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Abstract

For the past few years, we have been hearing about Industry 4.0 (or the fourth industrial revolu-
tion), which promises to improve productivity, flexibility, quality, customer satisfaction and employee well-
being. To assess whether these goals are achieved, it is necessary to implement a performance 
management system (PMS). However, a PMS must take into account the various challenges associ-ated 
with Industry 4.0, including the availability of large amounts of data. While it represents an 
opportunity for companies to improve performance, big data does not necessarily mean good data. It can 
be uncertain, imprecise, ambiguous, etc. Uncertainty is one of the major challenges and it is essential 
to take it into account when computing performance indicators to increase confidence in decision making.

To address this issue, we propose a method to model uncertainty in key performance indicators
(KPIs). Our work allows associating with each indicator an uncertainty noted m, computed on the 
basis of the theory of belief functions. The KPI and its associated uncertainty form a pair
(KP I, m). The method developed allows calculating this uncertainty m for the input data of the 
performance management system. We show how these modeled uncertainties should be propagated to 
the KPIs. For these KPI uncertainties, we have defined rules to support decision-making. The method 
developed, based on the theory of belief functions, is part of a methodology we propose to define and 
extract smart data from massive data.

To our knowledge, this is the first attempt to use this theory to model uncertain performance 
indicators. Our work has shown its effectiveness and its applicability to a case of bottle filling line 
simulation. In addition to these results, this work opens up new perspectives, particularly for taking 
uncertainty into account in expert opinions and in industrial risk assessment.
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1 Introduction24

Recent technological developments as well as the decreasing costs of the resulting technologies have allowed25

companies to consider a transition to the Industry 4.0. This transformation will be carried out on the technological,26

organizational and human level in order to meet the needs of customers in terms of personalized and more complex27

products. Industry 4.0 refers to the fourth industrial revolution characterized by the implementation of several28

promising technologies such as Cyber Physical Systems, the Internet of things, Big Data, Cloud Computing, digital29

twin, cobotics, augmented and virtual reality, etc. These technological developments related to digitalization,30

the implementation of increasingly disruptive technological innovations and the use of artificial intelligence make31

process management more complex and subject to uncertainty (Magruk et al. 2016). For instance, Cyber-Physical32

Systems (CPS) integrate computational and physical capabilities that can interact with humans (Baheti and Gill33

2011). This makes CPS increasingly complex, hence the need to manage uncertainty to ensure the reliability of34

these systems (Tao et al. 2020). Another challenge of the digital era is related to the availability of large amounts of35

data. Despite the emphasis placed on Big Data, there is a lack of approaches to address the challenges associated36

with massive data, including data quality and more specifically data uncertainty for decision making. Indeed,37

with the Internet of Things, sensors everywhere and smartphones, data is becoming more and more available, but38

accompanied by doubts about its veracity and value. The number of data sources is becoming very large and39

issues of uncertainty cannot be neglected (Rodriguez et al. 2009). Therefore, this revolution brings about several40

changes in the organization, practices and management of work. In particular, performance management systems41

(PMS) must be re-examined to address the challenges of Industry 4.0, namely data uncertainty.42

Performance is expressed in terms of results obtained in relation to a previously set objective. To enhance43

performance and ensure the effective and efficient management of any business, performance measurement and44

management systems (PMMS) are used (Melnyk et al. 2014). Performance management has evolved from per-45

formance measurement (i.e., what to measure, how to measure it, and how to report the results) to performance46

management (i.e., how to use the measures to manage an organization’s performance) (Umit S Bititci et al. 2015).47

Performance measurement involves activities such as setting goals, developing metrics, collecting, analyzing and48
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reporting performance information, and interpreting and evaluating performance gaps (Smith and Umit Sezer49

Bititci 2017). Performance measurement systems consist of a set of performance expressions that must be orga-50

nized in a coherent way with respect to the company’s objectives. Since they are numerous, it is necessary to51

reduce the dimensionality of these performance measures. This is achieved by aggregating the basic measures52

into performance indicators that provide a global expression of performance. One of the problems encountered53

during this dimensionality reduction is the decomposition of the global objective in order to define the elementary54

performance expressions and the aggregation rules needed to measure the global performance (Berrah, Mauris,55

and Montmain 2008). Performance management consists in ensuring that the organization’s objectives have been56

achieved in a consistent, effective and efficient manner (Suhardi 2015). It ”should provide management with57

insight into how well the organization is performing and the extent to which organizational goals are being met”58

(Baird, Schoch, and Chen 2012). It also allows identifying successes, determining if customer needs are being59

met, understanding business processes, making factual decisions and identifying bottlenecks and waste (Balfaqih60

et al. 2016).61

Key Performance Indicators (KPIs) are aggregated indicators used to measure the degree of achievement of62

objectives in a performance measurement system. KPIs are defined in the standard ISO 22400 as ”quantifiable63

and strategic measures that reflect the critical success factors of an organization.” According to the same standard,64

KPIs must be quantifiable: the value of the KPI can be specified numerically without being penalized by the65

presence of uncertainty, provided that this uncertainty can also be quantified. Therefore, KPIs are challenged to66

incorporate a notion of uncertainty in their expression. The need to model the uncertainty associated with KPIs67

can be justified by three arguments:68

• Decision-makers can assess not only the values of the performance indicators presented to them, but also69

the confidence they have in those values.70

• If the uncertainty associated with an indicator is significant, it is necessary to investigate the causes in71

order to reduce it.72

• The credibility of the information is measured before implementing actions that could be costly.73

Restricting a study to certain data leads to focusing on a small part of the problem (Parsons 1996). In74

this perspective, we are interested in quantifying the uncertainty of performance indicators to support decision75

making. The rest of the paper is organized as follows. We start with the state of the art on uncertain performance76

indicators and explain the choice of the theory of belief functions for uncertainty modeling. Next, we present77

certain basic elements of the Dempster-Shafer theory. Then, we propose a methodology for using this theory78

for modeling, combining, and propagating uncertainty in performance indicators to support decision making.79

We develop a new method to calculate the uncertainty of a new data vector based on historical data, and we80

propose decision rules adapted to the case of uncertain performance measures. Finally, we apply the proposed81

methodology in the case of a filling line simulation model.82

2 State of the art83

”A statement is uncertain if one cannot assess its truth or falsity given the available data ”(Smets 1990). In84

the literature, two types of uncertainty are recognized: random uncertainty and epistemic uncertainty. Random85

uncertainty describes the inherent variation associated with the system or environment of interest (Oberkampf,86

