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Abstract— Over the past few years, differentiable optimiza-
tion has gained in maturity and attractivity within both machine
learning and robotics communities. It consists in computing the
derivatives of a given optimization problem which can then be
used by learning algorithms, and enables to generically plug
computational blocks reflecting the solving of generic mathe-
matical programming problems into a learning pipeline. Until
now, dedicated approaches have been proposed to compute the
derivatives of various types of optimization problems (LPs, QPs,
SOCPs, etc.). However, these approaches assume the problems
are well-posed (e.g., satisfaction of the linearly independent
constraint qualifications), limiting de facto their application to
ill-posed problems. In this work, we focus on the differentiation
of optimal control solvers widely used in robotics. We notably
introduce a differentiable proximal formulation for solving
equality-constrained LQR problems that is effective in solving
ill-posed and rank-deficient problems accurately. Importantly,
we show that this proximal formulation allows us to compute
accurate gradients even in the case of ill-posed problems which
do not satisfy the classical constraints qualification. Because
any optimal control problem can be casted as an equality-
constrained LQR problem in the vicinity of the optimal solution,
ours robust LQR derivatives computation can then be exploited
to obtain the derivatives of general optimal control problems.
We demonstrate the effectiveness of our approach in dynamics
learning and system parameters identification experiments in
linear optimal control problems.

I. INTRODUCTION

A key part of programming robot movements is often
an instance of trajectory optimization, where the task to
solve is encoded as a cost term and physical constraints
are encoded as path constraints. Optimal control offers a
sound mathematical framework to generically solve trajectory
optimization problems. Over the past decades, differential
dynamic programming (DDP) [1] and the iterative linear
quadratic regulator (iLQR) [2] have become widespread and
tractable approaches to solving real and complex robotic
problems, ranging from UAVs navigation [3] to the control of
legged locomotion [4]. While DDP was originally designed
for unconstrained problems, variants have been proposed to
account for various levels of path constraints, ranging from
simple bounds on the control inputs [5] to the handling of
generic equality [6], [7] and inequality constraints [8], [9],
[10].

With recent progress in the development of advanced
computational frameworks in machine learning (e.g., PyTorch
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[11], TensorFlow [12], JAX [13]), differentiable optimization
appears as a generic approach to compute the derivatives of
computational layers involving mathematical programming
problems. It can be used, for instance, to find the optimal
design parameters of a robotic mechanism (a.k.a. co-design)
given a task to solve [14], or to estimate the sensitivities
of an optimal solution with respect to the parameters of
the problem [15]. In general, differentiable optimization
relies on differentiating the optimality conditions (e.g., the
Karush–Kuhn–Tucker conditions) associated to a given prob-
lem. In the field of convex optimization, recent works have
introduced efficient approaches to compute derivatives of
standard quadratic programming (QP) instances [16] and
more general convex programming problems [17], which
are very common in robotics. When deriving the KKT
conditions, these works often assume the well-posedness of
the KKT conditions at the optimum (e.g., linearly independent
constraints qualification), which cannot be ensured for the
large majority of control problems in robotics and more
generally when integrating an optimization stage as a layer
within a computational graph. For instance, in the case of
redundant constraints (e.g., multiple contacts between a robot
segment and the environment), one needs to adequately
regularize the problem in order to robustly converge to
an optimal solution satisfying the constraints [18]. This is
even more true in machine learning applications, where
mathematical programs are used as differentiable layers.
Indeed, the intermediate problems that need to be solved
during the learning process might likely not satisfy the
required optimality qualifications as they are never enforced
during training.

The closest work to ours is the work of Amos et al.
in [19], where the authors introduce a generic approach
to differentiating constrained LQR problems, and more
generically, DDP-based approaches. In their experimental
validation, the authors notably report a high failure rate of their
differentiable solver when using its computed sensitivities in
standard machine learning problems. In this paper, we argue
that these failures are partly due to the lack of regularity
when evaluating the derivatives of the considered optimal
control problems. To overcome these limitations, we leverage
the proximal method of multipliers [20] to robustly evaluate
the derivatives of optimal control problems. Particularly, we
develop a generic solution to compute these derivatives in
the equality-constrained linear quadratic regulator (LQR),
which is, as highlighted in [19], the core block required to
compute the derivatives of nonlinear optimal control problems.



