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Abstract. We investigate simple models for strictly non-ergodic stochastic processes xt (t being the discrete
time step) focusing on the expectation value v and the standard deviation δv of the empirical variance v[x]
of finite time series x. xt is averaged over a fluctuating field σr (r being the microcell position) characterized
by a quenched spatially correlated Gaussian field gr. Due to the quenched gr-field δv(∆τ) becomes a finite
constant, ∆ne > 0, for large sampling times ∆τ . The volume dependence of the non-ergodicity parameter
∆ne is investigated for different spatial correlations. Models with marginally long-ranged gr-correlations
are successfully mapped on shear-stress data from simulated amorphous glasses of polydisperse beads.

1 Introduction

It is common to characterize a stochastic process x(τ) [1]
using ensembles {x} of discrete time series

x = {xt = x(τt = tδτ), t = 1, . . . , nt} (1)

with τ being the continuous time, t the discrete time, δτ
the time interval between the equidistant measurements
and ∆τ = ntδτ the experimentally or computationally
available “sampling time” [2,3,4,5,6]. Let us denote by
O[x] a functional of a given time series x. If the stochastic
process x(τ) is ergodic [7], the expectation value O and the
standard deviation δO of O[x] may be obtained by either
averaging over ensembles {xc, c = 1, . . . , nc} of indepen-
dent “configurations” c (“c-averaging”) or over ensembles
{xk, k = 1, . . . , nk} of time series k of one large trajec-
tory c (“k-averaging”) exploring a significant representa-
tive part of the generalized phase space of the system. It
is thus sufficient for such ergodic systems to characterize
the time series x by one index c or k.1

The ergodicity hypothesis is in fact violated in many
physical, biological and socio-economic systems, i.e. even
very long “c-trajectories” remain trapped (at least in prac-
tice) in “meta-basins” of a generalized phase space [1,5,6,
7,8,9]. (For Hamiltonian dynamical systems such basins
correspond simply to valleys of the potential energy land-
scape [8], for more general stochastical dynamical schemes
to valleys of the relevant free energy landscape quantified
by the minimal external work needed to quasistatically
push the system into a specific state point.) Modelling
the statistics and dynamics of such non-ergodic processes
has become of paramount importance, especially in con-
junction with advanced experimental techniques, such as

a joachim.wittmer@ics-cnrs.unistra.fr
1 We assume nc � 1 and nk � 1 throughout this work.

single particle tracing in cells [10]. Importantly, a time se-
ries xck must now be characterized by two indices c and k
and it becomes crucial in which order c- and k-averages are
taken [6]. As a consequence, the standard total variance

δO2
tot(∆τ) = δO2

int(∆τ) + δO2
ext(∆τ) (2)

is the sum of two contributions characterizing, respec-
tively, the internal variance within each c and the external
variance between different c. Moreover, for large sampling
times δOint → 0 while δO(∆τ) ' δOext(∆τ) approaches
for non-ergodic systems a positive definite constant ∆ne ≡
lim∆τ→∞ δOext(∆τ). This is the relevant “non-ergodicity
parameter” [5,6] of this study. (See Sec. 2.2 for more de-
tails.) Fortunately, ∆ne decreases generally with the sys-
tem volume V for processes with a large number nr ∝ V
of more or less independent microcells [5].

One goal of the present work is to introduce some use-
ful operator notations allowing to characterize concisely
fluctuations of ensembles of non-ergodic systems and to
illustrate the above statements by means of various simple
stochastic models which can be treated (essentially) ana-
lytically. Moreover, we attempt to describe the system-size
dependence of ∆ne by means of two-point spatial correla-
tion functions of an effective quenched microscopic field
gr related to the k-averaged standard deviation sr of a
microscopic fluctuating field σr (r labeling the microcell
position). As in our recent studies [3,4,5,6] we focus on
the empirical variance v[x] (defined in Sec. 2.3) and the
corresponding expectation value v(∆τ) and the standard
deviations δvint(∆τ) and δvext(∆τ). One important mo-
tivation is that many physical quantities can be obtained
by equilibrium molecular dynamics (MD) or Monte Carlo
(MC) simulations [11,12] using fluctuation dissipation re-
lations [7,11,13,14,15,16]. Understanding how the respec-
tive variances and their standard deviations depend on the
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length ∆τ of the production runs and the simulation box
volume V is thus crucial [3,4,5,6,16].

We recall first in Sec. 2 recent results [4,5,6] and dis-
cuss then in Sec. 3 the V -dependence of various properties
and, more specifically, how ∆ne(V ) may depend on spatial
correlations (Sec. 3.3) under the physically motivated con-
straint that the expectation value of the variance v must
be V -independent (Sec. 3.2). We turn then in Sec. 4 to the
description of different imposed gr-distributions (Sec. 4.2).
Model variants are mapped in Sec. 5 onto simulated data
obtained from the shear stresses in amorphous glasses [2,4,
5,6]. Our results are summarized in Sec. 6. The numerical
generation of spatially correlated Gaussian fields is dis-
cussed in Appendix A and an alternative quenched field
important for future work [17] in Appendix B.

2 Makroscopic properties

2.1 Some useful notations

It is useful to introduce a few notations. The l-average
operator

ElOlmn... ≡
1

nl

nl∑
l=1

Olmn... ≡ Omn...(nl) (3)

takes a property Olmn... depending possibly on several in-
dices l,m, . . . and projects out the specified index l, i.e. the
l-average Omn...(nl) does not depend any more on l, but it
may depend on the upper bound nl as marked by the ar-
gument. Introducing the power-law operator PαO ≡ Oα,
with the exponent α = 2 being here the only relevant case,
and using the standard commutator [A,B] ≡ AB −BA
for two operators A and B, the l-variance operator is de-
fined by Vl ≡ [El,P2]. Note that the l-variance

δO2
mn...(nl) ≡ VlOlmn... (4)

depends as well in general on the upper bound nl. For
many cases considered below Olmn...(nl) and δOlmn...(nl)
converge for large nl (formally nl → ∞) or become sta-
tionary for the experimentally and numerically accessi-
ble nl-range. This limit is denoted by Omn... and δOlmn...
without the argument nl. As discussed in detail in Ref. [6],
we have defined Vl as an uncorrected (biased) sample vari-
ance operator without the standard Bessel correction [12],
i.e. we normalize with 1/nl and not with 1/(nl − 1). This
difference is irrelevant for all cases with nl � 1.

