupling
parameter J (fifth column) for springs of neighboring grid sites is switched off but for LSM-B and LSM-D. All correlations are
isotropic for LSM-B and LSM-C while they are anisotropic for LSM-D.

Fig. 2. Isotropically averaged (p = 0) correlation functions
C[f, p = 0](r) for LSM-B with c0 = 1, ξ = 16 and L = 512
characterizing the quenched fields f = a and f = b for all J .
Note that C[a, 0](r) = exp(−r/ξ) as imposed (bold solid line).
For f = b we compare the two closures br = 1 + a2r (squares)
and br = (1 + 0.1ar)

2. The dashed lines indicate the expected
behavior for L� ξ.

Fig. 3. Double-logarithmic representation of C[f, p = 0](r) for
LSM-C and −C[f, p = 2](r) for LSM-D for the two quenched
fields f = a and f = b assuming that br = (1 + 0.1ar)

2.

as shown in Fig. 2 for LSM-B and in Fig. 3 for LSM-C
and LSM-D. We explain here how this is done. We re-
mind that, quite generally, a spatially correlated field with

C[f ](r) = Cimp(r) is generated by setting [16,4]

fq =
√
Cimp(q)Nr gq with gq = F{gr} (19)

being the Fourier transform of a (decorrelated) random
Gaussian field gr ∈ N (0, 1) of zero mean and unit vari-
ance. As a consequence〈

|fq|2
〉

= Cimp(q)Nr 〈gqg−q〉 = Cimp(q), (20)

i.e. according to the WKT we have C[f ](r) = Cimp(r)
upon inverse Fourier transform back to real space.3 It is
assumed here that (in addition of being even and periodic
functions) the imposed Cimp(q) must be for all q both
real and positive in agreement with Eq. (14). If Cimp is
known (stated) in real space, it may be thus necessary to
regularize the desired relation. For instance, the power law
Cimp(r) = c0/r

α must be changed to

Cimp(r) = c0(1 + r2)−α/2 (21)

to avoid the singularity at the origin [16]. This is done,
e.g., with c0 = 1 and α = 2 for f = a of LSM-C as shown
in Fig. 3. To avoid such numerical problems Cimp(q) is
best directly imposed in reciprocal space. This blueis the
case for f = a and f = b of LSM-D where we impose the
anisotropic correlation function

Cimp(q) = 8π
c0
Nr

(qxqy/q
2)2 (22)

(qx and qy being the discrete components of the wavevec-
tor) motivated by the theoretically predicted shear-stress
correlations of viscoelastic liquids and glasses [17–20]. As
may be seen for f = a of LSM-D in Fig. 3 (squares)
Eq. (22) thus leads in real space to [20]

C(r) = Cimp(r) = −2c0 cos(4θ)/r2 for r > 0, (23)

i.e. the isotropic average vanishes (not shown) and the
anisotropic average C[f, p = 2](r) = −c0/r2 is long-ranged
(bold solid line).

An additional problem arises for the correlated f = b
since all inverse spring constants br must be positive. To
impose this we generate first an auxiliary field cr using
the above scheme. In all cases presented here cr = ar.

3 Using Parseval’s theorem it is seen that 〈gqg−q〉 = 1/Nr.
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From this br is obtained by setting, e.g., br = 1 + c2r. As
seen in Fig. 2 this “closure” leads for LSM-B to C[b](r) ≈
2 exp(−2r/ξ) for L � ξ as can be also proved theoreti-
cally. Another possibility is to set

br = (1 + λcr)
2 ≈ 1 + 2λcr for |λ| � 1. (24)

With C[c](r) being the correlation function of the auxil-
iary variable this implies to leading order

C[b](r) ≈ (2λ)2C[c](r) for |λ| � 1 (25)

which is merely a shift in logarithmic coordinates. That
this works well can be seen (triangles) in Fig. 2 for LSM-B
and in Fig. 3 for LSM-C and LSM-D.

3 Stochastic processes, observables and
corresponding fields

3.1 Time-series and associated local fields

It is common to characterize a stochastic process x(τ) us-
ing ensembles {x} of discrete time-series

x = {xt = x(τ = tδτ), t = 1, . . . , Nt} (26)

with t being the discrete time, δτ the time interval between
the equidistant measurements and ∆τ = Ntδτ the avail-
able “sampling time”. We assume that the global stochas-
tic process is a d-dimensional volume average

xt = Erxtr ≈
1

V

∫
dr xtr (27)

over a discrete field xtr of same dimension. As a specific
example we consider the spatial average xt = Erxtr of
the LSM spring lengths xtr (cf. Sec. 2.3). It is useful to
directly measure xtq = F{xtr} in reciprocal space. Since
we consider stochastic processes in non-ergodic systems
xck, xckt, xcktr and xcktq are additionally characterized
by the index c of the independent configuration and the
index k of the time-series of a given c.

3.2 t-averaged observables and fields

It is generally not possible to store all sets of time-series
x and associated fields but one normally only computes
and stores functionals (moments) O[x] of each time-series,
called here “t-averages” or “observables”. The two observ-
ables we shall focus on are the arithmetic mean

O[x] = m[x] ≡ Etxt (28)

and the empirical variance

O[x] = v[x] ≡ βV Vtxt (29)

with β = 1/T being the inverse temperature (kB = 1).
The prefactor βV , introduced for consistency with previ-
ous work [2–4], is natural for stochastic processes xt corre-
sponding to intensive thermodynamic variables [21].4 We
often write below compactly Ock = O[xck].

As already pointed out in the Introduction, we assume
that, as the stochastic process xt, also the observables O
may be written as linear volume averages O[x] = ErOr

of local contributions Or. For O[x] = m[x] these local
contributions are given by Or = mr ≡ Etxtr. Importantly,
it is also possible to write the t-averaged variance as v[x] =
Ervr defining the “local variance”

vr ≡ βV Et(xtr − xr)(xt − x)

= βV
(
Etxtrxt − xrx

)
(30)

with xr = Etxtr and x = Erxr. Strictly speaking, vr is a
“co-variance” correlating the local field to the total aver-
age. Such local variances appear in the stress-fluctuation
formulae for local elastic moduli [7–9].5 For numerical
reasons it is convenient to compute the local fields mr

and vr in Fourier space from xtq using mq = Etxtq and
vq = βVEt(xtq − xq)(xt − x) with x = xq=0.

We remark finally that for the LSM versions with no
or weak interactions between neighboring sites we have
quite generally6

mr → ar, vr → br for J → 0 and Nt →∞. (31)

In other words, since we know C[a](r) and C[b](r) by con-
struction, Eq. (31) determines (for the specified limits) the
spatial correlations for the local fields mr and vr.

4 Global properties

4.1 Reminder

Summarizing recent work [3,4] we discuss now several gen-
eral properties of expectation values and variances of ob-
servables Ock ≡ O[xck] in non-ergodic systems. We focus
first on the dependences on the number Nc of independent
configurations c and the number Nk of time-series k for
each c and discuss then the dependences on sampling time
∆τ and volume V .