Following the set of experimental validations introduced
in [19], we notably demonstrate that our proximal approach
is able to properly cope with ill-posed or difficult system
identification problems, unlike existing solutions of the state
of the art.

II. PROXIMAL SOLVING OF LQR PROBLEMS

Several approaches have been proposed to efficiently solve
LQR problems numerically. In this work, we focus on
the dynamic programming formulation of LQR which we
regularize with the proximal method of multipliers [20]. Let
us first briefly recall this method, and explain how we include
it in our approach.

A. Background on the proximal method of multipliers

Throughout this paper, we address convex minimization
problems of the form:

min
x
`(x), s.t. c(x) = 0, (1)

where ` : Rn → R is a convex function and c is a
linear constraint in x. Typically, in the case of quadratic
programming problems (QP problems), we have `(x) =
xTHx + gTx, where H is a square symmetric and semi-
definite matrix of appropriate dimensions, g is a vector and
c(x) = Ax − b, with A a potentially rank-deficient matrix.
Let us define the Lagrangian for this problem as

L(x, λ) = `(x) + λT c(x), (2)

where λ is a vector of multipliers. Rockafellar proves in [20]
that solving Eq. (1) as a min max problem with saddle points
solutions x, λ:

x, λ = arg min
x

max
λ
L(x, λ) (3)

is equivalent to iteratively solving the regularized min max
problem

xk+1, λk+1 = arg min
x

max
λ
L(x, λ) +

1

2µ
‖x− xk‖22

− 1

2µ
‖λ− λk‖22, (4)

starting from initial vectors x0, λ0 until convergence, with
µ a fixed positive scalar. In (4), the iterative min max
problem solved is the same as (3) with additional L2-norm
regularization on the primal and dual variables x and λ,
which vanishes over the iterations. Essentially, this proximal
regularization [21] of the saddle points associated with
problem (1) allows us to solve potentially simpler problems
at the price of more iterations. It is central to our approach
and will be notably used to solve constrained LQR problems
accurately and compute their sensitivities robustly.

B. Proximal LQR solving

Problem definition. We address the constrained LQR prob-
lem of finding the optimal sequence of states and controls
that minimize a quadratic cost function lt under given linear
dynamics ft, path constraints encapsulated in ct (e.g., initial

and terminal constraints), with a control horizon of length
N . The problem can be formulated as:

min
X,U

N−1∑
t=0

lt(xt, ut) + lN (xN ),

s.t

 xt+1 = ft(xt, ut)
x0 = x∗0
ct(xt, ut) = 0

,

(5)

with X =
[
xT0 ... xTN

]T
and U =

[
uT0 ... uTN−1

]T
.

While many methods can be used to solve problem (5), we
follow here the dynamic programming approach [1]. Starting
from t = N , we solve recursively backward in time:

Vt(xt) = min
ut,xt+1

lt(xt, ut) + Vt+1(xt+1) (6)

s.t. xt+1 = ft(xt, ut) and ct(xt, ut) = 0.

We define the problem cost and dynamics functions and the
path constraints:

lt(xt, ut) = 1
2 (xTt Qtxt + uTt Rtut) + qTx,txt + qTu,tut,

lN (xN ) = 1
2 (xTNQNxN ) + qTx,NxN ,

ft(xt, ut) = Atxt +Btut + dt,
Ctxt +Dtut = et,
x0 = x∗0.

.

(7)
Here, Qt is a symmetric positive semi-definite matrix, Rt is
a symmetric positive-definite matrix, At, Bt, Ct and Dt are
general matrices, and et and dt are vectors, for all t. x∗0 is
the initial condition.
Relaxing the dynamic constraints. Following the approach
introduced in [22], we relax the dynamics constraints using
multiple shooting and introducing an auxiliary variable yt,
such that problem (6) becomes:

Vt(xt) = min
ut,yt

lt(xt, ut) + Vt+1(yt) (8)

s.t. yt = ft(xt, ut) and ct(xt, ut) = 0.