DeLand, et al. 2002). It is also referred to as variability, or irreducible, observable, inherent or stochastic un-87

certainty. Probability theory is commonly used to represent random uncertainty when experimental data are88

available (Oberkampf, Helton, et al. 2004). Epistemic uncertainty is described as reducible, subjective and cogni-89

tive. It is related to a lack of information about a phenomenon or a lack of confidence and results from scientific90

ignorance, measurement uncertainty, unobservability, censorship, or other lack of knowledge (Ferson et al. 2015).91

Possibility theory , Dempster-Shafer theory (also called evidence theory and theory of belief functions), interval92

analysis and probability theory can be used to model epistemic uncertainty.93

In the context of performance management, probability theory, fuzzy logic and confidence intervals are gener-94

ally used to model uncertainty. In supply chain management, fuzzy sets are used to model uncertain data (Petrovic95

2001). In (Sonmez, M. C. Testik, and O. M. Testik 2018) the authors considered overall equipment effectiveness96

(OEE) to measure the performance of an item of manufacturing equipment. They modeled uncertainty related to97

production speed and stoppage duration measurements used to calculate OEE components. The methods used98

to handle uncertainty depend on its source: if uncertainty is due to the use of linguistic terms or some minor99

stoppages, idling, or speed losses being ignored, fuzzy arithmetic is used. However, in the case of poor accuracy,100

arithmetic intervals are suggested. Another attempt to model uncertainty for OEE was carried out in (Zammori,101

Braglia, and Frosolini 2011). The authors considered OEE as a stochastic random variable and generated its102

probability density function (pdf) by aggregating the pdf of the causes of basic waste. In (Mauro et al. 2021),103

authors investigated the influence of the uncertainty arising from sampling errors on a composite index (CI),104

which is the result of the aggregation of different indicators in the context of the environmental performance105

of Italian regions. They proposed a methodology based on the parametric bootstrap technique to estimate the106

standard error of a CI when one or more of its indicators are affected by a sampling error. They showed that107

non-negligible sampling errors could affect the reliability of the composite indicators. In (Yang, Kornas, and Daub108
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2021), a Bayesian approach was applied to the estimation of process capability indices (PCIs) for the data-sparse109

early prototype production phase. In particular, the credible interval, i.e, the Bayesian analogy of the confidence110

interval for Cpk was calculated.111

In this work, we seek to model epistemic uncertainty for performance indicators in the context of Industry 4.0.112

In addition to the presence of large masses of data, Industry 4.0 can face the challenge of sparse data, especially113

since some production systems do not yet exist. Therefore, we need to rely on experts opinions to have the114

necessary data to evaluate their performance. Hence the need for a framework for modeling uncertainty that is115

suitable for massive or sparse statistical data and subjective data.116

In probability theory, we can distinguish two interpretations of the probability of an event A, noted P(A): the117

frequentist interpretation, which considers the value P(A) as the limit of the frequency of occurrence of an event A118

assuming a sufficient number of repetitions of the experiment, and the subjectivist interpretation, in which P(A)119

is a subjective value characterizing an agent’s beliefs about the occurrence of A (Le Duy 2011). The probability120

theory is based on the axiom of additivity: by knowing P (A), we can determine P (Ā) = 1− P (A) which makes121

this theory unsuitable for uncertainty modeling when the knowledge about an event and its opposite event is very122

limited (Le Duy 2011). To model epistemic uncertainty, the theory of probability is based on the assumption123

of a probabilistic distribution such as the normal distribution, which is interpreted as the subjective probability124

(degree of belief or a confidence degree) of the possible values of the parameter or indicator. This distribution125

cannot always be known with precision and there is no reason that a subjective confidence level should be a126

probability (Raufaste, Silva Neves, and Mariné 2003). According to (Shafer 1976), if we do not know the chances127

(objective probabilities), it requires an extraordinary coincidence for our confidence levels to be probabilities.128

Due to the limitations of probability theory in modeling epistemic uncertainty, non-probabilistic theories can129

be used, namely possibility theory and the Dempster-Shafer theory. Based on two functions of possibility and130

necessity, the theory of possibility was first introduced by (Zadeh 1978) and represents an extension of his theory131

of fuzzy sets. These two theories offer the opportunity to model both imprecision and uncertainty and to handle132

in a more natural way the state of belief in an assertion (Dubois and Prade 2012). When modeling uncertainty133

by probability theory, the condition of additivity linking our state of belief in favor of the realization of the event134

and the belief in its opposite event seems to be rigid (Dubois and Prade 2012). Thus, modeling is simplified135

via the possibility and necessity functions of the possibility theory, and the plausibility and belief functions of136

the Dempster-Shafer theory. Another contribution compared to the probability theory is the fact that these137

approaches solve the problem related to the choice of the probabilistic distribution by using belief functions and138

possibility measures. In addition, both theories provide rules for the fusion of uncertain data, making them a139

powerful tool for managing uncertainty in decision making (Dubois and Prade 1994)(Du and Zhong 2021). The140

main differences between the three uncertainty modeling theories are described in the annex. They mainly concern141

the interpretation of the uncertainty measure in each theory, the way of treating uncertainty with statistical data142

and expert opinions, the link between the uncertainty of an event and its opposite and the uncertainty modeling143

of imprecise data. Each comparison criterion is followed by a comment indicating the difference between the144

theories.145

As a result of the comparison carried out, we notice that the two theories of possibility and belief functions are146

adapted to the modeling of data available in the digital era: statistical data in sufficient quantity or sparse and147

subjective data. As the possibility theory can be considered as a special case of the theory of evidence (Ayyub148

2001), we have chosen to model the uncertain performance indicators using the Dempster-Shafer theory. This149

choice is aimed at demonstrating the suitability of this theory to the context of performance management. The150

flexibility of modeling data uncertainty, the development of the formalism and its strong fundamentals, as well as151

the interesting framework for data fusion, support the choice of the Dempster-Shafer theory. It is also suitable152

for the representation of partial knowledge and ignorance of an A proposition. This is possible by assigning a low153

degree of belief to A and its negation Ā in order to show that there is weak evidence on this proposition (Shafer154

1976).155

3 Dempster-Shafer Theory156

The Dempster-Shafer Theory (DST), also known as the theory of belief functions, is considered as a generalisation157

of the Bayesian theory of subjective probability (Xiao 2020). It is also seen as a generalization of the probability158

theory as it allows assigning probabilities to sets as opposed to mutually exclusive singletons (Ullah, Youn, and159