2.2 Extended ck-ensemble for non-ergodic systems

As stated in the Introduction, for non-ergodic systems a
time series xck must be characterized by two discrete in-
dices c and k with c standing for the independently gen-
erated configuration and k for a subset of length nt of a
much larger trajectory generated for a fixed configuration
c. Importantly, the k-averages

Oc(∆τ, nk) ≡ EkO[xck] and (5)

δO2
c (∆τ, nk) ≡ VkO[xck] (6)

depend in general not only on the sampling time ∆τ =
ntδτ and the number nk of time series probed but also on
c (as marked by the index).2 The three types of variances
mentioned in Sec. 1 are defined by

δO2
tot(∆τ) ≡ [EcEk,P2]O[xck] (7)

δO2
int(∆τ) ≡ EcδO2

c (∆τ) = EcVkO[xck] (8)

δO2
ext(∆τ) ≡ VcOc(∆τ) = VcEkO[xck]. (9)

Using the identity [EcEk,P2] = EcVk + VcEk [6], it
is seen that Eq. (2) exactly holds. The dependencies of
the variances on ∆τ , nc and nk are discussed in detail in
Ref. [6]. Importantly, the expectation value of δOtot(∆τ)
for nc → ∞ is strictly nk-independent and may also be
computed using nk = 1. δO2

tot(∆τ) is thus the standard
commonly computed variance [16,3,4,5]. The “internal
variance” δO2

int(∆τ) and the “external variance” δO2
ext(∆τ)

depend on nk in principle, however, for nk � 10 the nk-
dependence is only relevant for ergodic systems for which
δOext ∝ 1/

√
nk [6] and not for the strictly non-ergodic

systems we focus on in the present work. For sampling
times ∆τ much larger than the typical relaxation time τb
of the basins we have quite generally

δOint(∆τ) '
√
τb/∆τ

δOext(∆τ) ' ∆ne

}
for ∆τ � τb (10)

with the “non-ergodicity parameter” ∆ne defined by

∆ne ≡ lim
∆τ→∞

δOext(∆τ) ≡ δOext. (11)

Note that ∆ne > 0 only holds for strictly non-ergodic sys-
tems while ∆ne = 0 for finite τα [6]. The first asymptotic
law in Eq. (10) is due to the ∆τ/τb uncorrelated subinter-
vals for each c-trajectory while the second limit is a conse-
quence of the Oc(∆τ) becoming constant. Equation (10)
implies

δOtot(∆τ)→ ∆ne for ∆τ � τne � τb (12)

where the crossover time τne to the ∆ne-dominated regime
is given by δOint(τne) = ∆ne [6]. The numerical impor-
tance of the inequality τne � τb is emphasized below.

2.3 Stationarity

We assume that each c-trajectory in its basin is a station-
ary stochastic process whose joint probability distribution
does not change when shifted in time [1]. This may always
be achieved by tempering the system over a tempering
time τtemp � τb. To take advantage of the stationarity
condition we need to introduce several additional proper-
ties. Let us begin by defining the “empirical sample vari-
ance” v[x] ≡ Vtxt of a time series x. By taking the k-
average vc ≡ Ekv[xck] we obtain the expectation values

2 We assume in the present work that the longest relaxation
time τα of the system becomes arbitrarily large, i.e. especially
∆τ � τα. The c-dependence drops out for ergodic systems
with finite τα and ∆τ � τα. See Sec. 2.2.9 of Ref. [6] for the
nc-, nk- and ∆τ -dependences in the latter limit.
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for each configuration c. The expectation value over the
complete {xck}-ensemble is then given by the c-average
v ≡ Ecvc. While nc and nk are assumed to be arbitrar-
ily large, nt is in general finite and for this reason vc(∆τ)
and v(∆τ) are apriori ∆τ -dependent as marked by the ar-
guments. The relaxation processes may be characterized
using functionals over x with a discrete time lag t (with
t = 0, . . . , nt − 1) such as the “gliding average” [11]

c[x; t] =
1

nt − t

nt−t∑
i=1

xi+txi. (13)

We emphasize that the sum over i is merely done to en-
hance the statistics since a stationary stochastic process
does not change when shifted in time. As above we ob-
tain by k-averaging the “autocorrelation function” (ACF)
cc(τ) ≡ Ekc[xck; t] for a given configuration c and in turn
by c-averaging the ACF c(τ) ≡ Eccc(τ) of the entire ck-
ensemble. It is useful to introduce the differences

hc(τ) ≡ cc(0)− cc(τ) and h(τ) = c(0)− c(τ). (14)

A crucial point is that for stationary processes the sam-
pling time dependence of vc(∆τ) and v(∆τ) can be traced
back to, respectively, hc(τ) and h(τ). To state this com-
pactly let us introduce the linear operator

L∆τ [f ] ≡ 2

n2t

nt−t∑
t=1

(nt − t)f(t) (15)

≈ 2

∆τ2

∫ ∆τ−τ

0

dτ (∆τ − τ)f(τ) (16)

where the first line states the discrete definition and the
second line its continuum limit using that τ = tδτ and
∆τ = ntδτ . Note that for a being a constant L∆τ [a] = a
and this also holds if f(τ) ≈ a for a finite but large time
window [3,5]. Following the demonstration given, e.g., in
Sec. 2.2 of Ref. [5], for the ergodic limit it can be seen that
the stationarity assumption implies

vc(∆τ) = L∆τ [hc] (17)

for each stationary configuration c.3 Since [Ec,L∆τ ] = 0
we have similarly

v(∆τ) = Ecvc(∆τ) = L∆τ [Echc] = L∆τ [h] (18)

for the ck-ensemble. The above relations Eq. (17) and
Eq. (18) imply that vc(∆τ) and v(∆τ) must vary strongly
for sampling times ∆τ corresponding to strong relaxation
processes, i.e. for times τ ≈ ∆τ where hc(τ) and h(τ)
strongly increase. On the other side vc(∆τ) and v(∆τ)
become constant in ∆τ -windows without or with few re-
laxation processes. The large time plateau values

hc ≡ lim
τ→∞

hc(τ) and vc ≡ lim
∆τ→∞

vc(∆τ) (19)

3 Eq. (17) is equivalent to hc(τ) = (τ2vc(τ)/2)′′ with the
prime denoting a derivative with respect to τ . This relation is
closely related to the equivalence of the Green-Kubo formula
and the Einstein relation for transport coefficients [5].