This inexact method aims at stabilizing the optimization
procedure and does not prevent the solver from converging
to an optimal solution, as demonstrated by Schmidt et al. in
[23].
In the following, we use the usual shorthands V ′, Vx and
Vxx to denote resepctively Vt+1, the first and the second
derivatives of Vt. At time t, we solve problem (8) by solving
the following min max problem:

Vt(xt) = min
yt,ut

max
λt,νt

Lt(xt, ut, yt, λt, νt), (9)

where Lt is the Lagrangian of the problem, defined as:

Lt(xt, ut, yt, λt, νt) = lt(xt, ut) + V ′(yt)

+ λTt (yt − ft(xt, ut)) (10)

+ νTt ct(xt, ut).

Here, yt and ut are the so-called primal variables, while λt
and νt are the dual ones. In the LQR context, VN is quadratic
i.e., VN (xN ) = 1

2x
T
NQfxN + qTNxN . Thus, for each t, Vt is

also quadratic. The LQR problem can then be solved using



the dynamic programming principle, by solving at each time
t a linear system where the KKT matrix is

Rt 0 BTt DT
t

0 V ′xx −I 0
Bt −I 0 0
Dt 0 0 0

 . (11)

Such a matrix can have very poor conditioning, especially
in the cases where V ′xx and/or Rt are not strictly symmetric
positive definite or where the matrix Dt is rank-deficient. As
noted in the introduction, such a scenario is likely to happen
in practice, especially in a learning framework where the cost
matrices Rt and Qt and the path constraints matrix Dt are
learnable parameters. To cope with this, we propose to solve
a proximal reformulation of this problem that we detail in
the next paragraph.

C. Proximal regularization

We find a solution to problem (9) by iteratively
solving for all t the equivalent regularized problem

Lρµ(xt, ut, yt, λt) = lt(xt, ut) + Vt+1(yt)

+ λTt (yt − f(xt, ut)) + νtct(xt, ut)

+
ρ

2
‖ut − u−t ‖22 +

ρ

2
‖yt − y−t ‖22

− µ

2
‖λt − λ−t ‖22 −

µ

2
‖νt − ν−t ‖22, (12)

starting from initial guesses u0t , y
0
t , λ0t and ν0t as shown

in [20] and detailed in Sec. II-A. The superscript "−" is
used for variables from the previous proximal iteration. Lρµ
is a regularized version of Lt with additional L2 penalties
on primal (u, y) and dual (λ, ν) variables, and ρ and µ are
positive regularization coefficients.
The new KKT conditions at time t at the optimum are given
by:
Rt + ρI 0 BTt DT

t

0 V ′xx + ρI −I 0
Bt −I −µI 0
Dt 0 0 −µI



dut
dyt
dλt
dνt

 = -


Rtu

−
t +BTt λ

−
t +DT

t ν
−
t + qu,t

V ′xxy
−
t + V ′x − λ−t

Atxt +Btu
−
t + dt − y−t

Ctxt +Dtu
−
t − et

,

(13)
where dv = v−v−, for v in {ut, yt, λt, νt}. When solving Eq.
(13) backward in time, xt is unknown, but dut, dyt, dλt, dνt
can be expressed as affine functions of xt:

dut = Γtxt + γt,
dyt = Mtxt +mt,
dλt = Ξtxt + ξt,
dνt = Ωtxt + ωt,

, (14)

and the coefficients Γt, γt, Mt, mt, Ξt and ξt can be obtained
by solving the linear system:

K


Γt γt
Mt mt

Ξt ξt
Ωt ωt

 = -


0 Rtu

−
t +BTt λ

−
t +DT

t ν
−
t + qu,t

0 V ′xxy
−
t + V ′x − λ−t

At Bu−t + dt − y−t
−Ct Dtu

−
t − et

.

(15)
In the backward pass of the algorithm, we compute the
coefficients from Eq. (15) and update the value function

first and second derivatives Vxx and Vx for each t. Then,
we perform forward passes in time to update the variables
ut, yt, λt, νt, with 

u+t = u−t + dut,
y+t = y−t + dyt,
λ+t = λ−t + dλt,
ν+t = ν−t + dνt.