Han 2021). The DST is based on three functions: the basic probability assignment function also known as the160

mass function (m), the Belief function (Bel) and the Plausibility function (Pl). In order to make this theoretical161

section useful later, we start by introducing the concept of mass function in belief theory, then we address the162

data fusion rules and we end with the propagation of uncertainty. To clarify our statements, we will propose163

illustrations related to the example of the OEE developed in the case study (section 5). For a more detailed164

discussion of this theory, readers may refer to (Shafer 1976).165
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3.1 Mass function166

Let Ω be a set of N exclusive and exhaustive propositions, {Hi}, i = 1, · · · , N , called frame of discernment. Let167

us consider P (Ω), the power set composed with the 2N propositions of Ω.168

P (Ω) = {∅, {H1}, {H2}, · · · , {H1 ∪H2}, · · · ,Ω} (1)

The mass function is defined as the mapping of the power set P (Ω) onto a number between 0 and 1.169

m : P (Ω) → [0, 1] (2)

The mass function m satisfies the following conditions:170

m(∅) = 0 and
∑

A∈P (Ω)

m(A) = 1 (3)

Any subset A of Ω such that m(A) > 0 is called a focal element. The value of the mass function for a given set171

A, m(A) expresses the fraction of the mass of belief placed strictly in A, but to no particular subset of A. The172

mass attributed to a simple proposition expresses the degree of confidence of one proposition with respect to the173

others, and the mass of a compound hypothesis expresses the confusion associated with the lack of information to174

decide between one hypothesis and another (Le Duy 2011). The mass function m and its associated focal element175

are called a belief structure, making it possible to represent a piece of evidence or information about an element176

x drawn from the set Ω (Yager 1987).177

Illustrative example. The actual production time (APT) (time of value-added tasks) is a data used in the178

calculation of the overall equipment effectiveness. Suppose a decision maker asks an operator and the production179

line manager for its value. The values they give are more or less certain. For example, the operator says that the180

APT during one hour is 45 minutes whereas the line manager says it is 40 minutes. The set {40, 45} is the frame181

of discernment. Let us now associate with the data given by the operator an uncertainty of 0.4 and to that of the182

line manager 0.6. So, 45 and 40 are focal elements. (45, 0.4) and (40, 0.6) are belief structures.183

3.2 Evidence combination184

combination rules are used to aggregate data coming from multiple sources (Ullah, Youn, and Han 2021). If we185

have two belief functions m1 and m2 associated with two sources of evidence, combining the evidence entails186

finding a combined belief structure m over the frame of discernment. During data fusion, the uncertainty on the187

resulting data is calculated using different combination rules. In order to choose methods used in the uncertainty188

combination, the following criteria have to be considered :189

• Independence of information sources. If one of the measurements of the same quantity is taken by two190

employees of the same company, the credibility of one is not necessarily independent of that of the other.191

Indeed, they may be trained in the same way, use the same equipment and be under the same conditions.192

• There may be partial, total or no conflict between sources of evidence.193

• Source reliability: either all sources are reliable or at least one reliable source exists.194

For instance, Dempster’s rule is used in the case of distinct sources of information which are not totally195

conflicting. The resulting operator from the combination using Dempster’s rule is noted the orthogonal sum ⊕.196

The result of the combination is given by:197

m1⊕2(A) =
1

1−K

∑
B∩C=A

m(B)m(C), ∀ ∅ ̸= A,B,C ⊂ Ω (4)

where K = m(∅) =
∑

B∩C=∅ m(B)m(C). This factor refers to the degree of conflict between the two sources (Jing198

and Y. Tang 2021). When there is no intersection between the combined masses, K is equal to 1 and function199

m1⊕2(A)is undefined (Murphy 2000).200

Illustrative example. Let us again consider the example of the actual production time (APT). Suppose201

that two different operators have recorded it for the same period of time. The values are not the same for each202

measurement. The first operator found a production time between 50 and 52 minutes 5 times and a production203

time between 53 and 55 minutes twice. The second operator recorded an APT between 50 and 53 minutes 3 times204

and a production time between 54 and 55 minutes 4 times. For each operator we take a mass function equal to205

the number of times the interval occurred divided by the number of records. Considering each operator i as a206

data source Si, the intervals for each source as well as the mass functions are summarized in the table 1.This207

table shows also the results of the Dempster’s rule of combination while merging the uncertain data provided by208

the two operators.209
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Table 1: Combination of data sources using the Dempster’s rule.

Source of data Operator 2
Operator 1 ([50, 52] , 0.71) ([53, 55] , 0.28)

([50, 53] , 0.42) ([50,52] ,0.52) ({53} ,0.205)
([54, 55] , 0.57) Total conflict ([54,55] ,0.278)

By merging the data, we know that the actual production time can belong to the interval [50, 52] with a210

confidence value of 0.52 or it belongs to the interval [54, 55] with a mass function equal to 0.278. Also it can be211

equal to 53 with a mass function of 0.205. We notice that there may be no intersection between the intervals,212

indicating a total conflict between the two sources. Then, we can take into account the information provided by213

both operators using the disjunctive rule that results in the union of the two data sets. However, it produces less214

accurate results compared to the data provided by the sources.215

3.3 Uncertainty propagation216

The propagation of uncertainty in the Dempster-Shafer theory consists of the propagation of the belief functions217

of input variables into the output variable. Let Y be an output variable with values in R. Let us consider218

X1, X2, · · · , Xn a set of independent input variables. Each input variable is modeled by a mass function given by219

mXi : 2Ω
Xi → [0, 1] ,ΩXi ⊆ R is the definition field of Xi.220

If y = f(X1, X2, · · · , Xn), the propagation of uncertainty is performed through function f to obtain the221

uncertainty on Y . To propagate belief function from X1, X2, · · · , Xn to Y = f(X1, X2, · · · , Xn), we can use222

the Cartesian product (Marques, Ynuhui, and Marrel 2018). We first define the Cartesian Product of the input223

variables: ΩX1 ∗ ΩX2 ∗ · · · ∗ ΩXN ) = {(x1, x2, . . . , xn) : x1 ∈ ΩX1 ∧ x2 ∈ ΩX2 · · · ∧ xn ∈ ΩXn}.224

Let s be a subset from the Cartesian product of focal elements of X1, X2, · · · , Xn. Suppose that f is a225

continuous function, then the focal elements of Y are given by:226

[min(f(x),max(f(x)] ∀x ∈ s ⊆ ΩX1 ∗ ΩX2 ∗ · · · ∗ ΩXN (5)

Illustrative example. The quality ratio is given by good quantity (GQ) divided by produced quantity(PQ).227

