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DETERMINING LIE ALGEBRA OF TRANSVERSE 

FOLIATED VECTOR FIELD OF THE EXTENSION OF 

DENSE LEAF LIE FOLIATION ON A COMPACT 

CONNECTED MANIFOLD 

 

Abstract 

In [1, 2], we showed that any extension of a Lie G -foliation having 

dense leaves on a compact connected manifold M corresponds to a  

Lie subalgebra H  of .G In this paper, we determine the Lie algebra 

( )HF,Mℓ  of HF -transverse foliated vector fields of an extension 
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corresponding to the subalgebra .H  Noting by u~  the F -transverse 

foliated vector field associated to ,G∈u  we prove that 

( ) { ⊥∈= HF H uuM ~,ℓ  and [ ] ,0, =hu  for every }. H∈h  

1. Introduction 

The article aims to determine the Lie algebra ( )HF,Mℓ  of HF -

transverse foliated vector fields. We recall that for a dense leaf Riemannian 

foliation F ′  on a compact connected manifold M, there is a one-to-one 

correspondence between Lie subalgebras of ( )F ′,Mℓ  and the extensions of  

F ′  [2]. If K is a Lie subalgebra of ( ),, F ′Mℓ  then the differential system 

( )KevTx xx ⊕′→ F  defines an extension of .F ′  So the determination of 

( )F ′,Mℓ  is necessary for the determination of extension of .F ′  

We recall the following results which are used in the sequel: 

(1) Let ( )FG ,: Mℓ→σ  be the reciprocal isomorphism of the 1-form 

of Fédida ( ) ,,: GF →ω Mℓ  and ( )HH σ=~
 be the Lie subalgebra of       

F -transverse foliated vector fields obtained from .GH ⊂  Then, we have 

(cf. [1, 3]) ( ) ( ) HHFF H

~=σ=⊥
TT ∩  and .

~
HFFH ⊕= TT  

 (2) For every ,Mx ∈  ( ),
~
HFF H xxx evTT ⊕=  where ( ) xx XXev =  

for any vector field X. 

(3) We have (cf. [1, 3]) ( ) ( ) ,
~
HFFH ⊕χ=χ  where ( )HFχ  

( )( )Fχ,lyrespective  is the Lie algebra of vector fields tangent to HF  

( ).ly,respective F  

(4) Any Lie G -foliation F  having dense leaves on a compact connected 

manifold M admits a locally constant sheaf ( )FC ,M  of germs of local 

transverse Killing vector fields which has its typical fiber as the Lie algebra 

−
G  opposite to G  (which is identified with the germs defined by the right 

invariant vector fields obtained from )G  [7]. 
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(5) We have (cf. [3]) ( ) ( ) ( ) ,
~ −⊕χ=χ UUU
HFFH  where U is an 

open set of local trivialization of ( )FC ,M   and ( )−
H
~

 is the Lie subalgebra 

of right invariant vector fields obtained from subalgebra H  of .G  

Using the above, we show that all information concerning ( )HF,Mℓ  

are contained in Lie algebra .G  Indeed, it is established that 

( ) { ⊥∈= HF H uuM ~,ℓ  and [ ] ,0, =hu  for every }, H∈h  

where u~  is the F -transverse foliated vector field associated to the vector 

.G∈u  

This article is organized as follows: Section 2 is devoted to necessary 

prerequisites on foliations and on extensions of foliations. A property of the 

orthogonality of a Lie subalgebra of a Lie algebra of Killing vector fields is 

given in Section 3. The last Section 4 provides the main result. 

2. Prerequisites 

In this section, we recall necessary definitions and results used in the 

sequel. We refer to [1, 3, 5] for details. 