. (16)

We thus solve the LQR problem by iteratively repeating
this backward / forward procedure until convergence. Our
stopping criterion is the infinite norm of the gradient of Lρ,µ
(i.e., the infinite norm of the right hand side of Eq. (13) over
all times t): ∥∥∥∥[∇y,uL(y, u)

∇λ,νL(λ, ν)

]∥∥∥∥
∞
≤ ε, (17)

where ε is a fixed tolerance parameter.

D. Derivatives

We follow the approach of [19] to compute derivatives of
LQR outputs (i.e., the trajectories x and u) with respect to
the problem parameters (i.e., the dynamics and cost matrices
At, Bt, Qt, Rt, the path constraints Ct, Dt, dt, et, and the
initial condition x∗0) to be able to plug the LQR solver as
a differentiable layer in a model. Because our formulation
of the LQR problem in Eq. (7) is generic and accounts for
additional path constraints, our differentiation formulation
can be used to differentiate through more general optimal
control problems with potentially nonlinear equality and/or
inequality constraints, by differentiating through the solutions
at the optimum.
We first reformulate the resolution of the general LQR
problem defined in Eq. (7) as the minimization of a large QP
problem

min
X

1

2
XTHX + qTX, s.t ÂX = b, (18)

with the following augmented matrices:

H = diag(Qt, ..., Rt, ...),

q = [qTx,0 ... qTx,N qTu,0 ... qTu,N−1]
T
,

Â =



−I 0 0 ... 0 0 0 ... 0
A0 −I 0 ... 0 B0 0 ... 0
0 A1 −I ... 0 0 B1 ... 0
... ... ... ... ... ... ... ... ...
... ... ... AN−1 −I 0 ... 0 BN−1
C0 ... ... 0 0 D0 ... 0 0
... ... ... ... ... ... ... ... ...
0 ... ... CN−1 0 DN−1 ... 0 0
0 ... ... 0 CN 0 ... 0 0


,

X = [xT0 ... xTN uT0 ... uTN−1]
T
,

and
b = −

[
x∗,T0 dT1 ... dTN eT0 ... eTN

]
.

The KKT system associated to this problem at the optimum
is: [

H ÂT

Â 0

] [
X∗

Λ∗

]
=

[
−q
b

]
, (19)



where Λ∗ is a vector of multipliers associated to the con-
straints ÂX = b and containing the stacked multipliers λt,
νt from Eq. (10). for all t. We denote as K̂ the KKT matrix
from Eq. (19) associated with the large QP problem. In the
following, we drop the "∗" superscript for clarity. In practice,
the derivative of interest in learning frameworks is ∂r/∂p,
where p is in Pt = {At, Bt, Qt, qx,t, qu,t, Ct, Dt, x

∗
0, dt, et},

and r is a scalar function of the parameters Pt. To obtain
∂r/∂p directly, we use the same trick as in [19] and [24],
and obtain expressions for the partial derivatives

∂r/∂At = λt+1G
T
x,t + xtG

T
λ,t+1

∂r/∂Bt = λt+1G
T
u,t +Gλ,t+1u

T
t

∂r/∂Qt = xtG
T
x,t ∂r/∂Rt = Gu,tu

T
t

∂r/∂Ct = −xtGTν,t ∂r/∂et = Gν,t

∂r/∂Dt = −utGTν,t ∂r/∂dt = Gλ,t

∂r/∂qx,t = Gx,t ∂r/∂qu,t = Gu,t

, (20)

as functions of a vector G that verifies

K̂G = Z, (21)

where Z is the vector resulting from stacking all the vectors
∂r/∂vt with vt in {xt, ut, λt, νt}, for all t, which can be
obtained with backpropagation. We can also write G as the
stacking of vectors Gv,t for all t, with vt in {xt, ut, λt, νt},
where each vector Gv,t is the same size as vt. In [19], Amos
et al. notice that G verifies the same equation the vector
[XT ΛT ]