Suppose that GQ = 60 with a mass function equal to m1 = 0.9 and the PQ = 65 with m2 = 0.95. Then the228

quality ratio is equal to 60/65 = 0.92 with a mass function m = m1 ∗m2 = 0.9 ∗ 0.95 = 0.855.229

The Dempster-Shafer theory offers a simple and intuitive model of the uncertainty of key performance indica-230

tors. It also gives the possibility to merge data from multiple sources and combine their uncertainty. In the next231

section, we propose an approach to quantify uncertainty in key performance indicators.232

4 Proposed Approach233

In this section, we present our approach for quantifying the uncertainty of a performance indicator. It can be234

summarized as follows: Key performance indicator modeling, uncertainty modeling and decision making. This235

approach can be used for indicators based on uncertain data. This uncertainty can be due to a defect in a measuring236

device, to the non-credibility of the operator who provided the production data, or to a lack of knowledge on237

the part of the expert who has been asked to assess such a situation. The complexity of the production systems238

during the transition to Industry 4.0 can also generate uncertainty: when implementing new systems, the factory239

staff is not yet familiar with its functioning and may not be able to judge the quality of the data generated.240

Another significant cause of data uncertainty is the non-reporting of certain production stoppages considered241

minor (Sonmez, M. C. Testik, and O. M. Testik 2018), the approximate measurement of time such as equipment242

failure, which may begin, for example, at the time of the maintenance department’s intervention although the243

failure could have occurred much earlier. Also, the multitude of data sources is an origin of uncertainty because244

we cannot decide which one is more reliable.245

4.1 Key performance indicators modeling246

The first step in expressing uncertainty for performance indicators is the definition of a hierarchy structure for247

performance measurements. In this work, we classify performance measures into key performance indicators (KPI),248

performance indicators (PI) and data. KPIs (for example overall equipment effectiveness) are generally the result249

of aggregating performance indicators. They synthesize many aspects of the business and allow assessing the250

overall performance (Kang et al. 2016). Performance indicators are generally ratios calculated from elementary251

data. They reflect one performance aspect. Quality ratio, throughput rate and availability are examples of252

performance indicators. Data include direct measurement from sensors, time elements, production statistics, like253

quantity produced, number of failures, etc.254
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4.2 Uncertainty modeling255

We propose to express uncertainty associated with key performance indicators by a pair (KPI,m) with m ∈256

[0, 1]. m is given by the mass function from the Dempster-Shafer theory associated with a focal element KPI.257

The value of m is calculated by propagating the data uncertainty to the performance indicators and then to key258

performance indicators.259

Data uncertainty is also modeled using the theory of belief functions. We associate with each datum a mass260

function mi. This value is not always easy to determine. It can be provided by experts having a knowledge of the261

system or of the phenomenon studied or calculated from statistical data. We propose in the following a method to262

calculate data mass function based on historical data. If a piece of data comes from different sources with different263

mass functions, it is possible to opt for data fusion and an uncertainty combination. Once the mass function of264

the elementary data is known, it can be propagated to performance indicators. These steps are illustrated in the265

figure 1.266

Figure 1: Proposed approach for modeling uncertainty in KPI

• Mass function determination267

The determination of the belief function is a fundamental problem in the theory of belief functions. A268

method for modeling belief functions inspired by the k-nearest neighbors (k-NN) algorithm is proposed269

in (Denoeux 2008). The objective is to use the Dempster-Shafer framework for the classification of a270

pattern x on the basis of its k nearest neighbors. Let Ω = {C1, C2, · · · , Cc} a set of c classes and Γ =271

(x1, L1), (x2, L2), · · · , (xn, Ln) a training set of n p-dimensional patterns xi with Li ∈ 1, 2, · · · , c their272

label indicating the pattern’s membership to one class of Ω. Let xs be a vector to be classified based on273

information contained in the training set Γ. If we note Φs the set of k-nearest neighbors of xs according to274

the Euclidean distance, each pattern xi from Φs with label Li = q provides a piece of evidence regarding275

the membership of xs to Cq. If xi is close to xs ( the Euclidean distance between xi and xs is small), then276

we tend to believe that xi and xs belong to the same class Ci. Otherwise, if xs is far from xi according to277

the Euclidean distance, then we can assume that xi provides very little information about the label Cq of278

xs. Thus, each vector close to xs constitutes a source of information represented by a mass function ms,i
279

whose formula is given by:280

ms,i {Cq} = α0Φq(d
s,i) (6)

ms,i {Ω} = 1− α0Φq(d
s,i) (7)

ms,i {A} = 0 ∀A ∈ 2Ω\{Ω, Cq} (8)
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where Cq is the class of xs, d
s,i = d(xs, xi) the Euclidean distance between xs and xi, α0 is a constant

equal to 0.95 and Φq a decreasing function given by:

Φq(d) = exp(−γqd
2)

γq is a positive parameter associated with class Cq.281

Once the mass functions are computed for each neighbor of xs, they are combined using Dempster’s com-282

bination rule to obtain a global mass function m representing our belief about the class of xs. m is given283

by:284

m = ⊕k
i=1m(.;xi) (9)

As mentioned in the introduction 1, the data can be statistical or subjective. The strategy for determining285

the mass functions depends on the type of data. To calculate the confidence values associated with the286

value of a variable X in the presence of historical data, we propose the following method (figure 2) based287

on the approach proposed in (Denoeux 2008) for classification. Let us assume that the collected data are288

multivariate, i.e. they are represented by a matrix Xn,p where n is the number of observations and p is289

the number of monitored variables. We note xij the value of the variable p for the individual i and mij its290

confidence value. Each value xij is obtained from a source Sij which can be reliable or not. That is why291

we assign to each source a value wij ∈ [0, 1] characterizing its reliability.292

293

The determination of mij is seen as a classification problem. Indeed, a system can be in several macro-294

states: nominal, degraded, in failure, etc. Each macro-state corresponds to possible data values. These295

macro-states can be identified through a study of the system’s history. The number of macro-states must296

be small in order to allow easy decision making. When observing the system at a given time, if we are able297

to determine whether the instantaneous state belongs to one of these macro-states, we will then be able to298

determine the state of the system and propose the necessary monitoring actions. This approach can then299

be assimilated to a classification approach. The macro-states are classes determined thanks to the historical300

data.301

Therfore, we can proceed as follows (figure 2) :302

– Step1: Identification of Macro-states or classes. These classes (macro-states) are initially determined303

via unsupervised learning making it possible to discover patterns in the data. The K-means algorithm304

was chosen in order to constitute homogeneous groups of data. Each group of data corresponds to a305

state of the system under study (e.g. nominal operating state, degraded operation, system in failure).306