Fig. 1. Illustration of several properties for a Maxwell model.
The ACF is given by c(τ) = exp(−u), with u = τ/τb being
the reduced time and the non-ergodicity parameter ∆ne = 0.1.
We set h = v = 1 and ∆ne/v = 0.1. c(τ) is indicated by the
thin solid line, h(τ) = c(0)− c(τ) by the thin dot-dashed line,
v(∆τ) determined according to Eq. (20) by the dashed line.
δvext(∆τ) is obtained using Eq. (22), δvint(∆τ) using Eq. (27)
and δvtot(∆τ) using Eq. (2).

(and similarly for h and v) are relevant for times exceeding
the basin relaxation time τb. It follows from Eq. (17) that
hc = vc and from Eq. (18) that h = v.

We illustrate various points made above by means of a
Maxwell (Debye) model [5,13,18], i.e. we assume a stochas-
tic process with one single exponentially decaying relax-
ation pathway. (More generally, response functions and
correlation functions of many processes are successfully
fitted by a linear superposition of a finite number or a
distribution of such Maxwell modes [18].) This is pre-
sented in Fig. 1. The ACF c(τ) of the ck-ensemble is
given by c(τ) = exp(−u) as a function of the reduced
time u = τ/τb using double logarithmic coordinates. It
follows from Eq. (18) that [3,5]

v(∆τ) = 1− [exp(−∆u)− 1 +∆u] 2/∆u2 (20)

for ∆u = ∆τ/τb. Let us for simplicity additionally as-
sume that hc(τ) is given by the product of a c-dependent
constant and a c-independent time-dependence, i.e.

hc(τ) = pch(τ) with pc ≥ 0 and Ecpc = 1. (21)

With Eq. (17) and Eq. (18) this yields vc(∆τ) = pcv(∆τ).
Using Eq. (9) we have δv2ext(∆τ) = (Vcpc) v(∆τ)2 which
leads with Eq. (11) to

δvext(∆τ)/∆ne = v(∆τ)/v. (22)

As seen in Fig. 1 for ∆ne = 0.1, δvext(∆τ) converges much
faster than δvtot(∆τ) to the common large-∆τ limit ∆ne.

2.4 Gaussianity

As further discussed in Sec. 3 many non-ergodic stochastic
processes are in fact Gaussian within each meta-basin.
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Using exactly the same arguments put forward in Sec. 3.3
of Ref. [5] for ergodic Gaussian stochastic processes it can
be shown using Wick’s theorem, Eq. (44), that δvc(∆τ) is
then given by a functional δvG[hc] of the autocorrelation
function hc(t). This functional is defined by [4,5]

δv2G[f ] ≡ 1

2n4t

nt∑
i,j,k,l=1

g2ijkl with

gijkl ≡ (fi−j + fk−l)− (fi−l + fj−k) (23)

for any well-behaved function f(t). Numerically better be-
haved reformulations of Eq. (23) are discussed in Ref. [5].
With a and b being real constants we have

δvG[a] = 0 and δvG[b(f − a)] = |b| δvG[f ] (24)

and, hence, δvG[hc] = δvG[cc]. Equation (8) implies then

δv2int(∆τ) = Ecδv2c (∆τ) = Ecδv2G[hc] (25)

≈ δv2G[Echc] = δv2G[h] (26)

where the second line is an approximation replacing hc(t)
by its c-average h(t). This approximation is useful since
hc(t) is not known in general, but rather h(t) or v(∆τ).

Assuming again that Eq. (21) holds it is seen using the
affinity relation Eq. (24) and Eq. (22) that

δv2int(∆τ) = (1 + ε) δv2G[h] with ε = Vcpc. (27)

Note that commonly ε � 1, i.e. δvint(∆τ) ≈ δvG[h] in
agreement with Eq. (26). As discussed in Sec. 3 and Sec. 4,
ε → 0 for large systems with more or less independent
microcells and the technical assumption Eq. (26) thus
becomes increasingly rigorous. Equation (27) is also in-
dicated in Fig. 1 (bold solid line). We take advantage
of the fact that Eq. (23) can be solved analytically for
the Maxwell model [5]. An important point is here that
δvint(∆τ) may quite generally become large, in fact of or-
der of the expectation value v(∆τ), if ∆τ corresponds to
a relaxation time of the system. This is seen in Fig. 1 by
the strong peak of δvint(∆τ) at u = ∆τ/τb ≈ 6. Note also
that the total standard deviation δvtot(∆τ) obtained from
δvint(∆τ) and δvext(∆τ) is given by δvtot(∆τ) ≈ δvint(∆τ)
for ∆τ � τne and by δvtot(∆τ) ≈ δvext(∆τ) ≈ ∆ne in the
large-∆τ limit.