T verifies in Eq. (19). Thus, G is solution to a
new LQR problem, and can be obtained efficiently without
explicitly inverting the large KKT matrix K̂ in Eq. (21).
Instead, we solve a similar LQR problem to the one x and
u are solutions to. The KKT matrices of this new problem,
which we refer to as the LQR derivatives problem, are the
same as the original one, and only the values of the right
hand side term in the large QP formulation are modified,
which correspond to the parameters qx,t, qu,t, dt and et in
the LQR formulation. Their values for the LQR derivatives
problem are:{

qx,t = ∂r/∂xt qu,t = ∂r/∂ut
dt = ∂r/∂λt et = ∂r/∂νt

. (22)

Unlike [19], we solve the new LQR derivatives problem
using the regularized solver formulation we introduced in
sections II-B and II-C. We solve the LQR problem the
vectors Gx,t, Gu,t are solutions to, and the multipliers Gλ,t
and Gν,t associated to the constraints. Starting from initial
vectors G0

u,t, G
0
y,t, G

0
λ,t, G

0
ν,t, we solve iteratively and until

convergence the following linear system for all t, backward
in time starting from t = N :

Kt


dGu,t
dGy,t
dGλ,t
dGν,t

 = −


RtG

−
u,t +BTt G

−
λ,t +DT

t G
−
ν,t + ∂r/∂ut

V ′xxG
−
y,t + V ′x −G−λ,t

AtGx,t +BtG
−
u,t + ∂r/∂λt −G−y,t

CtGx,t +DtG
−
u,t − ∂r/∂νt

 ,
(23)

where

Kt =

Rt + ρI 0 BTt DT
t

0 V ′xx + ρI −I 0
Bt −I −µI 0
Dt 0 0 −µI

 . (24)

This allows us to find the optimal variable G accurately, even
in ill-posed problems (e.g., rank-deficient matrices). This is
extremely important in practice since the gradients of interest,
∂r/∂p with p in P , are functions of the values of G (equation
(20)). Thus, any inaccurate solution G would lead to back-
propagating wrong gradients, resulting in unstable training
procedures.

E. Leveraging LQR derivatives for nonlinear optimal control
problems

The iLQR algorithm introduced in [2] solves problem
(5) with general nonlinear dynamics and cost functions f
and l. It linearizes the dynamics around nominal state and
control trajectories, makes quadratic approximations of the
cost around these trajectories, then iteratively solves the
LQR problem obtained with this approximation. Derivatives
of iLQR solutions with respect to the problem parameters
can be obtained from the LQR approximation of the iLQR
problem at optimality.
Let us first introduce the notations for the iLQR problem.
We use the usual Qt notation for the Lagrangian of problem
(5) at time t and introduce
Qρµ(xt, ut, yt, λt) = lt(xt, ut) + Vt+1(yt) + λTt (f(xt, ut)− yt)

+ νTt c(xt, ut) + ρ
2‖ut − u

−
t ‖22 + ρ

2‖yt − y
−
t ‖22

− µ
2 ‖λt − λ

−
t ‖22 −

µ
2 ‖νt − ν

−
t ‖22,

(25)

with ρ and µ positive regularization scalars. The goal
is to find the optimal solutions yt, ut, λt, νt to problem

arg min
yt,ut

max
λt,νt

Qρµ(xt, ut, yt, λt, νt), (26)

using the dynamic programming recursion

Vt(xt) = min
ut,yt

max
λt,νt

Qρµ(xt, ut, yt, λt, νt). (27)

In our formalism, the approximation of the function Qt is:

δQt =
1

2


δxt
δyt
δut
δλt
δνt


T 

Qxx Qxy Qxu Qxλ Qxν
Qyx Qyy Qyu Qyλ Qyν
Qux Quy Quu Quλ Quν
Qλx Qλy Qλu Qλλ Qλν
Qνx Qνy Qνu Qνλ Qνν



δxt
δyt
δut
δλt
δνt


+QTx δxt +QTy δyt +QTu δut +QTλ δλt +Qνδνt.

(28)
Let us assume the dynamics and cost function f and l are
parameterized by some parameter θ. Q and its set of first
and second order derivatives are evidently also parameterized
by θ, namely the ones at optimality. In a learning framework,
the derivative of interest, i.e., ∂r/∂θ, with r some scalar
loss function over the parameters can be obtained through
the chain rule

∂r

∂θ
=
∑
P∈D∗

Q

∂r

∂P

∂P

∂θ
, (29)

where D∗Q = {Q∗x, Q∗xx, . . . , Q∗λλ}. The derivatives {∂r/∂P}
can be obtained with the method described in paragraph II-D,



and the derivatives ∂P/∂θ are obtained with backpropaga-
tion.