– Step2: Determination of mass function of macro-states. Once the classes are defined and the historical307

data are divided into groups, an expert assigns a mass function mc to each group while taking into308

account the functioning of the system and the realizability of these variables. This mass function309

reflects the confidence that the expert has in the representation of a system state by data group. For310

example, if the group C1 contains x1, x2, x3 and it represents a degradation state of the system, then311

we give them a confidence value equal to 0.7 showing that we are about 70% sure that these values312

represent the degraded state of the system.313

– Step 3: Classification of a new vector of observations and calculation of its mass function. For a new314

vector of observations xn+1, we seek to classify it into one of the data groups Ck. Then, we calculate315

the distance separating the vector from its k nearest neighbors in the group (k should remain small,316

for example k = 3 or k = 4) to find the mass function m by the formula given in equation 9. Once317

this is done, the confidence value of xn+1 mn+1 is given by mn+1 = m ∗mk.318

– Step 4: Determination of mass function for the observation xj
n+1. If the observations constituting the319

data vector come from various sources that are more or less reliable, we proceed to the calculation of320

the confidence value of each observation separately. As the confidence value associated with the data321

vector xn+1 is known, the mass function for each observation xj
n+1 is given by mj

n+1 = w(n+1),j ∗mn+1.322

• Uncertainty combination323

If the data used in the calculation of an indicator come from different sources, of varying degrees of credibility324

and which may be conflicting, we can merge them using the combination rules.325

• Uncertainty propagation326

Once we have quantified the uncertainty in the data, we can propagate it to the performance indicators via327

the function taking the data as input and the performance indicator as output.328

4.3 Decision making329

Defining the level of confidence in the performance measure informs the decision maker about our belief in the330

veracity of the information. To make decisions based on uncertain performance indicators, the following approach331

is proposed (figure 3):332
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Figure 2: Proposed methodology to determine mass function based on historical data

1. Two confidence values are defined: the ”target confidence” and the ”uncertainty acceptability limit” such333

that the uncertainty acceptability limit ≤ the target confidence.334

2. We define the ”gravity” as the impact of a bad decision. Its value is based on a scale of 1 to 9. For a gravity335

of 1, a bad decision has almost no impact on the system. If the gravity is equal to 9, an inappropriate336

decision could have catastrophic consequences on the production system (an explosion for example). An337

acceptable level of gravity called ”critical gravity” should then be set.338

3. Decision-making zones are then defined with regard to the confidence value and the gravity of a bad decision:339

• Ignorance zone, confidence value ≤ uncertainty acceptability limit. It represents situations where the340

confidence in the available data is lower than the minimum limit. Therefore, the ignorance is too341

great; additional information has to be acquired before any decision-making.342

• Credible zone, confidence value ≥ target confidence. In this zone, the level of confidence is such that343

it is quite possible to make decisions, regardless of the potential consequences of the decisions.344

• Precaution zone, uncertainty acceptability limit ≤ confidence value ≤ target confidence and gravity ≤345

critical gravity. The level of confidence lies between the target confidence and the acceptability limit.346

In this case, decisions can be made as long as the consequences are assumed.347

• Critical zone, uncertainty acceptability limit ≤ confidence value ≤ target confidence and gravity ≥348

critical gravity. No decision should be made regarding the potential gravity of the consequences.349

4. When decision making is possible (credible or precaution zones), the decision maker uses the values of the350

performance indicators to correct or improve the performance of the production system.351

5 Case study352

Several companies are considering a transition to Industry 4.0. For many, Industry 4.0 deployment involves353

managing and exploiting massive data from existing systems and acquiring additional data by installing sensors354

everywhere. However, this approach is questionable since data, although considered as the oil of the 21st century,355

is not always relevant. Indeed, data has to be in sufficient quantity, of good quality and with an acceptable cost.356

Therefore, we are interested in modeling data uncertainty, an aspect of data imperfection, to show its impact357

on decision making. Since there was no possibility of applying the methodology to a real case, we proceeded by358

simulation.The simulation model is that of a perfume filling line strongly inspired by a real case. The company359

under consideration fills perfume bottles for different perfumers.The line is automated but has a low score of360

overall equipment effectiveness (OEE) which led us to consider the OEE as the indicator of interest. Thus, to361

show an application of the proposed approach for quantifying KPI uncertainty, we use simulation data to calculate362

the uncertain OEE and support decision making.363

5.1 Overall equipment effectiveness (OEE)364

OEE is a popular key performance indicator used for measuring the productivity of an individual item of equip-
ment in a factory (Muchiri and Pintelon 2008). It allows improving performance through better information on
production, losses identification and quality improvement (ISO 2014). OEE integrates the availability, effective-
ness and quality of an equipment. Its computation formula is given by :

OEE = Availability ×Quality × Effectiveness

Availability is the ratio between actual production time (APT) of an item of equipment and planned busy
time (PBT).

Availability =
APT

PBT

8



Figure 3: Zones of decision making

The quality ratio defines the relationship between the good quantity (GQ) and the produced quantity (PQ).

Quality ratio =
GQ

PQ

Finally, effectiveness is given by the ratio between the target cycle (planned run time per item (PRI) multiplied
by produced quantity (PQ)) and the actual cycle represented by (APT).

Effectiveness =
PRI × PQ

APT

The definitions of the quantities used in the formulas of the above indicators are provided in table 2. These365

definitions are quoted from (ISO 2014).366
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Table 2: Terms and definitions

Term Definition

Actual production time (APT) The actual production time is
the actual time during which a
working unit is producing. It
includes only the value-adding
functions.

Planned busy time (PBT) The planned busy time repre-
sents the planned operation time
minus the planned downtime.
The planned operation time is
the planned time in which a work
unit can be used.

Good quantity(GQ) The good quantity is defined
as the produced quantity that
meets quality requirements.

Produced quantity (PQ) The produced quantity is the
quantity that a work unit has
produced in relation to the pro-
duction order.

Planned run time per item (PRI) The planned run time per item is
the planned time for producing
one quantity unit.