The first point to be made is that the total average
O(Nc, Nk) of the Ock can be obtained equivalently by

O(Nc, Nk) = EcEkOck = EkEcOck = ElOl, (32)

i.e. c- and k-averages commute and for such “simple av-
erages” [3] the two indices c and k can be “lumped” to-
gether in one index l with Nl = NcNk as indicated by the

4 In this case v[x] has the dimension of a (free) energy density
just as the stress (pressure) of the system.

5 The covariance vr must be distinguished from the purely
local variance ṽr = βVEt(xtr − xr)2.

6 To show the second relation it is used that the xr − ar
are decorrelated for J → 0 albeit their first and second mo-
ments may be correlated. vr → br holds for all V and β due to
prefactor βV in the definition of vr.
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last sum. The order of averaging matters, however, for
the variance of Ock for which three different definitions
are relevant:

δO2
tot(Nc, Nk) ≡ VlOl, (33)

δO2
int(Nc, Nk) ≡ EcVkOck and (34)

δO2
ext(Nc, Nk) ≡ VcEkOck. (35)

As shown in Ref. [3], with these definitions Eq. (1) exactly
holds. The “total variance” δO2

tot(Nc, Nk) is the standard
commonly computed variance [1,2,6]. We emphasize that
δO2

tot(Nc, Nk) is again a “simple average”, i.e. all time-
series xck are lumped together (index l) as for the aver-
age O(Nc, Nk), Eq. (32), while the order of the c- and k-
averaging matters for the “internal variance” δO2

int(Nc, Nk)
and the “external variance” δO2

ext(Nc, Nk).
Let us assume next that Nc becomes arbitrarily large.

Importantly, the large-Nc limits O and δOtot of O(Nc, Nk)
and δOtot(Nc, Nk) do neither depend on Nc nor on Nk

and may, especially, also be computed by using only one
time-series for each configuration (Nk = 1). At variance
with this, internal and external variances still depend on
Nk, i.e. δOint(Nc, Nk)→ δOint(Nk) and δOext(Nc, Nk)→
δOext(Nk) in general for Nc →∞. Note that

δOint(Nk)→ 0, δOext(Nk)→ δOtot for Nk → 1. (36)

For large spacer times τspacer � τb between time-series
the Nk-dependence is given using Eq. (10) by [3]

δO2
int(Nk) '

(
1− 1

Nk

)
δO2

int (37)

δO2
ext(Nk) ' δO2

ext +
1

Nk
δO2

int (38)

where δOint and δOext without the argument Nk stand
for the limit Nk →∞. Using these relations it is possible
(with a bit of care as discussed in Sec. 4.2) to extrapolate
internal and external variances measured at finite Nk to
the respective large-Nk limits. We focus below on proper-
ties corresponding to the large-Nc and large-Nk limits.

The above properties may depend additionally on the
sampling time ∆τ and the volume V . The first dependence
is relevant for all considered properties below and around
the basin relaxation time τb. In this work we shall mainly
focus on the opposite large-∆τ limit (∆τ � τb). In this
limit the typical k-averaged Ock become ∆τ -independent.
Hence, O(∆τ, V ) → O(V ) and δOext(∆τ, V ) → ∆ne(V )
with ∆ne(V ) being the “non-ergodicity parameter” de-
fined in the Introduction, Eq. (2).7 At variance with this
δOint(∆τ, V ) remains ∆τ -dependent decaying as

δOint(∆τ, V ) ∝
√
τb/∆τ for ∆τ � τb (39)

since we average over ∆τ/τb independent subintervals [3].
Let us define the “non-ergodicity time” τne(V ) � τb by

7 Following Ref. [3] one simple possibility to characterize τb
is to set O(∆τ = τb, V ) = fO(V ) using a fixed fraction f close
to unity. We use f = 0.95.

δOint(τne, V ) = ∆ne(V ). δOtot(∆τ, V ) is dominated by
the internal fluctuations, Eq. (39), for ∆τ � τne(V ) while

δOtot(∆τ, V )→ δOext(∆τ, V ) ≈ ∆ne(V ) (40)

in the large-∆τ limit (∆τ � τne(V )). If only the stan-
dard total variance is probed the non-ergodicity of the sys-
tem may remain unnoticed for ∆τ � τne(V ). As further
emphasized below, it is then necessary to systematically
check the ∆τ -dependence of δOtot(∆τ, V ) and to carefully
extrapolate to ∆τ → ∞ [3,4]. The volume dependence
will be addressed in more detail in Sec. 4.4. As a conse-
quence τne(V ) is found to strongly increase with V since
∆ne(V )/δOint(∆τ, V ) quite generally decreases with the
system size. Assuming the latter ratio to decay as 1/V γ

this implies τne(V ) ∝ V 2γ . The determination of ∆ne(V )
by means Eq. (40) thus becomes increasingly difficult.

4.2 Focus and examples

We focus now on O[x] = v[x] and the corresponding ex-
pectation value v(∆τ, V ), Eq. (32), and the three asso-
ciated standard deviations δvtot(∆τ, V ), δvint(∆τ, V ) and
δvext(∆τ, V ) determined according to Eqs. (33-35). We be-
gin by discussing ∆τ -effects (Sec. 4.3) and turn then to the
V -dependence of these properties (Sec. 4.4). We illustrate
various points made above by means of MC simulations of
the LSM introduced in Sec. 2. For all cases we have T = 1,
δτ = 10, Nc = 200 and at least Nk = 100. Using Eq. (37)
and Eq. (38) we extrapolate to Nk →∞. δvint(∆τ, V,Nk)
can readily be extrapolated to δvint(∆τ, V ) even using
small Nk < 10 as discussed in Ref. [3]. At variance with
this the extrapolation from δvext(∆τ, V,Nk) to δvext(∆τ, V )
turns out to be inaccurate if the correction term

1

Nk
δv2int(∆τ, V ) ∝ τb

Nk∆τ
for ∆τ � τb (41)

in Eq. (38) is not small compared to δv2ext(∆τ, V,Nk). This
matters especially for ∆τ � 103 and J > 0.1 when the
stochastic process becomes slow, increasing thus τb(J).
Occasionally, we have thus been forced to use Nk = 1000.8

4.3 Sampling time dependence

As a generic example we present in Fig. 4 data obtained
for LSM-B (exponentially decaying a- and b-fields) us-
ing a correlation length ξ = 1 and a small simulation
box with L = 16.9 All interactions between neighboring
springs xr are switched off (J = 0). As can be seen, v(∆τ),
δvint(∆τ) and δvext(∆τ) reach rapidly for ∆τ � τb ≈ 100
the asymptotic behavior expected from the general dis-
cussion in Sec. 4.1, i.e. v(∆τ) and δvext(∆τ) approach the

8 A spacer time interval τspacer ≈ ∆τ is used between each
measured time series of length ∆τ . It may have been more
efficient to use instead τspacer ≈ max(∆τ, τb(J)) to make the
only asymptotically exact Eq. (38) applicable for smaller Nk.