III. EXPERIMENTS

A. LQR problems with terminal constraints

We solve an LQR problem with a terminal constraint ((5)
and (7)) following the approach described in section II-C. We
compare the solutions of both our solver and CVXPY [25],
[26], which is based on OSQP [27]. We run both solvers on
three sets of parameter sizes {n, d,N}, with n the system
dimension, d the control dimension and N the time horizon.
For each set of parameter sizes, we run 100 experiments
with randomly generated time-invariant LQR problems. The
dynamics matrix A is forced to have all singular values
lower than 1, and B is a matrix with random coefficients
sampled uniformly in [0, 1]. The cost matrices Q and R
are set to respectively 10−2In and 10−1Id. All experiments
are run on a single CPU. We report the average results in
Table I. A solver is considered successful when both primal
and dual constraints are satisfied. Feasibility denotes the
infinite norm on primal constraints (dynamics constraints
‖x∗t+1 − Ax∗t − Bu∗t ‖∞). Distance to goal is the average
infinite norm ‖xN − x∗N‖∞, with x∗N the target terminal
constraint. In the rank-deficient cases (first and second rows),
our solver converges to a solution for almost every experiment,
while CVXPY only converges to a solution for up to 32% of
them on average. On examples where both solvers converge,
ours converges to a more accurate solution. We also report
the average results on well-posed cases (third row). On such
cases, both solvers converge to equally good solutions, but
CVXPY is much faster, since our implementation is in an
interepreted language (Python) that could easily be moved to
a compiled one (e.g., C++) for much better efficiency.

TABLE I: Solvers performance. Comparison on LQR
problems with terminal constraints.

Parameters solver success feasibility distance to goal
N = 20,
n = 10, d = 2

cvxpy 32 2.10−8 2.10−8

ours 98 4.10−9 4.10−9

N = 20,
n = 15, d = 3

cvxpy 2 6.10−6 6.10−6

ours 93 9.10−9 9.10−9

N = 20,
n = 15, d = 5

cvxpy 100 9.10−12 9.10−12

ours 100 2.10−14 3.10−15

B. System identification

Identifying dynamics and cost matrices (A,B,Q,Qf , R).
We reproduce the experimental setting of [19]. Given optimal
trajectories in states and controls of systems with linear
dynamics and quadratic cost, the goal is to identify these
dynamics and cost parameters. Formally, we solve

min
X,U

1

2

N−1∑
t=0

(xTt Qxt + uTt Rut) +
1

2
xTNQfxN ,

s.t xt+1 = Axt +But for t in 0, . . . , N − 1,

x0 = x∗0.

We observe M trajectories [x∗,i0 , . . . x∗,iN ] and
[u∗,i0 , . . . , u∗,iN−1] (i in 1, . . . ,M ) that are optimal solutions
to problem (30), with different random initial conditions x∗0.
The states xt are vectors of size n (between 2 and 10), the
controls ut are vectors of size d (between 3 and 10), and
the control horizon is N (between 5 and 20). Our goal is to
identify the dynamics matrices (A,B) and the cost matrices
(Q,Qf , R). In other words, we want to estimate θ, where θ
can be any of A,B,Q,Qf , R, or a combination of two or
more of these matrices. We solve:

min
θ

∑
i

∑
t

‖x∗,it − x
i
t(θ)‖22 + ‖u∗,it − u

i
t(θ)‖22 (30)

where xit and uit are solutions to the LQR problem parameter-
ized by θ with initial condition x∗,i0 . Using the same notations
as in [19], we define the optimal trajectory vector i, τ∗,i as

τ∗,i =
[
x∗,i0

T . . . x∗,iT
T u∗,i0

T . . . u∗,iT−1
T
]T
. (31)