3 System size effects

3.1 Phenomenological exponents

Stochastic processes of many systems are to a good ap-
proximation Gaussian since xt = Erxrt averages over many
(nr � 1) microscopic contributions xrt and the central
limit theorem applies [1]. Albeit the xrt may be spatially
correlated (as discussed below) the fluctuations commonly
decrease with nr. As a consequence, h(τ) and the related
variances generally decrease with the system size. Assum-
ing scale-free correlations one may write [5]

h(τ) ∝ v(∆τ) ∝ δvG[h] ∝ δvint(∆τ) ∝ 1/nγ̂intr (28)

δvext(∆τ) ∝ ∆ne ∝ 1/nγ̂extr (29)

Fig. 2. System-size dependence of v(∆τ) and the correspond-
ing standard deviations for the Maxwell model already pre-
sented in Fig. 2. It is supposed that ∆ne = 1/

√
V and

∆u = ∆τ/τb = 1000. Even for such a huge sampling time
it would be impossible to fit the correct exponent γext = 1/2
from the total standard deviation δvtot(∆τ, V ).

with γ̂int and γ̂ext being phenomenological exponents. That
the asymptotic system-size effects for h(τ) and v(∆τ) are
the same is due to Eq. (18). For Gaussian stochastic pro-
cesses Eq. (26) implies the same exponent γ̂int for δvG[h]
and δvint(∆τ). As recalled in Ref. [6] γ̂int = 1 and γ̂ext =
3/2 for strictly uncorrelated variables xr. The uncorre-
lated reference with γ̂int = 1 is often included into the
definition of the data entries by rescaling xt by a factor
proportional to

√
nr.

4 Hence, γ̂int ⇒ γint ≡ γ̂int − 1 and
γ̂ext → γext ≡ γ̂ext − 1 in the above relations, i.e. γint = 0
and γext = 1/2 for rescaled uncorrelated variables xtr.

As an example we present in Fig. 2 the system-size de-
pendence of the Maxwell model already discussed. We set
∆ne = 1/

√
V and V = nr. Eq. (21) is again assumed and

thus in turn also Eq. (22) and Eq. (27). We focus on one
huge reduced sampling time ∆u = ∆τ/τb = 1000 where

v(∆τ) ≈ v = 1 and δvG[h] ≈
√

2/∆u [5]. δvtot(∆τ, V ) ap-
proaches the macroscopic limit δvint(∆τ) ∝ V 0 for V �
Nne ≈ ∆u/2. Importantly, a crossover regime over at least
two orders of magnitude is visible between both asymp-
totic limits. This implies that even if δvtot(∆τ, V ) is sam-
pled with a huge constant∆τ an apparent exponent γ̃ext <
γext = 1/2 may be measured due to the finite ∆τ . Expo-
nents solely obtained from δvtot(∆τ = const, V ) [16] may
thus be misleading and should be considered with caution.

3.2 Intensive thermodynamic fields

We now assume that each c-trajectory is not only station-
ary and Gaussian but also at thermal equilibrium albeit
under the constraints imposed to the meta-basin. We fo-
cus on instantaneous intensive thermodynamic variables σ

4 This rescaling is not only useful for strictly uncorrelated
variables but also for general fluctuating thermodynamic fields
as further discussed in Sec. 3.2.



G. George et al.: Simple models for strictly non-ergodic stochastic processes of macroscopic systems 5

(other than the temperature T ) which are d-dimensional
volume averages

σ = Erσr ≈
1

V

∫
dr σr (30)

over fields σr of same dimension and nr = V/δV being the
number of microcells of volume δV . Following the rescal-
ing convention made in Sec. 3.1 we use the rescaled vari-
able x ≡

√
V σ. As already stressed in Ref. [6], γint = 0

must even hold for systems with long-range correlations if
standard thermostatistics can be applied for each basin.
To see this let us remind the reader that the large-∆τ
limit vc of vc(∆τ) is equivalent to the thermodynamically
averaged variance of x for the basin. Using the standard
fluctuation-dissipation relation for the fluctuation of in-
tensive thermodynamic variables [2,7,14] it is then seen
that vc corresponds to a thermodynamic modulus of the
c-basin which must be an intensive property, i.e. γint = 0.5

Importantly, the same reasoning cannot be made for γext,
i.e. while γint = 0 must hold γext = 1/2 may not for sys-
tems with long-range spatial correlations. The remainder
of the paper illustrates this issue.

3.3 Spatial correlations for τb � ∆τ � τα

We have defined above the (generally ∆τ -depending) vari-
ance of a configuration c by vc(∆τ) = Ekv[xck] with
v[x] = Vtxt being the t-averaged empirical variance of
a given time series x. We focus now on static proper-
ties obtained by k-averaging over asymptotically long c-
trajectories and assuming τb � ∆τ � τα. In this limit not
only the ∆τ -dependence of vc(∆τ) drops out but due to
the ergodicity within each basin the time t-average can be
replaced by an ensemble k-average over the xck of basin c.
We thus lump t- and k-indices together and the operator
Ek replaces EkEt. vc is thus compactly redefined as

vc ≡ Vkxck = Ekx2ck − (Ekxck)2 = VEkδσ2
ck (31)

where we have used δσck = σck − Ekσck in the last step.
(The prefactor V stems from the rescaling convention.)
Using σck = Erσckr and δσckr ≡ σckr −Ekσckr we write

vc = VEk (Erδσckr)
2

= VEr′Er′′ Ekδσckr′δσckr′′ . (32)

We define the pair (two-point) correlation function Cc(r)
as the average of the underlined term in Eq. (32) over all
pairs r′ and r′′ = r′ + r. Hence,

vc = VErCc(r) ≈
∫

dr Cc(r) (33)

5 For the shear-stress fluctuations considered in Sec. 5, vc
corresponds to the difference µF,c = µA,c − µc of the affine
shear modulus µA,c and the quasi-static shear modulus µc [2,
3,4,5,6] of the configuration c for ∆τ →∞ with both µA,c and
µc being intensive properties.

with the first equation stating the discrete sum over all
microcells and the second relation the corresponding in-
tegral for δV → 0. Hence, v = Ecvc = VErC(r) with
C(r) ≡ EcCc(r).6