Definition 2.1. A q-codimensional foliation on a manifold M is the data 

consisting of open sets ( ) IiiU ∈  of M, of submersions ,: TUf ii →  where T 

is a q-dimensional manifold satisfying for ,∅≠ji UU ∩  the existence of a 

diffeomorphism 

( ) ( ) TUUfTUUf jiijijij ⊂→⊂γ ∩∩:  

for which  

( ) ( ) ( ),xfxf jiji �γ=  for all .ji UUx ∩∈  

It is said that ( ) Iiijii TfU ∈γ,,,  is a foliated cocycle of foliation ( )., FM   



Cyrille Dadi 24 

The manifold T is called the transverse manifold of foliation ( )., FM  

The quotient  

( )
F

FV
T

TM=  

is called the transverse fiber of foliation .F  

The set of all fibers of the submersion TUf ii →:  is the foliation F  

on iU  which is denoted by ( )., FiU  

The foliation ( )F,iU  is said to be simple and each connected fiber of 

TUf ii →:  as a plate of F  in .iU  

Definition 2.2. If GT =  is a connected Lie group and if the ijγ ’s are 

restrictions of translations to left of G, then the foliation F  is a said to be a              

Lie foliation. It is also called a Lie G-foliation or a Lie G -foliation, where 

( ).GLie=G  

Proposition 2.3. Let F  be a Lie G-foliation on a manifold M. Then there 

exist a homomorphism ( ) GM →πρ 1:  and a submersion GMD →~
:  such 

that  

 (i) The lifting F
~

 of F  on the universal covering M
~

 of M is simple and 

is defined by the submersion D. 

(ii) D is ρ -equivariant, i.e., ( ) ( ) ( ),~.~. xDxD γρ=γ  where ( )M1π∈γ  

and .
~~ Mx ∈  

Another proposition from Fédida with differential forms is as follows: 

Proposition 2.4 [5]. A structure of Lie G-foliation F  on a manifold M 

is equivalent to the data of a differential 1-form ω  on M with values in Lie 

algebra G of G such that 

(1) ,Mx ∈∀  the linear map .: G→ω MTxx  

(2) ω  satisfies the Maurer-Cartan equation [ ] .0,
2

1 =ωω+ωd  
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(3) Two 1-forms ω  and ω′  satisfying these properties are bound by the 

relationship ( ),ω=ω′ gad  for an element .Gg ∈  

In what follows, G  is the Lie algebra of a Lie group G of dimension          

q, H  is a Lie subalgebra of G  of codimension ,q′  ( )qee ...,,1  is a base            

of G  such that ( )qq ee ...,,
1+′  is a basis of ,H  and 

=
⊗ω=ω

q

i

i
i

e

1

 denotes a 

1-form on a manifold M taking values in .G  

If [ ] 0,
2

1 =ωω+ωd  and q′ωω ...,,1  are linearly independent at any 

point of M, then the differential system 01 =ω==ω ′q
⋯  defines a foliation 

HF  of codimension .q′  

Definition 2.5. The foliation HF  is called a 
H

G
-foliation defined by 

the 1-form .ω  

Inspired by the proof of the theorem of lifting of a Lie G-foliation in             

[4, 5], we establish the following: 

Proposition 2.6. Let F  be a 
H

G
-foliation on a manifold M defined by         

a 1-form ω  and let FF *~ π=  be the lifting foliation of F  on universal 

covering .
~

: MM →π  Then there is a differentiable map GM →~
:D  

transverse for HG,F  (where HG,F  is the foliation of the translate to the 

left of H) and a homomorphism ( ) GM →πρ 1:  such that  

 (i) D  is equivariant by ,ρ  and  

(ii) ,θ=ωπ ∗∗
D  i.e., .

~
,

*
HGFDF =  

We say that D  is a developing map on M
~

 of 
H

G
-foliation .F  
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It should be noted that if F ′  is a leaf dense Lie G -foliation and H  is a 

Lie subalgebra, then F ′  and HF ′  have the same developing map which is a 

locally trivial fibration [5]. 

Definition 2.7. Let ( )Mχ  be the Lie algebra of vector fields over a 

manifold M, X be an element of ( )Mχ  and ( )Fχ  be the Lie algebra of 

vector fields tangent to the foliation .F  Then X is foliated if and only if 

( ) [ ] ( ).,, FF χ∈χ∈∀ YXY  

The set of foliated fields is denoted by ( )., FL M  It is a Lie subalgebra 

of ( ).Mχ  Also, ( )Fχ  is an ideal of ( )., FL M   

We have the following exact sequence: 

( ) ( ) ( )
( ) .0

,
,0 →χ→→χ→

F

FL
FLF

M
M  

The quotient 
( )