Here, τ∗,i is a vector of size p = (N + 1)n + Nd. The
problem is now reduced to solving

min
θ

M∑
i=1

p∑
k=0

‖τ∗,ik − τ
i
k(θ)‖22 = min

θ

Np∑
k=0

‖rk(θ)‖22, (32)

where rk(θ) = Γ∗k − Γk, τ∗,ik (respectively τ ik(θ)) is the k-th
component of vector τ∗,i(respectively τ i), and Γ∗k(respectively
Γk) contains stacked vectors τ∗,i (respectively τ i). Problem
(32) is a non-linear least-squares problem that can be solved
using methods such as Gauss-Newton [28] or Levenberg-
Marquardt [29]. In fact, when a step in a solution of an
optimal control problem boils down to least squares, stochastic
gradient descent should not be used for this step (as expected
from the optimization literature), which partly explains what
happens in [19], where the identification experiments fail
in half the trials when using gradient descent to optimize
Eq. (30). We reproduced their experiments and show results

TABLE II: Success rate of identification methods. We
compare Levenberg-Marquardt and RMSProp optimization
success rates (in %).

N=5, n=3, d=3 N=20, n=3, d=3 N=10, n=5, d=2
RMSProp 21 20 21

LM 91 85 90

averaged on 100 experiments in Table II. An experiment is
considered successful if the identification error ‖θ − θ∗‖∞
reaches the threshold 5.10−6 in less than 50 iterations of the
Levenberg-Marquardt algorithm or 2000 epochs of RMSProp.
Table II shows that the identification succeeds 85% of the time
when using a least-squares method, while it only succeeds
20% of the time when using RMSProp, which demonstrate
the ineffectiveness of stochastic gradient methods in leasts-
squares problems. It should be noted however that the
implementation of Levenberg-Marquardt-like methods require
computing the full Jacobian matrix of the residual function r
(instead of just Jacobian-vector products as in SGD methods),
which is a function that scales linearly with N , n and d.



In the following experiments, the identification problem was
solved using the Levenberg-Marquardt method for both our
solver and the solver from [19].

Fig. 1: Identification error on identifying the matrices A
and B with Q = 10−4I . Pairs of same color curves are
identification experiments on the same problem parameters
solved using different solvers: diff-mpc in dashed-lines, and
ours in solid lines.

Fig. 2: Optimization loss on identifying the matrices A
and B with Q = 10−4I . Pairs of same color curves are
identification experiments on the same problem parameters
solved using different solvers: diff-mpc in dashed-lines, and
ours in solid lines.

Figures 1 and 2 show the system identification and
optimization errors as functions of the number of iterations
using both the solver from [19], which we refer to as diff-
mpc, and our solver on four trials (100 experiments were run,
but we only show four randomly selected ones here). In this
experiment, the parameters to identify were the dynamics and
control matrices A and B, the control cost matrix R was set
to the identity matrix, and the states cost matrix Q was set
to 10−4. In this experiment, both solvers converge, but our
regularized solver converges in twice less iterations on all
the trials.
Figures 3 and 4 show the system identification and optimiza-
tion errors as functions of the number of iterations using both
solvers again, on experiments where the parameter to identify
was the matrix Q. The approach of [19] fails on all trials,
demonstrating the importance of regularizing the LQR solver

Fig. 3: Identification error. Identification of Q.Pairs of
same color curves are identification experiments on the same
problem parameters solved using different solvers: diff-mpc
in dashed-lines, and ours in solid lines.

Fig. 4: Optimization loss. Identification of Q. Pairs of same
color curves are identification experiments on the same
problem parameters solved using different solvers: diff-mpc
in dashed-lines, and ours in solid lines.

to avoid backpropagation of wrong gradients.

IV. CONCLUSION

We have introduced a regularized differentiable equality-
constrained LQR solver with a generic formulation that
handles path constraints. When used in learning frameworks,
our solver is robust to ill-posed problems and achieves better
performance on system identification experiments than the
authors in [19]. Since our formulation of the LQR problem is
generic, it can be applied to differentiate accurately through
more general optimal control problems. Future work should
include experiments on such problems, and ultimately on
real robotic systems to demonstrate the effectiveness and
robustness of this approach on real-world robotic tasks.
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