Similarly, ∆2
ne = δv2ext = Vcvc may be rewritten ex-

actly as an integral over the four-point correlation func-
tion Ec [δCc(r1 − r2)δCc(r3 − r4)] using δCc(r) = Cc(r)−
C(r). Unfortunately, without further approximations or
physical assumption this does not yield a useful expres-
sion. One natural route to make progress is to identify a
field allowing to express ∆2

ne as in integral over a two-point
correlation function. One possible field sr is obtained by
assuming that all isotropic and anisotropic contributions
to the correlation function Cc(r) of the fluctuating field
σr rapidly decay on microscopic scales. We may thus ap-
proximate vc, Eq. (32), by the spatial average

vc ≈ Ers2cr with scr ≡
(
δVEkδσ2

ckr

)1/2
(34)

being the (rescaled) quenched standard deviation of σcr.
7

(The microscopic field may be renormalized for correla-
tions of finite range.) As a consequence, v = Ecvc ≈
EcErs2cr and ∆2

ne = Vcvc ≈ VcErs2cr. Importantly, while
the fluctuating field σcr is assumed to be short-ranged,
this does not necessarily imply the same for the k-averaged
field scr. An alternative quenched field is discussed in Ap-
pendix B.

4 Simple models

4.1 Introduction

We model for analytical and numerical simplicity the stan-
dard deviations scr by spatially correlated Gaussian fields
gcr (cf. Appendix A for details), i.e. scr = |gcr|, and we fo-
cus on (static) moments and correlation functions of these
fields. The approximation Eq. (34) is raised to a postulate,
i.e. we assume that vc = Erg2cr and, hence,

v = µ2 ≡ EcErg2cr and ∆2
ne = ∆2

2 ≡ VcErg2cr (35)

hold rigorously. More generally, we denote by µl ≡ EcErglcr
the total average of the lth moment and by ∆2

l ≡ VcErglcr
the corresponding variance. Using δglcr ≡ glcr − µl we get

∆2
l = Er′Er′′Ecδglcr′δg

l
cr′′ . With Cl(r) being the average

of the underlined term over all pairs r′ and r′′ = r′ + r
this implies Cl(r = 0) = cl = µ2l − µ2

l and

∆2
l = ErCl(r) =

1

V

∫
dr Cl(r). (36)

6 vc ≥ 0 sets a constraint on possible Cc(r). Since Cc(r) =
Cc(r, n) depends on the distance r = ||r|| and the direction
n = r/r one may write Eq. (33) as an r-integral of its isotropic
average C0

c (r) over all n. Due to the imposed (asymptotic) V -
independence of vc for all basins (cf. Sec. 3.2) C0

c (r) and, hence,
C0(r) = EcC0

c (r) must decay more rapidly than 1/rd.
7 A simple example is given by a magnetic spin system on

a d-dimensional lattice subject to a strong external quenched
magnetic field Hr and a weak, say Ising- or Heisenberg-type,
coupling between neighboring spins [12,19].
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L

L

y

x
θ

r

(a) (b) model D L=100

Fig. 3. Two-dimensional models: (a) sketch of periodic lattice
for L = 6 with filled circles indicating the cells of the principal
box and open circles some periodic images. For microcells r of
the principal box Cl(r) is given by the distance r and the angle
θ. (b) C1(r) for model D with L = 100, α1 = 0.5, ξ = µ2 = 1,
µ1 = 0, d1 = 0.5.

Hence, ∆2
l = clδV/V for spatially uncorrelated fields, i.e.

for Cl(r 6= 0) = 0. Importantly, for Gaussian fields Cl>1(r)
can be expressed in terms of C1(r) and the moments µl.
Specifically, as shown in Appendix A,

C2(r) = 2C1(r)2 + 4µ2
1C1(r). (37)

Using Eq. (37) the r-average ∆2
2 over C2(r), Eq. (36), is

thus set by C1(r) and µ1. For all model variants discussed
below C1(0) = c1 = µ2 − µ2

1 holds, i.e. we need to specify
additionally either c1 or the moments µ1 and µ2.

4.2 Model variants

As sketched in panel (a) of Fig. 3 for the two-dimensional
case, we use d-dimensional simple cubic lattices of unit
lattice constant and linear dimension L in all spatial di-
rections, i.e. nr = V = Ld. Each of the nr lattice sites
corresponds to one microcell. As usual we use periodic
boundary conditions [11], i.e. gr and the associated corre-
lation functions Cl(r) are L-periodic in all spatial direc-
tions. As indicated by filled circles in panel (a) of Fig. 3,
we focus on the sites of the “principal simulation box”
[11] characterized by the distance r = ||r|| from the origin
(large filled circle) and the direction n = r/r.

We shall consider four model variants. “Model A” sim-
ply assumes that all microcells are uncorrelated, i.e. C1(r =
0) = c1 and C1(r > 0) = 0. “Model B” assumes that the
correlations decay exponentially

C1(r) = C1(r) = c1 exp(−r/ξ) (38)

with ξ being the correlation length. Long-range correla-
tions may appear in “model C” where

C1(r) = C1(r) = c1(1 + (r/ξ)2)−α1/2 (39)

with ξ being again a constant characterizing local physics
and α1 > 0. The shifted power law is used to avoid a
divergence at r = 0 [19]. Note that C1(r) ∝ 1/rα1 for
r � ξ and r � 1.

Up to now we have assumed that C1(r) only depends
on the distance r and not on the direction n. Interestingly,
even for isotropic systems Cl(r) may depend on n if the
stochastic variable x(τ) is only a component of a tensor
and not a tensorial invariant. This is of relevance, e.g.,
for the shear-stress contribution of the stress tensor [20,
21,22]. Focusing on two-dimensional systems and using
the angle θ shown in panel (a) of Fig. 3 our “model D”
assumes C1(r = 0) = c1 and