9 We often suppress in this subsection the possible additional
V -dependences, i.e. we write, e.g., v(∆τ) instead of v(∆τ, V ).
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Fig. 4. Sampling time dependence of v(∆τ), δvint(∆τ),
δvext(∆τ) and δvtot(∆τ) for LSM-B with ξ = 1, J = 0 and
L = 16. It is seen that δvint(∆τ) ∝ 1/

√
∆τ (bold solid line)

while all other properties become constant for large ∆τ . Note
that δvext(∆τ) ≈ ∆ne much faster than δvtot(∆τ).

Fig. 5. v(∆τ) (upper data with open symbols) and δvint(∆τ)
(symbols filled with pattern) for LSM-B with ξ = 1 and J = 1
for a broad range of L demonstrating the V -independence of
both properties. Increasing J increases τb, decreases v (hori-
zontal dashed line) and increases the power-law amplitude for
δvint(∆τ) ' 1/

√
∆τ for ∆τ � τb (bold solid line).

respective constants v and δvext = ∆ne while δvint(∆τ) ∝
1/
√
∆τ (bold solid line). Importantly, due to Eq. (1)

δvtot(∆τ, V ) =
√
δv2int(∆τ, V ) + δv2ext(∆τ, V ) (42)

approaches ∆ne much later than δvext(∆τ), i.e. only for
∆τ � τne ≈ 5600 � τb. For this reason it is problematic
to determine ∆ne only by measuring δvtot(∆τ) for one
sampling time.10

Deviations from this generic asymptotic behavior are
visible for small ∆τ around and below the basin relax-
ation time τb. This can be seen from Fig. 4 but more

10 If δvtot(∆τ) is known for a broad range of ∆τ one may plot
δvtot(∆τ) as a function of 1/

√
∆τ in linear coordinates. ∆ne

may then be obtained for Nk = 1 from the intercept of the
vertical axis of a linear data fit. This procedure allows to avoid
the determination of δvext(∆τ,Nk).

clearly from Fig. 5 where we present v(∆τ) and δvint(∆τ)
for LSM-B with J = 1 and for a broad range of system-
sizes. Remarkably, δvint(∆τ) reveals non-monotonic be-
havior with a maximum below the basin relaxation time
τb(J = 1) ≈ 103. Being generally due to relaxation pro-
cesses within each metabasin this small-∆τ regime is more
relevant for more realistic models as discussed elsewhere
[1–3]. For the present work it is only important to stress
that the general ∆τ -dependence of v(∆τ) and δvint(∆τ)
can be traced back to the “mean-square displacement”
(MSD) h(τ) of the stochastic process. This is defined by

h(τ = tδτ) ≡ ht=|i−j| ≡
βV

2

〈
(xi − xj)2

〉
(43)

averaged over all time entries i and j of a long trajectory
with t = |i− j|. For stationary processes [2]

v(∆τ) =
2

N2
t

Nt−1∑
t=1

(Nt − t) ht (44)

must hold.11 The sampling time dependence of δvint(∆τ)
can be understood and described assuming a stationary
Gaussian stochastic process [1–3]. This implies that

δv2int(∆τ) = δv2G[h] ≡ 1

2N4
t

Nt∑
i,j,k,l=1

g2ijkl with (45)

gijkl ≡ (hi−j + hk−l)− (hi−l + hj−k).

Numerical more convenient alternative representations are
given elsewhere [1,2]. By analyzing the functional δvG[h]

it is seen [1,2] that while δvint(∆τ) ∝ 1/
√
∆τ for (to

leading order) h(t) ≈ const for t ≈ ∆τ , it may become
large with δvint(∆τ) ≈ v(∆τ) for sampling times ∆τ cor-
responding to a strong change of h(t ≈ ∆τ).12 We em-
phasize finally that since h(τ), v(∆τ) and δvint(∆τ) are
connected through Eq. (44) and Eq. (45) all three quanti-
ties must have the same system-size dependence and this
for all times. That v(∆τ) and δvint(∆τ) in Fig. 5 are both
V -independent is one consequence.

4.4 Volume dependence

We turn now to system-size effects. Let us focus first on the
limit ∆τ � τne(V ) where δvint(∆τ) becomes negligible
and δvtot(∆τ) ≈ δvext(∆τ) ≈ ∆ne. Examples for v(V )
and ∆ne(V ) are given for J = 0 in Fig. 6 and Fig. 7 and
for ∆ne(V ) comparing different J for LSM-D in Fig. 8.

The first point to be made is that the variance v is al-
ways V -independent (as already seen in Fig. 5) due to the
prefactor βV introduced in Eq. (29). In fact this scaling
is expected to hold for all stochastic processes describ-
ing intensive system properties if the c-trajectories are at

11 We remind that in statistical mechanics Eq. (44) is closely
related to the equivalence of the Green-Kubo and the Einstein
relations for transport coefficients [22,2,15].
12 No general relation such as Eq. (45) for δvint(∆τ) is known
at present for δvext(∆τ).
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Fig. 6. V -dependence for v and ∆ne (filled symbols) for LSM-
A, LSM-B with ξ = 1 and ξ = 2, LSM-C with α = 3 and
LSM-D. v is always V -independent (horizontal dashed line)
and ∆ne ∝ 1/V γ with γ = 1/2 (bold solid line) for the given ex-
amples with short-range correlations. ∆ne(V ) for LSM-D (filled
squares) is finite, but much smaller than all other cases.

Fig. 7. Volume dependence of v and ∆ne for LSM-C and three
different values of α. We observe short-range behavior with
γ = 1/2 for α > d, long range behavior with γ = α/2d for
α < d and, as expected from Eq. (18), logarithmic decay (thin
solid line) for the intermediate case with α = d = 2. The latter
case is well fitted by an exponent γ = 0.4 (bold dashed line).

thermal equilibrium in their respective basins [3]. (Note
that each stochastic process is ergodic in its basin.) Using
the standard fluctuation-dissipation relation for the fluc-
tuation of intensive thermodynamic variables [21,10,15]
this implies that vc does not depend explicitly on V and,
hence, neither does v = Ecvc.

13 This argument even holds
for systems with long-range correlations if standard ther-
mostatistics can be used for each basin. This can be seen
from the variances v of LSM-C (power-law correlations)
for exponents α < d as shown in Fig. 7 for α = 1.

Interestingly, the same thermodynamic reasoning can-
not be made for ∆ne. However, it can be readily demon-
strated that quite generally ∆ne ∝ 1/V γ with γ = 1/2 for

13 It is well known that vc depends on whether the average
intensive variable of the basin is imposed or its conjugated
extensive variable [21].