OEE is a key performance indicator; availability, effectiveness and quality ratio are performance indicators.367

Produced quantity PQ and actual production time APT, for example, are elementary data. Its hierarchy is given368

by figure 4.369

Figure 4: Hierarchy of OEE

5.2 Simulation model370

The simulation model of the filling line (figure 5) has nine workstations consisting of: a post that places empty371

bottles in buckets, a filling machine, a bottle capping workstation, a cartoner, a carton sealing machine, a372

workstation to separate bottles from buckets, a cellophane wrapping machine, a quality control station, and373

packaging. Although the model simplifies reality, it must take into account the variability of the real system374

that can be modeled. Therefore, we have introduced an uncertainty on the model parameters in the form of375

probability distributions for production rates, failure laws and production quality. This uncertainty, although376

artificial, helps to mimic the sometimes unpredictable behavior of the system and introduces some variability.377

Since the production line has several workstations, we will choose a single workstation for which the overall378
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equipment effectiveness is monitored. To do so, we have decided to focus on the bottleneck machine whose379

identification is carried out in the following step.380

Figure 5: Simulation model

5.3 Bottleneck machine identification381

To find the bottleneck machine in the filling line, we use the approach proposed in (H. Tang 2019). This approach382

is aimed at calculating standalone OEE based on standalone availability, standalone effectiveness and standalone383

quality: the equipment of interest is considered as if it works alone in the production line.384

The standalone availability Asa of an item of equipment is given by:385

Asa =
Actual production time

(planned busytime− (starving time+ blocking time))
(10)

The standalone effectiveness Esa is given by:386

Esa =
Actual production rate

(designed process rate− speed loss due to upstream operations)
(11)

And the standalone quality Qsa is given by:387

Qsa =
number of good units produced

number of units produced− number of bad quality units due to upstream operations
(12)

Then the standalone overall effectiveness equipment OEEsa is given by:388

OEEsa = Asa ∗ Esa ∗Qsa (13)

These indicators allow focusing only on the subsystem faults considered to ensure an effective improvement.389

Indeed, a subsystem can be starved due to its upstream subsystem or blocked by its downstream one. The390

determination of Esa and Qsa is not always easy and a simplified version of OEEsa can be calculated taking into391

account only Asa (H. Tang 2019). It is given by:392

OEEsa−simplified = Asa ∗ E ∗Q (14)

5.3.1 OEE and standalone OEE calculation393

Based on simulation data, we calculate availability, effectiveness, quality and standalone availability for each work-394

station in the line every hour for a one-month simulation. Then, we calculate the OEE and the OEEsa−simplified395

which we note simply OEEsa. The following tables show the weekly average of OEE and OEEsa for each work-396

station during one month. The results are given by the following tables and figures.397

398
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Table 3: Average of OEE and OEEsa for each work-
station during the first week

Workstation OEE OEEsa

Placing empty bot-
tles in buckets

44 89

Filling machine 55 94
Separating bottles
from buckets

44 90

Capping bottles
workstation

43 79

Cartoner 42 90
Carton sealing ma-
chine

41 75

Cellophane wrapping
machine

40 75 Figure 6: Comparison between OEE and standalone
OEE during the first week

399

400

Table 4: Average of OEE and OEEsa for each work-
station during the second week

Workstation OEE OEEsa

Placing empty bot-
tles in buckets

43 85

Filling machine 52 93
Separating bottles
from buckets

48 90

Capping bottles
workstation

42 79

Cartoner 40 89
Carton sealing ma-
chine

40 77

Cellophane wrapping
machine

39 77 Figure 7: Comparison between OEE and standalone
OEE during the second week

401

402

Table 5: Average of OEE and OEEsa for each work-
station during the third week

Workstation OEE OEEsa

Placing empty bot-
tles in buckets

45 91

Filling machine 56 93
Separating bottles
from buckets

51 90

Capping bottles 44 81
Cartoner 42 90
Carton sealing ma-
chine

42 76

Cellophane wrapping
machine

41 75 Figure 8: Comparison between OEE and standalone
OEE during the third week

403

404
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Table 6: Average of OEE and OEEsa for each work-
station during the fourth week

Workstation OEE OEEsa

Placing empty bot-
tles in buckets

41 87

Filling machine 50 91
Separating bottles
from buckets

46 86

Capping bottles
workstation

40 78

Cartoner 38 87
Carton sealing ma-
chine

38 75

Cellophane wrapping
machine

37 76 Figure 9: Comparison between OEE and standalone
OEE during the fourth week

405

5.3.2 Identifying the bottleneck machine406

We compared the average standalone OEE values during each week to identify the bottleneck station. This weekly407

study is justified by the fact that the bottleneck station may move from station i to station j during the study408

period. During the first week, the cellophane wrapping machine and the carton sealing machine are bottlenecks as409

they have the lowest values of the standalone OEE (75%). Although these machines have the lowest OEE values410

(40% and 41%), OEE is not suitable for this study. During the second week, the same machines are bottlenecks.411

The cellophane wrapping machine is the bottleneck during the third week and the carton sealing machine is the412

bottleneck during the fourth week.413

Since most of the time the cellophane wrapping machine is a bottleneck and is the last machine in the line,414

we chose to focus our study on it.415

5.4 Uncertainty modeling416

To quantify the uncertainty of OEE, we start by quantifying the uncertainty of the elementary data used to417

calculate it. As mentioned in the section 4.1, we need to know the actual production time (APT), the planned418

busy time (PBT), the produced quantity (PQ), the good quantity (GQ), the planned runtime per item (PRI)419

and the good quantity to calculate the OEE. These data include constants covering PBT and PRI and variables420

including APT, PQ and GQ. For the constants, we assume that we have certain values. Furthermore, to simplify421

the model, we assume that the quality rate is constant during the simulation. Then, we express the uncertainty422

associated only with the variables mainly the APT and the PQ.423

5.4.1 System macro-states definition424

To have a history of the operation of the cellophane machine, the object of study, we collected simulation data425

each hour, including the number of units produced, the actual production time, the failure time, and the planned426

stopped time for one month simulation. This data is used to determine the different states of the cellophane427

wrapping machine.To achieve this, we use clustering as an unsupervised method to define groups of data corre-428

sponding to the different states of the system. We applied the k-means algorithm to the data and obtained 6429

groups of data illustrated in figure 10. We can interpret the different groups as follows:430

• First group: It corresponds to machine starvation during 65% of the time. This information is confirmed431

by simulation data concerning the time of machine starvation by hour.432

• Second group: This group corresponds to the nominal operation of the machine. Indeed, the production433

time is on average 55 minutes per hour and the number of parts produced per hour is 1489.434

• Third group: When it comes to this group, the machine is starved for 50% of the time per hour.435

• Fourth group: This data set corresponds to a starvation for 30% of the time.436

• Fifth group: It corresponds to the faulty state of the system characterized by an average failure time of 30437

minutes per hour.438

• Sixth group: This last group of data corresponds to a starving state with the presence of planned stops.439

5.4.2 Uncertainty calculation440

The next step is to calculate the uncertainty for new observations. Let us assume that we have observations in441

the form of multivariate data involving APT, PQ, the time of failure and the planned stopped time per hour.442

We aim at calculating the uncertainty of this data vector. We start by classifying the data vector to determine443

the state of the system and then we calculate the uncertainty based on the distance between it and its k-nearest444
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Figure 10: System macro-states represented by data groups

neighbors. We apply this method to observations generated artificially by Generative adversarial networks (GAN).445

This generation of artificial data allows on the one hand the generation of uncertainties and, on the other hand,446

overcoming the problem of having sufficient data describing all the possible states of the system.447

In table 7, we present observations generated by the neural networks, its classes and mass functions.