C1(r) = C̃1(r) [1− d1 cos(4θ)] for r > 0 (40)

with C̃1(r) given by the power-law correlation of model C,
Eq. (39). The period π/2 is due to the fact that Cl(x, y) is
even, i.e. Cl(x, y) = Cl(−x, y) = Cl(x,−y) = Cl(−x,−y),
and the assumed equivalence of all spatial directions, i.e.
Cl(x, y) = Cl(y, x). This is known to hold especially for
stress correlations in two-dimensional isotropic glasses [20,
21,22]. Interestingly, due to the discrete square lattice the
“anisotropic” term in Eq. (40) may give finite contribu-
tions to the isotropic averages C0

l (r) over all possible θ for
a given r and (in turn to) the sums ∆2

l , Eq. (36), over all
microcells. There are two reasons for this. For small r the
discrete lattice matters as may be seen by considering the
cases r = 1 or r = 2. This effect becomes irrelevant for
large r � 1 and L. More importantly, even for asymptot-
ically large L it matters for small exponents α1 that for
r ≥ L/2 we only sample over microstates in the four cor-
ners of the lattice around the bisection lines y = ±x and a
correspondingly reduced range of θ values. Since ∆2

l ≥ 0,
d1 may not be too negative (depending on the other pa-
rameters). We focus on d1 = 0.5. C1(r) for α1 = 0.5,
µ2 = ξ = 1 and µ1 = 0 is presented in panel (b) of Fig. 3.

4.3 ∆2 for Gaussian fields

We present now∆2 for the different models obtained equiv-
alently by either numerically evaluating Eq. (37) or by ex-
plicitly first generating random fields (Appendix A) and
averaging over nc = 104 independent configurations. We
focus first on the limit with µ1 = 0, i.e. C2(r) = 2C1(r)2,
and set µ2 = 1, i.e. c1 = 1 and c2 = 2.

If C1(r) and thus C2(r) are short-ranged, the system-
size must become rapidly irrelevant and, hence,

∆2 ' 1/V γext with γext = 1/2. (41)

This behavior is shown in Fig. 4 for different one-dimen-
sional (d = 1) systems. Since for model A C2(0) = 2 and

C2(r 6= 0) = 0, this implies ∆2 =
√

2/V as indicated
by the bold solid line. As one expects the data for model
B scales if traced as a function of the reduced volume
u = V/ξd. Naturally, the scaling is not perfect for small ξ
due to the discrete lattice. For u � 1 we have C2(r) ≈ 2
according to Eq. (37). As shown by the dashed horizontal

line we thus have ∆2 →
√

2 for u� 1 while in the opposite
limit ∆2 '

√
2/u, as expected.

Long-range correlations may appear in model C as seen
in Fig. 5. Since µ1 = 0 we have α2 = 2α1 in the large-r
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Fig. 4. ∆2 as a function of the (reduced) system size u = V/ξd

for models A and B for d = 1, µ1 = 0 and µ2 = 1. While
∆2 →

√
2 for u � 1 (dashed horizontal line), ∆2 '

√
2/u for

sufficiently large systems (bold solid line).

Fig. 5. ∆2(V ) for model C for d = 2, µ1 = 0, µ2 = 1, ξ =
1 and different power-low exponents α1 as indicated. While
γext = 1/2 for α2 > d (bold solid line) and γext = α1/d for
αd < d (dash-dotted lines), an apparent exponent γ̃ext ≈ 0.4
(bold dashed lines) is observed for α2 = d. The thin solid line
indicates the logarithmic correction for α2 → d.

limit. Depending on the value of α2 and the spatial di-
mension d it is readily seen from Eq. (36) that γext = 1/2
for α2 > d, while in the opposite limit

γext = α2/2d for α2 < d. (42)

Both relations are seen to hold in Fig. 5 for two-dimensional
systems (d = 2). The cases with long-range correlations
are emphasized by dash-dotted lines. For large α1 we see
that ∆2 approaches the limit ∆2 =

√
2/V (bold solid

lines) of uncorrelated microcells (model A). Since

∆2 ' (log(V )/V )1/2 for α2 = d (43)

we observe strong curvature for α1 = 1. Moreover, this
limiting case is rather well fitted over at least two orders of
magnitude by an apparent power law (bold dashed lines)
with γ̃ext ≈ 0.4. (Similar results are obtained in other di-
mensions.) This demonstrates (if yet necessary) that such

Fig. 6. Main panel: y = ∆2
2V vs. V for model C (open symbols)

and model D (filled symbols). As shown by the bold horizontal
line we have γext = 1/2 for α1 = 2 if µ1 = 0 while y increases
linearly for both models for µ1 = 1. Inset: Double-logarithmic
representation of C1(r) (filled squares) and C2(r) (open sym-
bols) for model C with α1 = 2 and µ1 = 0 (diamonds) and
µ1 = 1 (circles). We have C2(r) = 2/r4 in the former case
(bold solid line) and C2(r) = 4/r2 (dashed line) in the latter.

power-law fits should be treated with care. The thin solid
line shows a logarithmic fit suggested by Eq. (43).

Up to now we have set µ1 = 0, i.e. α2 = 2α1 for model
C and model D. α1 = 2 thus implies α2 = 4, i.e. long-range
correlations are irrelevant for d = 2. This may be better
seen using the half-logarithmic coordinates in the main
panel of Fig. 6 where y = ∆2

2V is plotted as a function
of V . Indeed the data for µ1 = 0 and α1 = 2 (diamonds)
are strictly horizontal (bold solid line) and logarithmic
corrections only appear for α1 = 1 (triangles).8 Interest-
ingly, the linear-C1(r)-contribution in Eq. (37) is readily
switched on using a finite µ1 and, as can be seen for model
C in the inset of Fig. 6, C2(r) ≈ 4µ1C1(r) already for small
µ1, i.e. α2 ≈ α1. As shown in the main panel, ∆2 reveals
strong logarithmic behavior (circles).

5 Mapping on shear-stress data

It is tempting to tune the parameters of model C or D
to fit the corresponding data obtained for shear-stresses
in simulated model glasses [2,16,4,5,6]. We focus on sys-
tems formed by polydisperse Lennard-Jones (pLJ) parti-
cles in two dimensions. See Refs. [2,5] for a description
of the Hamiltonian, the simulation method, the quench
protocol and thermodynamic and structural properties.
Boltzmann’s constant and the average particle diameter
are set to unity and Lennard-Jones units [11] are used. We
impose a temperature T = 0.2 — much smaller than the
glass transition temperature Tg ≈ 0.26 [2,5] — and sample
nc = 100 independent configurations containing between
n = 100 and n = 40000 particles. The number density is

8 The differences between models C and D for small α2 and
large L are due to the contributions of the anisotropic term of
model D for discrete square lattices.