Fig. 8. ∆ne(V, J) for LSM-D for different J . Main panel: γ =
1/2 holds for all J (lines). Inset: Power-law amplitude a(J) ≡
∆ne(V, J)V 1/2 vs. coupling constant J . Apparently, the spring
coupling introduces isotropic (p = 0) correlations of the xtr-
and, hence, vr-fields which remain, however, short-ranged.

systems without spatial correlations [3]. This is the case
for LSM-A with J = 0 on which we may focus without loss
of generality. According to Eq. (31) we have bcr = vcr and
thus vc = Ervcr is given by the spatial average bc = Erbcr.
This implies in turn that v ≡ Ecvc = Ecbc ≡ b.14 To get
the variance of the variance Vcvc one uses again that the
variance of the sum of stochastic independent variables is
the sum of the variances of those variables

∆2
ne = Vcvc = Vc

(
1

Nr

∑
r

bcr

)
=

1

Nr
×ErVcbcr (46)

and the fact that the underlined term does not depend on
the number of grid sites Nr ∝ V for large systems. Hence,
γ = 1/2. Naturally, this does not only hold for systems
with strictly decorrelated fields but also if short-range cor-
relations are present (which may be renormalized away) as
confirmed by the various additional examples with short-
range correlations15 presented in Fig. 6, Fig. 7 and Fig. 8.
(As shown in the latter plot for LSM-D, the coupling pa-
rameter J has apparently only a weak quantitative ef-
fect on the range of the effective spatial correlations.) The
above argument breaks down, however, if long-range cor-
relations are present as for the power-law exponent α = 1
of LSM-C shown in Fig. 7. The observed power law with
γ = α/2d is, of course, expected from Sec. 2.5 as we shall
corroborate below in Sec. 5.

Let us instead end this paragraph with some com-
ments on the ∆τ -dependence of the system-size effects.
We remind that v(∆τ), δvint(∆τ) and h(t) are related
via Eq. (44) and Eq. (45). In view of the observed V -
independence of v it is thus not surprising that v(∆τ)

14 Without invoking here thermostatistics this argument
demonstrates that v must be V -independent whenever the spa-
tial correlations are short-ranged.
15 While “short-range” is often reserved for ultimately expo-
nentially decaying correlation functions, it is used here also
for correlations decaying sufficiently fast such that the volume
average does not depend on the upper integration boundary L.
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Fig. 9. V -dependence of δvtot(∆τ) and δvext(∆τ) for LSM-A
for different sampling times ∆τ as indicated. The bold green
line indicates the known ∆ne ∝ 1/V γ with γ = 1/2. While
δvext(∆τ, V ) ≈ ∆ne(V ) for all L and ∆τ � τb ≈ 10, a much
slower convergence to this limit is seen for δvtot(∆τ, V ) due to
the V -independent contribution δvint(∆τ) to δvtot(∆τ).

and δvint(∆τ) are found to be V -independent for all ∆τ as

shown in Fig. 5. Since δvint(∆τ) ∝ V 0/
√
∆τ for ∆τ � τb

the non-ergodicity crossover time τne(V ) ' V 2γ rapidly
increases with V . This implies that the regime with τb �
∆τ � τne(V ) where δvtot(∆τ) ≈ δvint(∆τ) strongly in-
creases with V . If computed at constant ∆τ as in most
computational studies [6], δvtot(∆τ, V ) as a function of V
must thus become V -independent for large V . This be-
havior can clearly be seen from the data presented in
Fig. 9 for LSM-A (filled symbols).16 The crossing over
from δvtot(∆τ, V ) ≈ ∆ne(V ) ∝ 1/V γ for small V (bold
solid line) to δvtot(∆τ, V ) ≈ δvint(∆τ) ∝ V 0 for large
V makes it likely that in turn a too small apparent expo-
nent γ may be fitted. Should δvext(∆τ, V ) not be available
one needs at least to compare δvtot(∆τ, V ) for several ∆τ .
Only the V -regime where the highest ∆τ -data do indeed
collapse can be used for a fit of the exponent γ. Without
such a crosscheck all fits claiming an exponent γ < 1/2
and, hence, (according to the preceding paragraph) long-
range spatial correlations are questionable.

5 Spatial correlation functions

5.1 General relations for non-ergodic systems

As demonstrated in detail in Appendix A the integrals,
Eqs. (3-5), are solved by

Ctot(q) = ElK[Olq](q)−O2δq0 (47)

Cint(q) = EcEkK[Ockq −Ocq](q) (48)

Cext(q) = EcK[Ocq](q)−O2δq0 (49)

16 We use here Nk = 1000 for ∆τ ≤ 104 to obtain
for δvext(∆τ,Nk) a sufficiently accurate Nk-extrapolation
δvext(∆τ) for small sampling times.

where for numerical convenience we have stated all cor-
relation functions in reciprocal space (with δq0 denot-
ing Kronecker’s symbol for the zero-wavevector contribu-
tion). The “simple average” Ctot corresponds to the stan-
dard commonly measured correlation function. The inter-
nal correlation function Cint characterizes the correlations
of the difference Ockq−Ocq with respect to the k-average
Ocq = EkOckq. Moreover, as shown by Eq. (71) the “to-
tal” correlation function Ctot is the sum of an “internal”
contribution Cint and an “external” contribution Cext

Ctot(q) = Cint(q) + Cext(q) (50)

in agreement with Eq. (6) stated in the Introduction.
Just as δOtot, δOint and δOext the correlation functions

Ctot, Cint and Cext depend in general on Nc and Nk. As
above in Sec. 4.1 we assume that Nc is arbitrarily large.
This implies that

lim
Nc→∞

Ctot(q, Nc, Nk) = Ctot(q) (51)

and similarly in real space, i.e. not only the Nc- but also
the Nk-dependence drops out since the total correlation
function is a simple l-average. Consistently with Eq. (37)
we have for the internal correlation function

Cint(q, Nk) '
(

1− 1

Nk

)
Cint(q) (52)

for Nc → ∞. Using Eq. (51), Eq. (52) together with
Eq. (6) it is then seen that

Cext(q, Nk) ' Cext(q) +
1

Nk
Cint(q). (53)

These two relations should be used to extrapolate for
the asymptotic Cint(q) and Cext(q) using the Cint(q, Nk)
and Cext(q, Nk) measured at finite Nk. While the Nk-
dependent correction term is less crucial for Cint(q, Nk), it
is important, as above for δOext(Nk), to take advantage of
Eq. (53), especially if Cint(q) is large. We focus below on
the Nk-extrapolated correlation functions in real space.