( ) ( )F
F

FL
,

,
M

M
ℓ=χ  is called the Lie algebra of the 

transverse foliated vector fields of .F  

Note that it is a subset of the set of all the sections of the transverse 

bundle ( ).FV  

Proposition 2.8 [7]. For an element X of ( ),Mχ  the following are 

equivalent:  

  (i) X is foliated, 

 (ii) F  is invariant by local diffeomorphism ,
X
tϕ  where ( ) ε<ϕ t

X
t  is 

the local group with a parameter associated with X in the vicinity of an 

arbitrary point of M ,  

(iii) in any simple distinguished open set, the local coordinates 

( )qp yyxx ...,,,...,, 11  have the q last components of X expressed as a 

function of the only variables ....,,1 qyy  
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Proposition 2.9 [7]. In any open simple distinguished U, a vector field  

X is foliated if and only if it is projectable into a vector field on the local 

quotient manifold .U   

Definition 2.10. Let ( )FA ,0
Mf ∈  be a differentiable function on M. 

Then we say that f is basic for foliation F  if and only if  

( ) fXX ,Fχ∈∀  is identically zero. 

All the basic functions for foliation F  is denoted by ( ).,0
FA Mb  

The following are equivalent [7]: 

  (i) f is basic,  

 (ii) f is a constant on each leaf of ,F   

(iii) in any simple distinguished open set of local coordinates 

( ),...,,,...,, 11 qp yyxx  f is expressed as a function of only variables 

....,,1 qyy  

Remark 2.11. If F  is an everywhere dense foliation admitting a leaf, 

then any basic function is constant on M, i.e., ( ) .,0
R�FA Mb  

Definition 2.12 [1]. An extension of a q-codimensional foliation 

( )F,M  is a q′ -codimensional foliation ( )F ′,M  such that .0 qq <′<  

We show that if ( )F ′,M  is a simple extension of a simple foliation 

( )F,M  and if ( )F,M  and ( )F ′,M  are, respectively, defined by 

submersions TM →π :  and ,: TM ′→π′  then there exists a submersion 

TT ′→θ :  such that .πθ=π′ �  

We say that this submersion θ  is a bond between the foliation ( )F,M  

and its extension ( )., F ′M  

It is shown in [1] that if the foliation ( )F,M  and its extension  

( )F ′,M  are, respectively, defined by the cocycles ( ) Iiijii TfU ∈γ,,,  and 



Cyrille Dadi 28 

( ) ,,,, Iiijii TfU ∈γ′′′  then we have iii ff �θ=′  and ,ijijij γθ=θγ′ ��  

where sθ  is a bond between the foliation ( )F,sU  and its extension 

( )., F ′sU  

Proposition 2.13. Let F ′  and F  be two Riemannian foliations on a 

manifold M. Then ( ) ( ).,, FFFF MM ℓℓ ⊂′′⊂  

Proposition 2.14 [1]. If F ′  is an extension of a Lie foliation ( )F,M  

having dense leaves on a connected compact Manifold M, then any global 

vector field F -foliated transverse tangent to F ′  at a point is tangent to F ′  

at any point of M. 

Below, we give the statement of the biunivocal correspondence        

theorem between the Lie subalgebras of ( )GLie=G  and extensions of a Lie 

G -foliation with dense leaves on a compact connected manifold M [1, 3]. 

Theorem 2.15 [1, 3]. Let ( )F,M  be a Lie G -foliation with dense 

leaves on a compact connected manifold M and let ( )FG ,~ Mℓ−  be the Lie 

algebra of F -transverse foliated fields which is the structural Lie algebra  

of .F  Then 

(1) There is a one-to-one correspondence between Lie-subalgebras of 

( ) GF �,Mℓ  and the extensions of .F  

(2) An extension of F  is a 
H

G
 transverse Riemannian foliation with 

trivial normal fiber bundle, defined by a 1-form valued in .
H

G
 

(3) An extension of F  is transversely homogeneous (resp. of Lie) if and 

only if the connected Lie subgroup of G corresponding to it is a closed 

subgroup (resp. a normal subgroup) of G. 

Note that ( ) GF →ω ,: Mℓ  is an isomorphism of Lie algebras, where 

ω  is the 1-form of Fédida. 
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We point out before continuing that the following remark is an already 

established result which is used to prove the main result. 