8 G. George et al.: Simple models for strictly non-ergodic stochastic processes of macroscopic systems

Fig. 7. Mapping of model C on data obtained from the shear-
stress fluctuations of MC simulations of pLJ particles in two
dimensions (open symbols). As can be seen v ≈ 17 is V -
independent, i.e. γint = 0. Imposing α1 = 2 and µ2 = v and
fitting µ1 = 4.1 and ξ = 3.7 yields ∆2 (thin solid line).

essentially system-size independent and of order unity, i.e.
the particle number n and the volume V are numerically
similar. The only observable relevant for the present work
is the shear-stress contribution σ to the (excess) stress ten-
sor [11,5,6]. Measurements are performed each MC step
over a total sampling time ∆τmax = 107. The stochastic
process x(τ) is obtained as suggested by the convention

made in Sec. 3.1 by rescaling σ ⇒ xt ≡
√
V/T σ. As de-

scribed in Sec. 2.2, we obtain from v[xck] the expectation
value v(∆τ), the total variance δv2tot(∆τ) and its contri-
butions δv2int(∆τ) and δv2ext(∆τ) and, finally, ∆ne from
the long-time limit of δvext(∆τ), Eq. (11). The ∆τ - and
nk-dependences are described in Ref. [6].

The data for v(∆τ = 106) ≈ v and ∆ne are presented
in Fig. 7. Since v is the (rescaled) fluctuation of the shear
stress, it is (essentially) V -independent, i.e. γint = 0 in
agreement with Sec. 3.2. As already emphasized elsewhere
[5,6], ∆ne does not decay with an exponent γext = 1/2
(bold solid line) but with a weaker apparent exponent
γ̃ext ≈ 0.4 (bold dashed line). This finding is qualitatively
in agreement with the same exponent observed in Sec. 4
for either α1 = 1 and µ1 = 0 (Fig. 5) or α1 = 2 and
µ1 = 1 (Fig. 6). Naturally, µ2 is set by the V -independent
value of v ≈ 17 as indicated by the dash-dotted horizontal
line. Motivated by recent theoretical and numerical work
[20,21,22] we impose α1 = d = 2 and fit the remaining
parameters ξ and µ1 of model C. This yields with ξ ≈ 3.7
and µ1 ≈ 4.1 a nice fit (thin solid line) of ∆ne for n > 100.
Similar values have been found for model D. The main
limitation for a more critical test of the mapping is that
∆ne is not known for larger system sizes.

6 Conclusion

Extending recent work [5,6] the present study focused on
the expectation value v(∆τ) and the standard deviations
δvtot(∆τ), δvint(∆τ) and δvext(∆τ) of the empirical vari-

ance v[x] of time series x, Eq. (1), of strictly non-ergodic
stochastic processes recorded over a sampling time ∆τ .

Our first aim was to give an uncluttered summary
(Sec. 2) of some useful notations (Sec. 2.1) and general
relations important for the characterization of ensembles
{xck} of such time series. At variance to ergodic pro-
cesses the external standard deviation δvext(∆τ) becomes
for non-ergodic systems constant, δvext(∆τ) ' ∆ne > 0,
for large ∆τ � τb, and thus in turn so does also the to-
tal standard deviation δvtot(∆τ) for ∆τ � τne(V ) � τb,
Eq. (12).

Our second aim was to emphasize by means of a sim-
ple analytically feasible example (Figs. 1 and 2) that it
is therefore questionable to numerically determine the sy-
stem-size exponent γext of ∆ne(V ) uniquely from the total
standard deviation δvtot(∆τ = const, V ). We argued that
one should rather analyze the more rapidly converging
δvext(∆τ, V ) both with respect to ∆τ and V .

Our third aim was to better understand the system-
size dependence of the static properties v and ∆ne for
∆τ � τb in systems with correlated microcells (Sec. 3).
We have thus investigated in Sec. 4 simple models where
the (unaveraged) fluctuating microscopic contributions σr
are essentially decorrelated but their (rescaled) k-averaged
standard deviation sr may not. For simplicity these frozen
fields sr = |gr| were modelled by spatially correlated Gaus-
sian fields gr (Appendix A). v and ∆ne are given, respec-
tively, by the moments µ2 and ∆2 of the gr-field, Eq. (35).
We have thus expressed ∆ne in terms of an effective two-
point correlation function C2(r), Eq. (36). For consistency
with general intensive thermodynamic fields (Sec. 3.2), µ2

is set to be V -independent (γint = 0). As seen in Fig. 4 for
models A and B and in Fig. 5 for model C with α2 > d,
∆2 ∝ 1/V γext with γext = 1/2 only holds for sufficiently
strongly decreasing spatial correlations. Logarithmic cor-
rections become relevant for models C and D for α2 → d
where ∆2 may be fitted over two orders of magnitude by
an apparent exponent γ̃ext ≈ 0.4 (Fig. 5). A similar alter-
native approach yielding numerically equivalent results is
mentioned in Appendix B.

Our fourth aim was to point out (Sec. 5) that rather
similar behavior is observed for shear-stress fluctuations
in amorphous glasses [6]. By insisting on α1 = d = 2 ≈ α2

and tuning the parameters µ1 and ξ of models C or D it
was possible to fit the data (Fig. 7). This finding suggests
the observed apparent exponent γ̃ext ≈ 0.4 [5,6,16] to
be due to marginally long-range correlations of quenched
shear-stress fluctuations.