The correlation functions may a priori also depend
explicitly on the sampling time ∆τ and the system vol-
ume V . One trivial reason for a V -dependency is that the
linear box length L sets a cut-off. Fortunately, this only
matters for large distances r ≈ L/2 (and for the corre-
sponding small wavevectors), i.e. this effect becomes irrele-
vant for large L as one verifies by systematically increasing
the box size. Since δOext(∆τ, V ) becomes ∆τ -independent

and δOint(∆τ, V ) ∝ 1/
√
∆τ for ∆τ � τb this naturally

suggests

Cext(r, ∆τ, V ) ' Cext(r, V )
Cint(r, ∆τ, V ) ∝ 1/∆τ

}
for ∆τ � τb (54)

as discussed theoretically in more detail in Appendix A.3
and Appendix B. We shall verify numerically in the next
subsection whether this holds for our model systems.
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Fig. 10. −C[f, p = 2](r) for LSM-D for J = 0 and ∆τ �
τne � τb confirming that C[a](r) ≈ Cext[m](r) and C[b](r) ≈
Cext[v](r) as expected from Eq. (31).

5.2 Examples for lattice spring models

We present now various (projected) correlation functions
C[f, p](r) from our LSM simulations. We begin in Fig. 10
with data from LSM-D obtained for J = 0 and a large
sampling time ∆τ = 106. We remind that LSM-D is de-
fined by Eq. (23) for the a-field and by Eq. (24) for the
b-field. All indicated correlation functions are obtained by
anisotropic projection (p = 2). Since all spring interac-
tions are switched off (J = 0) and since ∆τ � τb we have
mr ≈ ar and vr ≈ br. As expected from Eq. (23) and
Eq. (25), Fig. 10 confirms

−Cext[m, p](r) ≈ −C[a, p](r) ≈ 1/r2 (55)

−Cext[v, p](r) ≈ −C[b, p](r) ≈ (2λ)2/r2 (56)

with p = 2 and λ = 0.1. Similar results have been found for
all model cases with |J | � 1 and ∆τ � τb. Since, more-
over, ∆τ � τne for the presented data, the internal cor-
relation functions Cint[f ](r, ∆τ) are negligible small and
Ctot[f ](r, ∆τ) ≈ Cext[f ](r) holds (not shown).

All correlation functions presented below in this sec-
tion are isotropically projected. “p = 0” is often sup-
pressed for clarity. We consider now finite spring inter-
actions and smaller sampling times. As an example we
show in Fig. 11 correlation functions obtained for LSM-
B with ξ = 8, J = 0.1 and ∆τ = 105. Data for two
system sizes are compared. Cext[m](r) and Cext[v](r) are
V -independent for all r � L/2. The small, finite J only
has a minor effect on the prefactors: As for J = 0 we ob-
serve Cext[m](r) ≈ C[a](r) ≈ exp(−r/ξ) and Cext[v](r) ≈
C[b](r) ≈ exp(−2r/ξ). The observed short-range correla-
tions are consistent with γ = 1/2 (cf. Fig. 6).

We turn next to the scaling of the internal correlation
function Cint[v](r). Focusing on LSM-B this is presented
in Fig. 11 and Fig. 12. As we shall see, all our numerical
data are consistent with the general scaling

Cint[v](r,∆τ, V ) = [V (1− α)c(r) + α] δv2int(∆τ) (57)

with α = 1/2 and c(r) being a ∆τ -independent function,
depending somewhat on the model (especially on the cou-

Fig. 11. Isotropic projection C[f, p = 0](r) for LSM-B with
ξ = 8, J = 0.1 and ∆τ = 105. Open symbols refer to L = 256,
small filled symbols to L = 128. As expected Cext[m](r) and
Cext[v](r) decrease exponentially just as C[a](r) and C[b](r).
Cint[v](r) decays exponentially (dashed line) for r � ξ? (ξ?
being a crossover length) but becomes constant for large r.

Fig. 12. y = Cint[v, 0](r)/δv2int(∆τ) versus r for LSM-B (ξ = 1,
L = 256) with J = 0 (open symbols), J = 0.1 (filled symbols)
and J = 1 (symbols with pattern). Data from a broad ∆τ -
range scale nicely for each J . Note the huge peak at r = 0
(arrow) for J = 0 and the exponential decays (dashed lines)
with y(r) ∼ V exp(−r/ξind) for J > 0 and r � ξ?(J). For large
r all data approach y = 1/2 (bold horizontal line).

pling parameter J), vanishing for large distances r and
being normalized as VErc(r) = 1. In fact, this scaling is
natural for a large class of models as further discussed in
Appendix B.

Let us focus first on the ∆τ -dependence of the internal
correlation function. We present in Fig. 12 the rescaled
correlation function y = Cint[v](r)/δv2int(∆τ) as a func-
tion of r for LSM-B with J = 0, J = 0.1 and J = 1.
A perfect data collapse is observed for each J confirming
thus Eq. (57). Since δv2int(∆τ) ∝ 1/∆τ for the presented
sampling times, we could have also used as vertical axis
Cint[v](r,∆τ)×∆τ to scale the data. Importantly, the di-
mensionless scaling variable y is more general allowing the
scaling for all ∆τ , i.e. also for ∆τ � τb.
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Fig. 13. Isotropic projections Ctot[v](r,∆τ) and Cext[v](r,∆τ)
for LSM-C with α = 2, J = 0 and L = 256. Also indicated is
the imposed asymptotic limit C[b](r) ≈ 0.04/r2 (bold solid
line) for large ∆τ and V for both correlation functions. While
Cext[v](r,∆τ) ≈ C[b](r) for ∆τ � τb, Ctot[v](r,∆τ) is seen to
converge much more slowly to the large-∆τ limit.

Turning to the r-dependence we note that Eq. (57)
implies that Cint[v](r,∆τ, V ) should level off to a plateau
with αδv2int(∆τ) > 0 for sufficiently large r � ξ?.

17 As
emphasized by the bold horizontal lines in Fig. 11 and
Fig. 12 this is indeed the case. Moreover, the latter figure
confirms α = 1/2, i.e. quite generally we have Cint[v](r)→
δv2int(∆τ)/2 for large r. That Cint[v](r) becomes a finite
constant for large r, albeit the instantaneous xtr-field is
decorrelated, has to do with the definition of the vr-field,
Eq. (30), as further explained in Appendix B.1. As can
be seen from the latter calculation the function c(r) for
LSM-A with J = 0 has a jump singularity at r = 0,
Eq. (96). That this is also the case for all other models
with J = 0 can be seen for LSM-B in Fig. 12 (arrow). This
becomes different if the interaction between the springs is
switched on (J > 0). As seen in Fig. 11 and Fig. 12 we
then observe for r � ξ? a continuous exponential decay
Cint[v](r) ∝ c(r) ∝ exp(−r/ξind) with a finite induced
correlation length ξind weakly increasing with J .