Table 7: Observations generated artificially by GAN networks with its mass functions.

Id Units produced APT Time failed Time stopped Class Mass function

1 808 25.6 0.44 1.27 4 0.99711

2 1192 37.79 0.45 5.16 3 0.16531

3 604 19.2 0.2 1.12 1 0.98767

4 167 5.25 0.12 0.24 1 0.99759

448

According to the classification results, the first vector belongs to class 4, i.e. the cellophane wrapper starved for449

30% of the time. As the mass function based on the distance separating this vector from its 10 nearest neighbors450

is equal to 0.99711, the information on the state of the cellophane machine is more than 99% credible. The451

second vector belongs to class 3 ( the machine starved for 50% of the time).However, the mass function is equal452

to 0.16531. This value is very low and therefore we cannot make any decision based on the second observation.453

In this case, more investigation is required to reduce the uncertainty level.454

5.4.3 Uncertainty propagation455

We expressed the uncertainty of APT and PQ, necessary for the calculation of availability, effectiveness and456

therefore of the OEE (the quality rate is assumed to be constant). We start by propagating the uncertainty to457

the performance indicators: availability and effectiveness ( quality is supposed constant) and then to OEE.458

In the determination of the mass function, we considered multivariate data and we assumed that the data459

sources are reliable. Thus, the uncertainty value is the same for all variables. In this case, we will not use460

the Cartesian product to propagate the uncertainty. We simply assume that the uncertainty of availability and461

effectiveness is the same as the uncertainty of the data ( actual production time and produced quantity). Thus,462

the same uncertainty is associated with the OEE. Otherwise, if each datum is collected separately with more or463

less reliable sources, we proceed to the propagation by Cartesian product. The values of OEE with their mass464

functions are given by table 8.465

5.5 Decision making466

Based on the uncertain values of OEE, the decision maker may or may not make a decision. For example, for467

the first value of OEE equal to 39%, the mass function is 0.99711. Then this value of OEE is almost certain468
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Table 8: Values of OEE with their mass functions

OEE Mass function

39 0.99711

61 0.16531

29 0.98767

8 0.99759

and it is possible to make a decision without worrying about the quality of the information. And based on the469

classification of observations into macro-states, we know that the system is in a starved state. So, an investigation470

of the performance of the upstream machine (in our case, the carton sealing machine) is necessary to fix this471

problem. This indication helps us to understand the causes of such a low value of the overall equipment efficiency.472

On the other hand, for the second value of OEE, the decision maker cannot make any decision because the mass473

function value (0.16531) is very low, meaning that they do not know the real value of the overall equipment474

effectiveness.475

Thus, the contribution of the uncertainty calculation method is twofold: it reassures us of the veracity of the476

information before implementing an action and it provides us with insights into the causes of a loss in performance.477

The uncertainty quantification approach is intended to assist decision making. In the presence of uncertain478

data, the decision maker can make a decision or request more information in the case where the uncertainty is479

very high. The classification of the data vector to a system state helps to diagnose the production system while480

giving an idea of the data quality level. This avoids making critical or costly decisions with a high risk of being481

wrong.482

6 Conclusion and perspectives483

The ever-increasing amount of data available in companies creates new challenges for decision support. As484

quantity is no guarantee of quality, data can be imprecise, uncertain, incomplete, etc. It is therefore necessary to485

deploy techniques to model these data imperfections. Our work is performed in the context of Industry 4.0 and486

decision support in the presence of massive and uncertain data. We used the theory of belief functions to provide487

some answers to this problem. This theory has the ability to represent the degree of confidence that a user can488

associate with statistical data or expert knowledge. We then proposed a method allowing: (i) the quantification489

of these uncertainties by a scalar m associated with each elementary datum, and (ii) propagating them to the490

KPIs. Furthermore, a method to compute the uncertainty of a new vector of observations from historical data491

was developed and decision rules to follow in the case of uncertain performance measures were proposed. In order492

to show the interest of the proposed approach in decision making, we used data from a simulation model of a493

perfume filling line. We proceeded to the quantification of the uncertainty related to the OEE.494

The modeling of this uncertainty associated with the KPIs allows making relevant decisions by separating the495

following situations:496

1. Zone of ignorance, low confidence independently of the risk associated with a decision: no decision should be497

made.498

2. Zone of credibility, high confidence independently of the risk associated with a decision: easy decision.499

3. Precaution zone, medium confidence and low risk: decision possible provided that the consequences are500

assumed.501

4. Critical zone, medium confidence and high risk: decision is not advisable.502

This makes it possible to prevent the risks associated with inappropriate decisions and additional costs, for503

example.504

Several perspectives can be considered. Despite the interest of the results obtained, our method should be505

extended, in particular by improving the techniques of confidence degree propagation and the control of the506

number of performance indicators. Naturally, one of our goals is to apply the method to real cases, which will507

help us to refine the approach.508

7 Annex509
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Table 9: Comparison of theories for epistemic uncertainty modeling

Criteria Probability theory Dempster-Shafer
theory

Possibility theory

Uncertainty
measure and its
interpretation

Probability P(A1): the
probability of an event is
interpreted as the limit of

the frequency of
occurrence of the event
when the experiment is
repeated many times

(objectivist view) or the
belief that an event will
occur (subjectivist view)
(Dubois 2006). A1 is an
individual elementary
event from Ω such that
Ω = {A1, A2, . . . , An}, a
finite set of mutually

exclusive and exhaustive
propositions about some
problem domain, called
the frame of discernment

(Denoeux 2008).
Example: a coin is

tossed three times and we
are interested in the

random variable X given
by the number of heads
obtained. The probability
that X is equal to 2 is
noted by P (X = 2) = 1

4 .
Now consider the

subjective probability.
We are interested in the
probability that a dam
will fail following an
extreme flooding

condition. Since this
event is rare, it is not

possible to calculate the
probability of it

happening based on the
frequency of occurrence.