Obviously, this does not necessarily imply that other
aspects of the stress correlations in these systems are cap-
tured by simple models based on the key postulate Eq. (35)
and, especially, on the technical relation Eq. (37) assum-
ing correlated Gaussian fields. To clarify this issue future
work [17] will focus on the characterization of the spatial
correlations of different quenched fields such as the “lo-
cal covariance field” vcr = VEkδσckrδσck (Appendix B)
which may be constructed from the shear stress fields σckr
numerically obtained following Lemâıtre [20].
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For simplicity of the presentation we have assumed in
the present work a diverging longest system relaxation
time τα albeit for real physical, biological or socio-econo-
mical systems τα is generally finite. Importantly, δvext(∆τ)
must vanish in the ergodic limit for ∆τ � τα. It is ap-
propriate for systems with a sluggish glass-like dynam-
ics to redefine ∆ne as the intermediate plateau value of
δvext(∆τ). Naturally, all the presented results hold as long
as ∆τ , τb and τne are much smaller than τα. The complete
description of the standard deviations δvtot(∆τ, nc, nk),
δvint(∆τ, nc, nk) and δvext(∆τ, nc, nk) is more intricate.
See Sec. 4.6 of Ref. [6] for some first results.
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A Correlation functions of Gaussian fields

Let yi be a normal distributed random field of zero mean,
i.e. 〈yi〉 = µ1 = 0, with i standing for the discrete time
or spatial position. (〈. . .〉 stands here for a c-average over
nc → ∞ independent configurations.) Wick’s theorem [1]
thus holds, i.e.

〈yiyjykyl〉 =

〈yiyj〉 〈ykyl〉+ 〈yiyk〉 〈yjyl〉+ 〈yiyl〉 〈yjyk〉 . (44)

This implies in turn 〈y2i y2j 〉−〈y2i 〉〈y2j 〉 = 2〈yiyj〉2. With the
indices corresponding to spatial positions and assuming
translational invariance this shows that C2(r) = 2C1(r)2

for µ1 = 0. If we consider instead the field gi = yi+µ1 with
finite first moment µ1 = 〈gi〉, C1(r) remains unchanged
while C2(r) does not. By substituting yi = gi − µ1, ex-
panding C2(r) and using the invariance of C1(r) it is seen
that more generally Eq. (37) holds.9

Random Gaussian fields gr corresponding to the mod-
els of Sec. 4.2 have been explicitly generated numerically
and we have measured the correlation functions Cl(r =
r′′−r′) by averaging (consistently with the periodic bound-
ary conditions) over all pairs of cells r′ and r′′ and the
nc independent configurations. Model A is trivially ob-
tained by generating for each configuration nr uncorre-
lated normal-distributed random numbers ζr of zero mean
and unit variance and setting gr = µ1 +a0ζr with c1 = a20.
Spatially correlated random numbers yr = gr−µ1 are ob-
tained by setting yr′ =

∑
r′′ ar′r′′ζr′ where the “response”

9 It is used here that 〈s2i sj〉 − 〈s2i 〉〈sj〉 = 2µ1C1(r).

Fig. 8. C1(r) and C2(r) for model C with α1 = 1/2, µ1 = 0,
µ2 = c1 = 1 and ξ = 1. The open symbols have been ob-
tained for d = 1 and L = 1000, the filled symbols for d = 2
and L = 200. Main: Double-logarithmic representation for
logarithmically binned data. As emphasized by the solid line
α2 = 2α1 = 1. Inset: Linear representation for small r.

matrix ar′r′′ is uniquely determined by the imposed corre-
lation function C1(r) as shown below. Importantly, gr =
yr+µ1 is thus a linear superposition of Gaussian variables
and therefore also Gaussian.10 As a consequence Eq. (37)
applies. Following a standard procedure [19] one way to
obtain the yr-fields is to compute in turn the Fourier trans-
forms ζq = F [ζr] and C1(q) = F [C1(r)], the product

yq =
√
C1(q)ζq, and finally the inverse Fourier transform

yr = F−1[yq] with F standing for the d-dimensional dis-
crete Fourier transform and F−1 for its inverse. It is used
here that ζqζ−q = 1 and that C1(q) is real, even, positive
and commensurate with the simulation box.

That the procedure works can be seen in Fig. 8 for
model C in d = 1 and d = 2 (filled symbols). We have set
α1 = 1/2, µ1 = 0 and µ2 = c1 = 1. The data for C1(r)
and C2(r) are obtained by averaging over nc = 104 inde-
pendent configurations. Due to Eq. (37) we have C2(r) '
c2/r

α2 with α2 = 2α1 = 1 as shown by the solid line in
the main panel. The spatial dimension only plays a role
for small and finite r ≈ 1 as may be seen from the inset
of Fig. 8. This leads to a weak d-dependence of integrals
dominated by the lower integration bound.

B Alternative quenched field

An interesting alternative quenched field is given by the
“local covariance” vcr ≡ VEkδσckrδσck between the lo-
cal and total fluctuations δσckr and δσck = Erδσckr. Note
that vc = Ervcr holds since Ek and Er commute. Impor-
tantly, for many physical systems vcr corresponds to a lo-
cal modulus, e.g., the local stress-fluctuation contribution
to an elastic modulus [15]. Using δvcr = vcr − v we may

10 This implies that gr may be negative even for large µ1 > 0
while the standard deviation sr (cf. Sec. 3.3) of the microscopic
field σr must be positive definite.
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write quite generally without any additional assumption

∆2
ne = Er′Er′′Ecδvcr′δvcr′′ = ErC[vr](r) (45)

where C[vr](r) stands for the average of the underlined
term over all pairs of microcells r′ and r′′ = r′ + r.11

As a consequence, a slow V -decrease of ∆ne with γext <
1/2 must arise if C[vr](r) is long-ranged. One may model
the field vr by means of a spatially correlated variable
gr, i.e. using the notations of Sec. 4.1 we have v = µ1,
∆ne = ∆1 and the correlation function C1(r) corresponds
to C[vr](r). This yields a good alternative fit of the shear-
stress data discussed in Sec. 5 using model D with α1 = 2,
µ1 = v = 17.1, µ2 = 293 and ξ = 3.3. To discriminate be-
tween both modeling approaches a numerical comparison
of correlation functions of different k-averaged quenched
fields is warranted [17].
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