Moreover, as can be also seen in Fig. 11, the internal
correlations increase in the first r-regime with V . Confirm-
ing the V -dependence indicated in Eq. (57), a systematic
comparison of a broad range of L reveals that Cint[v](r) ∝
V for small r while it is strictly V -independent for large r
(not shown). Due to both contributions the volume aver-
age ErCint[v](r) is thus V -independent consistently with
the V -independence of δv2int(∆τ) demonstrated above (cf.
Fig. 5 and Sec. 4.4). 18

The scaling of Cext[v](r,∆τ) and Ctot[v](r,∆τ) with
∆τ is illustrated in Fig. 13. We present here data ob-
tained for LSM-C with α = 2, J = 0 and L = 256. Im-
portantly, both Ctot[v](r,∆τ) and Cext[v](r,∆τ) must ap-
proach for sufficiently large ∆τ the (known) asymptotic

17 According to Eq. (57) and assuming c(r) to be continuous,
the crossover length ξ? may be defined by c(r = ξ?) ≈ 1/V .
18 Data collapse for different V and J > 0 can be achieved
(not shown) by obtaining first c(r) = (2y − 1)/V and by plot-
ting then c(r)/c(0) as a function of x = r/ξind(J, V ).

Fig. 14. Isotropic projection Cext[v, 0](r,∆τ) for LSM-D
for different J . A δ(r)-peak is observed for J = 0 while
Cext[v, 0](r,∆τ) ∝ exp(−r/ξind(J)) for J > 0.

limit C[b](r) ≈ 0.04/r2 (bold solid line) imposed by con-
struction. Nk = 1000 is used for ∆τ ≤ 103 to improve
the precision of the Nk-extrapolation for the external cor-
relation function. While Cext[v](r,∆τ) becomes rapidly
∆τ -independent (∆τ � τb) several orders of magnitude
larger sampling times are needed for Ctot[v](r,∆τ). This
is caused by the internal contribution Cint[v](r,∆τ) ∝
1/∆τ to the total correlation function. This is also re-
sponsible for the leveling-off of Ctot[v](r,∆τ) for large
r � rne(∆τ) with rne(∆τ) being a crossover distance
defined by Cint[v](rne, ∆τ) = Cext[v](rne). For the same
reasons that δvtot(∆τ, V ) is problematic for the deter-
mination of the system-size exponent γ, only computing
Ctot[v](r,∆τ) for one ∆τ may incorrectly suggest a weak
(possibly long-ranged) decay of the correlations. Only the
r-regime where the data sets for the largest available ∆τ
clearly collapse can be used. This would be in the pre-
sented case less than an order of magnitude. Similar be-
havior has been found for all LSM versions.

As a last example we come back to LSM-D and present
the isotropic (p = 0) external correlations Cext[v, 0](r) for
different J obtained for ∆τ � τb(J). This is shown in
Fig. 14 using half-logarithmic coordinates. As expected
from the imposed (quenched) anisotropic a- and b-fields
of the LSM-D (Table 1) a δ(r)-peak at the origin is ob-
served if all spring interactions are switched off (J = 0). At
variance with this the external correlation functions decay
exponentially for J > 0. Apparently, the corresponding in-
duced correlation length ξind(J) increases with J but re-
mains finite. The range of the correlations thus increases
but stays short-ranged in agreement with the exponent
γ = 1/2 seen in Fig. 8.

6 Conclusion

Extending recent work on stochastic processes in non-
ergodic macroscopic systems [2–4] we have investigated
the different types of spatial correlation functions C(r)
related to the macroscopic variances δO2 of observables
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O[x] of time-series x. As reminded in Sec. 4 the stan-
dard total variance δO2

tot(∆τ) is the sum of an internal
variance δO2

int(∆τ) and an external variance δO2
ext(∆τ),

cf. Eq. (1). While δOint(∆τ) ' 1/
√
∆τ for ∆τ � τb,

δOext(∆τ, V ) ' ∆ne(V ) becomes constant. One motiva-
tion of this work was to understand the V -dependence of
the non-ergodicity parameter ∆ne in systems with (pos-
sibly long-ranged) spatial correlations. As discussed in
Sec. 5 and Appendix A, assuming O[x] to be a spatial
average of a local field Or, the three global variances can
be written as volume averages of the three spatial corre-
lation functions Ctot(r), Cint(r) and Cext(r) and, more-
over, Ctot(r) = Cint(r) + Cext(r) holds. The ∆τ - and V -
dependences of the global variances can thus be traced
back to the internal and external correlation functions
Cint(r) and Cext(r).

Focusing on the arithmetic mean O[x] = m[x] = Etxt
and especially on the empirical variance O[x] = v[x] =
Vtxt of time-series (cf. Sec. 3) we illustrated the various
general theoretical relations by means of MC simulations
of variants of a simple lattice spring model (LSM) in two
dimensions characterized by two quenched and spatial cor-
related fields (Table 1). We have especially investigated
δvint(∆τ, V ) and δvext(∆τ, V ) and the corresponding cor-
relation functions Cint[v](r, ∆τ, V ) and Cext[v](r, ∆τ, V ).
As discussed in Sec. 5.2 and Appendix B, under general
assumptions the internal correlation function is given by
Eq. (57), i.e. it decreases inversely with ∆τ for ∆τ � τb
and becomes constant, Cint[v](r, ∆τ, V ) ' δv2int(∆τ)/2,
for large r (cf. Fig. 12) albeit the primary instantaneous
field xtr is decorrelated. The external correlation func-
tion becomes ∆τ -independent for ∆τ � τb (cf. Fig. 13).
The last statement requires a proper Nk-extrapolation
by means of Eq. (53) or that the data are sampled us-
ing sufficiently large ∆τ and Nk, i.e. the correction term
Cint[v](r, ∆τ, V )/Nk in Eq. (53) must be negligible. Im-
portantly, Cint[v](r, ∆τ) � Cext[v](r) for small ∆τ , large
V and large r. In these limits and due to large crossover
effects Ctot[v](r, ∆τ) may deviate from its large-∆τ limit
Cext[v](r). This may lead to an overestimation of the range
of correlations as shown in Fig. 13. Additional illustrations
of the pertinent relations will be given in a paper currently
under preparation focusing on shear-stress fields.
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A Spatial correlations of periodic microcells

A.1 Some useful general relations

Let us begin by stating several useful general relations for
spatial correlation functions of d-dimensional, real, dis-
crete and periodic fields. As defined by Eq. (13) or Eq. (14)
we consider the instantaneous correlation functionK[yr](r)
of a field yr of volume average y ≡ Eryr. Obviously,

K[yr − y](r) = K[yr](r)− y2. (58)

Let us assume that the field ylr additionally depends on an
index l. We use below the averages yl = Erylr, yr = Elylr
and y = Elyl = Eryr. Rewriting Eq. (58) and summing
over l gives

ElK[ylr − yl](r) = ElK[ylr](r)−Ely2l . (59)