Remark 2.16 (Cf. [1, 3]). Let HF  be an extension of a Lie G-foliation 

with dense leaves on a compact manifold corresponding to the Lie-

subalgebra H  of ( ).GLie=G  

 (i) Let 
0xU  be an open set of M containing ,0 Mx ∈  eU  be an open set 

of G containing the neutral element e of G, ex UUf →
0

:  be a submersion 

defining the Lie foliation F  on a distinguished 
0xU  with ( ) exf =0  and ω  

be a 1-form of Fédida. 

We have for every ,
0xxx UTX ∈  

( ) ( ( ) ) ( ),
1

xxxfxx XfLX ∗
−

∗=ω �  

i.e., the Darboux differential of f is ,ω  where ( )xfL  is the left translation of 

( ).xf  

 (ii) Let ( ) GF →ω ,: Mℓ  be the 1-form of Fédida of .F  

Denote the reciprocal isomorphism of ω  by ( ).,: FG Mℓ→σ  Then 

( )uu σ=~  is the F -transverse foliated vector field obtained from .G∈u  

(iii) We have ( ) (( ) ( ) ) ( ) .,~ 1
Mxuxu

xTx ∈∀ω= −⊥
F

 

 (iv) If ( ),, FMX ℓ∈  then ( )Xω  is a constant function on M.  

Definition 2.17. Let M be a differential manifold and aX  be the set of 

( )XU ,  such that U is an open set of M containing a and X is a vector field 

on U. 

We define an equivalence relation R  on the set aX  by: 

( ) ( ) ⇔2211 ,, XUXU R  there is an open set 21 UU ∩⊂Ω  containing 

a such that for every ,Ω∈x  ( ) ( ).21 xXxX =  
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The equivalence class of ( )11, XU  is noted ( )11, XU  and it is called the 

germ of 1X  at the point a. 

In what will follow, we give some results on the central transverse sheaf 

of the foliation ( )., FM  

Definition 2.18. Let ( )F,M  be a foliation on M, U be an open set     

F -distinguished of M and ( )F,UZ ℓ∈  be an F -transverse local foliated 

vector field of ( )., FUℓ  Then Z  is said to be a local central transverse 

vector field in U if for every ( ),, FMX ℓ∈  its restriction to U switches 

with .Z  

The set of germs at one point Mx ∈  of the local central transverse 

fields is denoted by ( )., FC M
x

 

The set  

( ) ( )∪
Mx

x
MM

∈

= FCFC ,,  

equipped with a sheaf topology is called the central transverse sheaf of the 

foliation ( )., FM  

It is noted that if F  is a dense leaf Lie G -foliation on a compact 

connected manifold M, then ( )FC ,M
x

 is a Lie algebra with dimension less 

than or equal to ( )Fcodim  [7]. 

It is also noted that according to Molino [7], ( )FC ,M
x

 is a Lie algebra 

isomorphic to ,−
G  where −

G  is the Lie algebra of right invariant vector 

fields obtained from ( ).GLie=G  

Indeed, if F
~

 is the lifting of F  on the universal covering M
~

 of M, then 

using Darboux lift ( )F
~

,
~

M  of ( ),, FM  we have the following diagram: 
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M

GM

↓π

→~
:D

 

where GM →~
:D  is the lifting of F  (which is a submersion) and 

MM →π ~
:  is the universal covering of M. 

According to [4], the lifting GM →~
:D  is a locally trivial fibration of 

M
~

 on G. 

Now, let x be an element of M, x~  be an element of ( ),1
x

−π  and U
~

 be 

an open set of M
~

 containing x~  such that ( )UU
~π=  locally trivializing π  

and ( )UU
~

D=  locally trivializing .D  Then we have the following diagram: 

U

UU

↓π

→~
:D

 

Let −
UG  be the restriction to U  of vector field invariant to the right on 

G. The previous diagram shows that −
UG  induces on U a Lie algebra −

UG  of 

local F -foliated transverse vector fields isomorphic to −
UG  switches with 

the F -foliated transverse global vector field of M. Indeed, every vector field 

of −
UG  switches with any vector field of ( )., FG Mℓ�  As the foliation 

( )F
~

,
~

M  is simple [4] and is defined by the submersion ,D  −
UG  induced on 

U
~

 is a Lie algebra ( ) U
~

~ −
G  of F

~
-foliated transverse local vector fields in 

U
~

 switching with the F
~

-foliated transverse global vector field ( )F
~

,
~

Mℓ  

[7]. Thus, as UU
U

→π ~
:~  is a diffeomorphism, 
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(( ) ) ( )( )−−− ==π UUU M FGG
 ,