An approach to
determine this

uncertainty consists in
modeling the system, its
performances and its

uncertainties in order to
build up a state of
knowledge on the

occurrence of the event
under consideration

(Ayyub 2001).

Mass function m(A):
m(A) is interpreted as a
measure of the belief that
one commits exactly to A,
and not to any subset of
A (Baraldi and Zio 2010),
due to lack of knowledge
(Dubois and Prade 2009).
A is a set of the power set

of the frame of
discernment Ω : P (Ω) =
{∅, {A1}, {A2}, {A1 ∪

A2}, . . . ,Ω}.
Example: a murder has
been committed and
there are 3 suspects:

John, Jack and Sophie.
The frame of discernment

is Ω =
{John, Jack, Sophie}
A witness saw the

murderer run away, but
he is nearsighted and can
only attest that it was a
man. We know that the
witness is drunk 20% of

the time. The
information about the
suspect is uncertain and
can be represented by a
mass function m on Ω

such that :
m({John, Jack}) = 0.8
and m(Ω) = 0.2. The

mass 0.2 is not assigned
to Sophie because the

testimony does not accuse
Sophie at all (Denœux

2010).

Possibility π(A) :
possibility is a subjective
measure that expresses
the degree to which a

person considers that an
event can occur. It

relates to our perception
of the degree of feasibility
or ease of attainment.
Example: we take the
example of (Zadeh 1978)
on Hans’ breakfast. The
variable of interest that
we will note X is the

number of eggs that Hans
will eat tomorrow. The

possibility and
probability values for X

are assumed to be known.
For example,

π(X = 1) = 1 and
P (X = 1) = 0.1,
π(X = 8) = 0 and

P (X = 8) = 0. π(X = 1)
is interpreted as the

degree of ease with which
Hans can eat one egg.

P (X = 1) is the
probability that Hans

eats one egg for
breakfast. We notice that
it is totally possible that
Hans eats but that it is

unlikely. So a high degree
of possibility does not
imply a high degree of
probability and a low

degree of probability does
not imply a low degree of
possibility. However, if an
event is impossible, it is
necessarily improbable.

Comment: The interpretation of uncertainty as a probability is questioned if it is not
possible to repeat the experiment a sufficient number of times to obtain the probability
distribution. Indeed, if we know the probabilities, it is possible that we adopt them as
degrees of belief. However, if we do not known them, it is an extraordinary coincidence
that our degrees of belief in a proposition are equal to the probability of occurrence
(Shafer 1976)
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Uncertainty
modeling for :
1. statistical

data
and

2. expert
opinions

A probability distribution
can be identified if the

amount of data is
sufficient. In the case of
the elicitation of an
expert opinion on the

value of a parameter X,
they can provide for

example the 5% and 95%
fractiles of the probability
density function and a

mean, median or mode of
the distribution. To

construct the probability
density based on these

data, a choice of
parametrized family of
distribution function is
usually made (Dubois

and Prade 1994).

As in probability theory, if we have enough data,
we can construct possibility and belief distributions.
Otherwise, the degrees of confidence provided by the
expert are taken as measures of uncertainty without
the need for a prior definition of distribution func-
tions.

Comment: If we have sufficient amounts of data, measures of probability, possibility,
and belief have in common that all three can be characterized by a distribution on the
elements of the reference set. In the case of subjective data, there is no reason that
a subjective belief should be probability. In fact, the determination of a probability
distribution requires more information than an expert is able to provide. And the
a priori choice of a specific probability distribution is unfaithful to the modeling of
expert opinion because it assumes that the analyst collecting expert opinions has an
idea of the value of the parameter however ignorant this analyst may be (Dubois and
Prade 1994).
Link between

the uncertainties
related to A and

Ā

P (A) + P (Ā) = 1. This
equation shows that the

knowledge of the
probability of A

completely defines that of
its opposite event.

If we do not have enough
information about the
realization of an event
and its opposite, we can

allocate weak mass
functions to each of them
(m(A) and m(Ā) have

low values).

max(π(A), π(Ā)) = 1.
This equation means that
of two contrary events, at
least one is possible, the
possibility of one not

implying the impossibility
of the other (Masson

2005). Then the
possibility of an event
and that of its contrary

are weakly linked.
Comment: Because of the axiom of additivity, probabilistic modeling is not suitable
when the knowledge about an event and its opposite is very limited. Thus, this theory
does not distinguish between a lack of belief and non-belief in the realization of an
event.
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Modeling
imprecision

AND
uncertainty

simultaneously

The probability p(A) is
allocated to a singleton

A.
Example: we consider
the variable of interest

given by Peter’s age. We
know that he is between
20 and 25 years old.

Ω =
{20, 21, 22, 23, 24, 25}. We
can therefore assign the
probabilities to each

singleton of Ω:
P ({20},P ({21}, etc.

The degree of belief m(A)
can be associated with a
singleton, a subset A of
the frame of discernment
or the total frame of

discernment which allows
expressing uncertainty
and imprecision in a

natural way.
Example: We consider
Peter’s age again. One of
his friends told us that he
is over 21 years old but
we are 80% confident in
his piece of information.
Thus the information on
Peter’s age is imprecise
and may belong to the
set {22, 23, 24, 25} and
uncertain because the
source is not totally
reliable. The mass

functions are given by:
m({22, 23, 24, 25}) = 0.8

and m(Ω) = 0.2.

Based on the fuzzy sets
theory, the possibility

theory allows
representing information
that is subject to both

uncertainty and
imprecision: we can
express a degree of

possibility for a subset of
propositions:
π({A1, A2}).

Example: for Peter’s
age, we know that he will
be awarded his bachelor
degree soon. So, it is
possible that he is

between 22 and 25 years
old. This information is
imprecise because we

don’t know Peter’s exact
age but also uncertain. It
can be represented by:

π(X ∈ {22, 23, 24, 25}) =
1.

Comment: Available information is generally incomplete. For instance, imprecision
is a form of incompleteness since imprecise information is not sufficient for an agent
to answer a question in a given context (Dubois and Prade 2009). Uncertainty and
imprecision are two closely related imperfections: in many situations, the more pre-
cision is required in the statement of an assertion, the less certain the assertion is
(Bouchon-Meunier 2007). In this case, a probability distribution is not adapted to
model epistemic uncertainty because it hides the imprecision in the data. A proba-
bility distribution may provide too much information to reflect poor expert data or
unreliable sensors (Dubois and Prade 1994). On the other hand, the theory of belief
functions and the possibility theory have the advantage of modeling both imprecision
and uncertainty in data.
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