Also it is seen by expansion using Eq. (13) that

ElK[ylr− λyr](r) = ElK[ylr](r)− λ(2− λ)K[yr](r) (60)

for any real constant λ.
We remind that Vlyl = Ely2l −y2 = El(yl−y)2. Using

again Eq. (58) and the periodicity of the grid the variance
Vlyl may be written as the volume average

Vlyl = ErC(r) with (61)

C(r) ≡ ElK[ylr − y](r) ≡ ElK[ylr](r)− y2 (62)

being the l-averaged correlation function in real space. By
comparing Eq. (59) and Eq. (62) we may also write

C(r) = ElK[ylr − yl](r) + Vlyl (63)

which using Eq. (61) implies ErElK[ylr − yl](r) = 0. It is
useful to state two important limits for C(r): (i) At the
origin we have

C(r = 0) = Vlr′ylr′ = ElVr′ylr′ + VlEr′ylr′ (64)

and (ii) C(r) exactly vanishes if and only if

ElEr′yr′+ryr′ = ElEr′yr′+r ×ElEr′yr′ = y2 (65)

as it happens for most (albeit not all) fields for sufficiently
large r = |r|. See Appendix B.1 for an exception relevant
for the present study.

Moreover, with z = Erzr being an l-independent quan-
tity it follows from Eq. (61) that

Vl(yl − z) = Er ElK[(ylr − zr)− (y − z)](r). (66)

Since Vlyl = Vl(yl − z) this implies quite generally that

ErElK[δylr](r) = ErElK[δylr − δzr](r) (67)

with δylr = ylr − y and δzr = zr − z, i.e. the correlation
function of a field ylr can be shifted by an l-independent
field zr without changing the l-averaged volume average.
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A.2 Derivation of correlation functions

Using these general relations it is readily seen that the
correlation functions defined as

Ctot(r) ≡ ElK[Olr −O](r) = ElK[Olr](r)−O2 (68)

Cext(r) ≡ EcK[Ocr −O](r) = EcK[Ocr](r)−O2 (69)

Cint(r) ≡ EcEkK[Ockr −Ocr](r) (70)

are consistent with Eqs. (3-6). The index l runs again over
all independent configurations c and all time-series k for
each c and the expectation value O is defined in Eq. (32).
The corresponding equations in reciprocal space are given
in Sec. 5.1, Eqs. (47-49). That Eq. (68) is consistent with
δO2

tot = ErCtot(r) and Eq. (69) with δO2
ext = ErCext(r)

is directly implied by Eq. (61) and Eq. (62). To show that
Eq. (70) is consistent with δO2

int = ErCint(r) and that all
three correlation functions sum up according to Eq. (6)
let us first note that due to Eq. (60) for λ = 1 the internal
correlation function may be rewritten as

Cint(r) = Ec
{
EkK[Ockr](r)−K[Ocr](r)

}
. (71)

Using Eq. (68) and Eq. (69) this implies Cint(r) = Ctot(r)−
Cext(r) in agreement with the key relation Eq. (6) stated
in the Introduction. In turn we thus have

ErCint(r) = Er (Ctot(r)− Cext(r))

= δO2
tot − δO2

ext = δO2
int (72)

where we have used Eq. (1) in the last step.
Please note that due to Eq. (67) δO2

int = ErCint(r)
would also be solved by the more general internal correla-
tion function

Cint(r, λ) ≡ EcEkK[(Ockr −Oc)− λ(Ocr −Oc)](r) (73)

which reduces to Eq. (70) for λ = 1, since it is possible
to shift Ockr − Oc with the k-independent field λ(Ocr −
Oc) without changing the k-averaged volume average. The
trouble with such alternative definitions is that Eq. (6)
does not hold anymore in general, e.g., it can be shown
that Eq. (73) leads to

Ctot(r) = Cint(r, λ)+λ(2−λ)Cext(r)+(λ−1)2δO2
ext. (74)

Due to the last term and since δO2
ext > 0 for non-ergodic

systems all three correlation functions may in principle
only vanish for the same r for λ = 1 and for exactly this
limit Eq. (74) reduces to Eq. (6). We therefore set λ = 1.

A.3 Important limits

We have omitted for clarity in the preceding subsection all
possible dependences on Nc, Nk, ∆τ and V . However, it
is assumed below that Nc and Nk are arbitrarily large, i.e.
all properties are Nc- and Nk-independent. Moreover, we
focus on the limit ∆τ � τb, i.e. both Ocr = EkOckr and
its average O = EcErOcr are ∆τ -independent to leading

order. Due to Eq. (69) the same holds for the external
correlation function, i.e.

Cext(r, ∆τ, V ) ' Cext(r, V ) for ∆τ � τb. (75)

The indicated V -dependence drops out if Ocr is V -inde-
pendent as in all the models of this work.

The internal correlation function, Eq. (70), character-
izes the correlations of the difference Ockr(∆τ) − Ocr.
While Ockr(∆τ) depends in general not only on k but also
on ∆τ , both dependences drop out for ∆τ → ∞. Hence,
Ockr(∆τ)→ Ocr and in turn

lim
∆τ→∞

Cint(r, ∆τ, V ) = 0. (76)

To obtain the internal correlation function for finite ∆τ �
τb it should be remembered that Ockr(∆τ) is a time-
averaged moment over Nt = ∆τ/δτ data entries from one
stored time-series. The internal correlation function can
thus be written as an average

Cint(r = r2 − r1, ∆τ, V ) = EcEr1
(
Et1Et2Ek . . .

)
(77)

over entries measured at discrete times t1 and t2. A specific
example is worked out in Appendix B.1. If one assumes
for simplicity that δτ � τb only contributions with t1 =
t2 can contribute. Using also that the time-average Et is
normalized by Nt ∝ ∆τ , this shows that quite generally
the internal correlation function must decay to leading
order for all r as

Cint(r, ∆τ, V ) ∝ 1

∆τ
for ∆τ � τb (78)

as expected from δO2
int(∆τ) = ErCint(r) ∝ 1/∆τ .

B Scaling of Cint[v](r, ∆τ, V )

B.1 Predictions for LSM-A

As noted in Appendix A.1, all correlation functions C[f ](r)
discussed in the present work must vanish if Eq. (65)
holds, i.e. if two typical points of the field f at a respec-
tive distance r are uncorrelated. Here we draw attention to
the fact that although the primary instantaneous field xtr
may be uncorrelated this may not be the case for the field
Or associated to the time-averaged functional O[x] of the
time-series x.19 As we shall see, this matters specifically
for the covariance field, Eq. (30),

vckr = V
{
Etxcktrxckt − xckrxck

}
= Sr′

{
Etxcktrxcktr′ −EtEt

′
xcktrxckt′r′

}
(79)

restated for convenience omitting the irrelevant prefactor
β and introducing the sum Sr′ ≡ VEr′ . In the second
step we have made explicit the crucial contributions with
r′ 6= r to the averages xckt and xck.