~
~

*
ℓ  

is a Lie algebra of F -foliated transverse local vector field on ( )UU
~π=  

( ( )( ) )−− = FG ,toisomorphic Mℓ  that switches with the F -foliated 

transverse global vector field ( )F,Mℓ  of M. As ( ) ( ),codimdim FG =−
U  it 

can be said that ( )FC ,M
x

 is a Lie algebra isomorphic to −
G  because the 

dimension of ( )FC ,M
x

 is less than or equal to ( ).codim F  

Thus, the type fiber of ( )FC ,M  is −
G  [7]. 

It is noted that this construction can be done in the vicinity of each point 

of M. It is said that the open set U trivializes locally ( )., FC M  

Theorem 2.19 [7]. Let ( )F,M  be a Lie G -foliation with dense leaves 

on a compact connected manifold M. Then F  admits a locally constant 

sheaf ( )FC ,M  of germs of central local transverse vector fields which has 

its typical fiber as the Lie algebra 
−

G  opposite to G  (which is identified 

with the germs defined by the vector fields right invariant obtained from .)G  

Also, 

  (i) The orbits of ( )FC ,M  are the closures of the leaves of ( )., FM   

 (ii) The germs of ( )FC ,M  switch with all global transverse vector 

fields. 

(iii) For any F -transverse bundle-like metric on M, ( )FC ,M  is formed 

by germs of local transverse Killing vector fields. 

Since F  is a dense leaf Lie foliation, the locally trivial central transverse 

sheaf ( )FC ,M  identifies germs defined by the opposite structural Lie 

algebra ( )( ) ( )−− = GF
~

,Mℓ  constituted by the right-invariant vector fields 
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( ) ,
~ −
h  where .G∈h  On an open set U of local trivialization, the restriction 

of ( )FC ,M  at U is  

( ) ( ( ) ) ( ) .
~

,,
−− ×=×= UUU UMUM GFFC ℓ  

Let H be a subgroup of G, H  be Lie subalgebra of G  such that 

( ),HLie=H  and HF  be an extension of F  corresponding to the 

subalgebra .H  As H is a Lie subgroup of G, we can consider “sub-sheaf” 

( ) ( )−×= HFC
~

, UU
H

 

of ( )FC ,M  constituted by the right-invariant vector fields tangent to the 

Lie subgroup H. 

Considering in addition that the open set U is HF -distinguished, we 

can look at the leaves of foliation ( ) UU ,, HH FF =  as the orbits of the 

“sub-sheaf” 

( ) ( )−×= UH
UU HFC

~
,  

which means that transversally to ,F  the leaves of ( )HF,U  are defined         

by the orbits of the subalgebra ( ) ,
~ −

UH  the restriction to U of the Lie 

subalgebra ( )−
H
~

 right-invariant vector fields tangent to the Lie subgroup H 

of G, where ( ).GLie=G  Thus, 

 ( ) ( ) ( ) .
~ −⊕χ=χ UUU
HFFH  ( )∗  

3. Orthogonality of a Lie Subalgebra of a Lie Algebra 

of Killing Vector Fields 

We establish a result which is useful for the determination of 

( )., HFMℓ  
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Proposition 3.1. Let ( )gM ,  be a Riemannian manifold of metric g, H
~

 

be a Lie algebra of Killing vector fields on M and 
⊥

H
~

 be the set of vector 

fields orthogonal to all vectors in .
~
H  Then for every vector field H

~~ ∈h  

and for any vector field ,
~~ ⊥∈ Hu  [ ] .

~~,
~ ⊥∈ Huh  

Proof. Let ( ) HH
~~~

,
~ ×∈′hh  be a vector field of HH

~~ ×  and ⊥∈ H
~~u  

be a vector field orthogonal to all vectors of .
~
H  Then 

( ),~
,~.

~
0 hugh ′=  because H

~~ ∈h  and ⊥∈ H
~~u  

([ ] ) ( [ ]),~
,

~
,~~

,~,
~

hhughuhg ′+′=  because h ′~
 is a Killing vector field 

([ ] ) ,0
~

,~,
~ +′= huhg  because [ ] H

~~
,

~ ∈′ hh  and ⊥∈ H
~~u  

([ ] ).~
,~,

~
huhg ′=  

The equality 

([ ] ) 0
~

,~,
~ =′ huhg  for every ( ) ⊥××∈′ HHH

~~~~,
~

,
~

uhh  

implies that 

[ ] ⊥∈′ H
~~,

~
uh  for every ( ) .

~~~,
~ ⊥×∈′ HHuh  □ 

4. Main Result 

The following theorem is the main result of this article. 

Theorem 4.1. Let ( )F,M  be a Lie G -foliation with dense leaves on a 

compact connected manifold M, HF  be an extension of F  corresponding             

to the Lie subalgebra H  of ,G  ω  be a 1-form of Fédida of ( ),, FM   

( )FG ,: Mℓ→σ  be the reciprocal isomorphism of ω  and ( )uu σ=~  be 

the F -transverse foliated field associated to the vector .G∈u  Then 

( ) { ⊥∈= HF H uuM ~,ℓ  and [ ] 0, =hu  for every }.H∈h  
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Proof. (1) Let us first show that 

( )( ) { [ ] ,0,, =∈⊂ω ⊥
huuM HF Hℓ  for every }.H∈h  

Since ( ) ( )FF H ,, MM ℓℓ ⊂  because HFF ⊂  (cf. Proposition 2.13), 

the elements of ( )HF,Mℓ  are found in ( )., FMℓ  

Further since F  is a Lie foliation with dense leaves, for all 

( ) ( ) ( ),,,~,~ FF MMvu ℓℓ ×∈  the function [ ]( )vu ~,~ω  is a constant function 

because ][ =vu ~,~ [ � ] ( ), ,u v M∈ ℓ F  (cf. Remark 2.16(vi)). Hence, the 

calculation of [ ]( )vu ~,~ω  is equivalent to calculating of ([ ] ),~,~
Uvuω  where 

U is an open set locally trivializing the locally trivialized sheaf ( )FC ,M  

consisting of germs of local central transverse fields of type fiber .−
G  

Now, we show that 

( )( ) { [ ] 0,, =∈⊂ω ⊥
huuM HF Hℓ  for all }.H∈h  

Based on the equality ( ):∗  

( ) ( ) ( )−⊕χ=χ UU
U HFH

~
 

and hence 

( ( ) ) (( ) ) (( ) ) .
~~ −⊥⊥−⊥ == UUU

T HHF H  

Let ( )HFχ∈X  be a vector field of ( )HFχ  and ( )F,MY ℓ∈  be a  

vector field of ( )., FMℓ  

As ( ),, HFMY ℓ∈  [ ] ( )., HFχ∈YX  Since [ ]YX ,  is a global vector 

field on M, the fact that [ ] ( )HFχ∈YX ,  leads to [ ] ( ) .,
UUYX HFχ∈  

So, as [ ] [ ],,, UUU YXYX =  

( ) ( ) ( )−⊕=χ UUU
HFXFH

~
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and  

( ( ) ) (( ) ) (( ) ) .
~~ −⊥⊥−⊥ == UUU

T HHF H  

Thus there exist ( ) ( ) ,
UU

X HF Fχ∈  ( ) ( )−− ∈ UUh H
~~

 and ( ) ∈−
Uk

~
 

(( ) )−⊥
UH

~
 such that ( ) ( ) ( )−− =+= UUUUU kYhXX

~
,

~
F  and 

[ ] [( ) ( ) ] [( ) ( ) ]−−− += UUUUUU khkXYX
~

,
~~

,, F  

[( ) ( ) ] [( ) ( ) ] UUU
khkX

−−− +=
~

,
~~

,F  

[ ]−= UU kX )