19 As seen using Eq. (83) this is, however, the case for mr =
Etxtr for decorrelated primary instantaneaous fields xtr.
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case EkA1A2 EkA1B2 EkA2B1 EkB1B2

1. r1 = r2 = r3 = r4 2b2cr1/Nt 3b2cr1/N
2
t 3b2cr1/N

2
t b2cr1/N

3
t

2. r1 = r2 6= r3 = r4 bcr1(Sr3 6=r1bcr3)/Nt b2cr1(V − 1)/N2
t b2cr1(V − 1)/N2

t b2cr1(V − 1)/N2
t

3. r1 = r3 6= r2 = r4 0 0 0 bcr1bcr2/N
2
t

4. r1 = r4 6= r2 = r3 bcr1bcr2/Nt bcr1bcr2/N
2
t bcr1bcr2/N

2
t bcr1bcr2/N

2
t

Table 2. k-averages EkA1A2, EkA1B2, EkA2B1 and EkB1B2 for LSM-A. The different relevant cases for r1, r2, r3, r4 are
indicated in the first column. Note that r = |r| with r = r2 − r1. The first two cases indicate contributions for r = 0, the last
two cases contributions for r > 0. EkA1B2 and EkA2B1 are identical by symmetry. The leading contributions of order O(∆τ−1)
are due to EkA1A2 (second column). The second case (r1 = r2 6= r3 = r4) yields contributions proportional to the system size.

Without restricting the generality of the argument let
us focus on the model LSM-A with J = 0, i.e. the xcktr
of different microcells r are uncorrelated. Ultimately, we
want to expand vckr for large ∆τ . Reminding Eq. (31) it
is thus useful that the xcktr in Eq. (79) can be replaced
by δxcktr ≡ xcktr − acr without changing vckr. Moreover,
let us assume that the data is sampled with large time
increments δτ � τb, i.e. different times t′ and t′′ can be
considered to be uncorrelated. This implies that

Ekδxp
′

ckt′r′δx
p′′

ckt′′r′′ = Ekδxp
′

ckt′r′E
kδxp

′′

ckt′′r′′ (80)

whenever t′ 6= t′′ or r′ 6= r′′ (p′ and p′′ being integers) and,
moreover, the following useful relations hold:

EtEt
′
δtt′ = 1/Nt, (81)

Ekδxcktr = 0, (82)

Ekδxcktrδxckt′r′ = bcr δrr′δtt′ , (83)

Ekδx2cktrδx
2
cktr′ = 3b2cr δrr′ + bcrbcr′(1− δrr′). (84)

We have used above that the lattice springs are Gaus-
sian variables, Eq. (12), i.e. for each independent spring of
length xcr (dropping the indices k and t) we have 〈δxcr〉 =
0,
〈
δx2cr

〉
= bcr and

〈
δx4cr

〉
= 3b2cr with 〈. . .〉 denoting the

thermal average within each basin c. Using Eqs. (81-83)
we obtain, e.g., the k-average

vcr = Ekvckr = bcr (1− 1/Nt) (85)

and, hence, the total average v = EcErvcr = b(1 − 1/Nt)
with b = EcErbcr.

To compute the internal correlation function we write

Cint[v](r) = EcCc(r) with (86)

Cc(r) = EkK[(vckr − bcr)− (vcr − bcr)](r) (87)

= EkK[vckr − bcr](r)−K[vcr − bcr](r) (88)

using Eq. (71) in the last step. Due to Eq. (85) it is clear
that the second term in Eq. (88) is of order O(∆τ−2) We
can focus on the first term which we rewrite as volume
average Er1C̃c(r1, r2 = r1 + r) with

C̃cr1r2(r1, r2) ≡ Ek(vckr1 − bcr1)(vckr2 − bcr2) (89)

= Ek(A1 −B1)(A2 −B2) (90)

where Eq. (79) is used for the definition of the terms

A1 = Sr3Et1 (δxckt1r1δxckt1r3 − bcr1δr1r3) , (91)

A2 = Sr4Et2 (δxckt2r2δxckt2r4 − bcr2δr2r4) , (92)

B1 = Sr3Et1Et3δxckt1r1δxckt3r3 and (93)

B2 = Sr4Et2Et4δxckt2r2δxckt4r4 . (94)

We expand the different contributions and k-average using
the identities Eqs. (80-84). As summarized in Table 2 it
is helful to distinguish four cases for r1, r2, r3 and r4.
Most contributions are of order O(∆τ−2) and only three
contributions of EkA1A2 (second column) do matter. A
central result is that due to the last case (r1 = r4 6= r2 =
r3), the internal correlation function must remain finite
for r > 0. Note also that all terms for the second case
(r1 = r2 6= r3 = r4) increase linearly with V due to the
sum Sr3Sr4δr3r4(1−δr1r3). In fact, using bc = Er3bcr3 , the
indicated term for EkA1A2 can be rewritten as

bcr1(Sr3 6=r1bcr3)/Nt = bcr1bcV/Nt − b2cr1/Nt. (95)

We finally average over r1 and c using that the bcr′ are
decorrelated for different r′. Summarizing all terms we
obtain to leading order

Cint[v](r) ' b2

Nt
×
{
V + 1 for r = 0,
1 for r > 0.

(96)

As a consequence δv2int(∆τ, V ) = ErCint[v](r) = 2b2/Nt ∝
V 0/∆τ , as expected.

B.2 Scaling for general Gaussian fields

It is clear that the above result can be generalized to other
models with short-range correlations and general δτ in-
cluding δτ � τb. This merely requires a renormalization
of space and time. Especially this suggests to replace 1/Nt

by δv2int(∆τ). It is in this context of relevance that the
above result Eq. (96) can be recast as

Cint[v](r) ' {V (1− α)c(r) + α} δv2int(∆τ) (97)

with Src(r) = 1, c(r) → 0 for large r (with r 6= 0 for
LSM-A) and α = 1/2. Note that ErCint[v](r) = δv2int(∆τ)
holds for all coefficients α. As discussed in Sec. 5.2, the nu-
merical results of all our LSM variants are consistent with
this generalization of the direct calculation for the simple
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LSM-A model. (As far as we can tell this even holds rea-
sonably for systems with long-range correlations.) There
is in fact a general reason for expecting Eq. (97) to hold for
many models: For a given c the xtr-fluctuations are often
nearly Gaussian. [For the LSM variants the joint distri-
butions of the xtr are in fact exactly Gaussian since the
total energy is quadratic in xtr, Eq. (12).] This allows for a
theoretical treatment of Cint[v](r) based on the cumulant
formalism (“Wick’s theorem”) similar to the calculation
which leads to Eq. (45) for the global variance δv2int(∆τ)
[20,2]. It is thus possible to show that Eq. (97) must hold
for general fluctuating Gaussian fields with α = 1/2. This
calculation is beyond of the scope of the present work.
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