~

(,)( F [ ]�
/

, .
U

h k
−

−  (∗∗) 

We note before continuing further that 

[( ) ( ) ] ( ) ( )HF FF χ⊂χ∈−
UUU

kX
~

,  

because ( )−
Uk

~
 is UF -foliated. We also notice that vector fields ( ) ,

~ −
Uh  

( )−
Uk

~
 are local Killing fields from where according to Proposition 3.1, we 

have [( ) ( ) ] (( ) ) .
~~

,
~ −⊥−− ∈ UUU kh H  

Thus, we have the equalities 

[ ] [( ) ( ) ] == −−−−
UUU khkh

~
,

~
)

~
(,)

~
( [ ]�,

U
h k

−
−  

showing that 

[ ]�,
U

h k
−

∈ (( ) )−⊥
UH

~
 because [( ) ( ) ] (( ) ) .

~~
,

~ −⊥−− ∈ UUU kh H  

That said, in addition, since ( )HFχ∈X  and ( ),, HFMY ℓ∈  using (∗)  

and (∗∗), we have 

[( ) ( ) ] −UU
k
~

,FX [ ]�,
U

h k
−

∈ ( ) ( ) .
~ −⊕ UU HFX  
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It follows that 

 [ ]�,
U

h k
−

∈ ( ) .
~ −

UH  (∗∗∗) 

It results from (∗∗) and (∗∗∗) that [ ]�,
U

h k ∈ ( )⊥
U/

~
H  and [ ]�,

U
h k ∈ ( ) .

~
/UH  

Thus, 

[ ]�, 0.
U

h k =  

As 

[ ] ω=kh, ([� ]) ([� ]) ([� ] ), , , 0,
U U

h k h k h k= ω = ω =  

we have 

[ ] .0, =kh  

The above shows that 

( )( ) { [ ] 0,, =∈⊂ω ⊥
huuM HF Hℓ  for every }.H∈h  

(2) Now, we show that  

{ [ ] ,0, =∈ ⊥
huu H  for every } ( )( )., HFH Mh ℓω⊂∈  

Let ⊥∈ Hu  be a vector in ⊥
H  such that [ ] ,0, =hu  for every H∈h  

and let ( )HFχ∈X  be a vector field of ( ).HFχ  

First, note that the vector field F -foliated transverse u~  associated with 

u satisfies ⊥∈ H
~~u  and ( ),~ Fχ⊥u  therefore, 

( ( ) ) ( ( )) .
~~ ⊥⊥ χ=⊕χ∈ HFHFu  

Since ( ) ( ) ,HFXFX H ⊕=  there are ( )FXF ∈X  and H
~~ ∈h  such 

that .
~
hXX += F  As a result 



Cyrille Dadi 38 

[ ] [ ] [ ]huXuXu
~

,~,~,~ += F  

[ ] += FXu ,~ [� ],u h  

[ ]FXu ,~=  because [ ] .0, =hu  

The fact that ( )F,~ Mu ℓ∈  implies that [ ] ( ) ( ).,~
HFF χ⊂χ∈Xu  Thus, 

equality [ ] [ ] ( ) ( )HF FXFX ⊂∈= XuXu ,~,~  and thus, the equality [ ]Xu ,~  

[ ] ( ),,~
HF FX∈= Xu  and the fact that ( ( ) ) ( ( ))⊥⊥ =⊕∈ HFXHFX

~~u  

show that ( ),,~
HFMu ℓ∈  which means that ( )( )., HFMu ℓω∈  Thus, 

{ [ ] 0, =∈ ⊥
huu H  for every } ( )( )., HFH Mh ℓω⊂∈  

In conclusion of (1) and (2), it can be said that 

( )( ) { [ ] 0,, =∈=ω ⊥
huuM HF Hℓ  for all }H∈h  (∗∗∗∗) 

which means that 

( ) { ⊥∈= HF H uuM ~,ℓ  and [ ] 0, =hu  for every },H∈h  

where u~  is the F -foliated transverse vector field associated with the      

vector .G∈u  Since ( )FG ,: Mℓ→σ  is the reciprocal isomorphism of 

( ) ,,: GF →ω Mℓ  using (∗∗∗∗), we have  

( )HF,Mℓ ( )( )( )HF,Mℓωσ=  

({ [ ] 0, =∈σ= ⊥
huu H  for any })Hh ∈  

{ ( ) ⊥∈σ= Huu  and [ ] 0, =hu  for every }H∈h  

{ ⊥∈= Huu~  and [ ] 0, =hu  for any }H∈h   

because ( ) .~uu =σ  □  
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