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Wave propagation in one-dimensional quasiperiodic media

Pierre Amenoagbadji, Sonia Fliss, Patrick Joly

Abstract

This work is devoted to the resolution of the Helmholtz equation −(µu′)′−ρω2u = f
in a one-dimensional unbounded medium. We assume the coefficients of this equation
to be local perturbations of quasiperiodic functions, namely the traces along a particular
line of higher-dimensional periodic functions. Using the definition of quasiperiodicity,
the problem is lifted onto a higher-dimensional problem with periodic coefficients. The
periodicity of the augmented problem allows us to extend the ideas of the DtN-based
method developed in [10, 19] for the elliptic case. However, the associated mathematical
and numerical analysis of the method are more delicate because the augmented PDE is
degenerate, in the sense that the principal part of its operator is no longer elliptic. We
also study the numerical resolution of this PDE, which relies on the resolution of Dirichlet
cell problems as well as a constrained Riccati equation.

1 Introduction and motivation
We consider the Helmholtz equation

− d

dx

(
µ
du

dx

)
− ρ ω2 u = f in R, (1.1)

where the coefficients µ and ρ have positive upper and lower bounds:

∃ µ±, ρ±, ∀ x ∈ R, 0 < µ− ≤ µ(x) ≤ µ+ and 0 < ρ− ≤ ρ(x) ≤ ρ+. (1.2)

The source term f belongs to L2(R) and is assumed to have a compact support:

∃ a > 0, supp f ⊂ (−a, a). (1.3)

Equation (1.1) is encountered when one is looking for time-harmonic solutions u(x) eiωt of
the linear wave equation in heterogeneous media. For real frequencies ω, the well-posedness
of this problem is unclear. In fact, on one hand, one expects that the physical solution u, if
it exists, may not belong to H1(R) due to possible wave propagation phenomena and a lack
of decay at infinity. On the other hand, uniqueness of a solution in H1

loc(R) does not hold in
general. In this case, one needs a so-called a radiation condition that imposes the behaviour
of the solution at infinity. Such a condition can be obtained in practice using the limiting
absorption principle, which consists in (i) adding some absorption – that is some imaginary
part to ω: Imω, and (ii) studying the limit of the solution u ≡ u(ω) as the absorption tends
to 0. The limiting absorption principle is a classical approach to study time-harmonic wave
propagation problems in unbounded domains; see for instance [1, 9, 31]. More recently, it
has been successfully applied for locally perturbed periodic media [10, 17, 20, 25].
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In this paper, we will only address the case with absorption, that is

the frequency ω satisfies Imω > 0. (1.4)

Under these assumptions, (1.1) admits a unique solution inH1(R) by Lax-Milgram’s theorem.
Moreover, it can be shown (using for instance an argument similar to the one in [7]) that this
solution satisfies a sharp exponential decay property

∃ c, α > 0, ∀ x ∈ R, |u(x)| ≤ c e−α Imω|x|. (1.5)

Exploiting (1.5), a naive numerical method for treating the unboundedness would consist in
truncating the computational domain (with homogeneous Dirichlet boundary conditions for
instance) at a certain distance related to Imω. However the cost and the accuracy of the
method would deteriorate when Imω tends to 0. Our objective in this paper is to develop
a numerical method which is robust when Imω tends to 0, in the particular case of locally
perturbed quasiperiodic media. More precisely, we solve the problem in the bounded domain
(−a, a) (which is independent of Imω) by constructing transparent boundary conditions of
Dirichlet-to-Neumann type:

± µ du

dx
+ λ± u = 0 on x = ±a, (1.6)

where λ± are called Dirichlet-to-Neumann (DtN) coefficients. These coefficients are defined
by

λ± = ∓
[
µ
du±

dx

]
(±a), (1.7)

where u± is the unique solution in H1(±a,±∞) of∣∣∣∣∣∣∣
− d

dx

(
µ
du±

dx

)
− ρ ω2 u± = 0, for ±x > a,

u±(±a) = 1.
(1.8)

Knowing λ±, one is then reduced to compute u|(−a,a) by solving the problem∣∣∣∣∣∣∣∣∣
− d

dx

(
µ
dui

dx

)
− ρ ω2 ui = f, for x ∈ (−a, a),

[
± µ dui

dx
+ λ± ui

]
(±a) = 0.

(1.9)

The well-posedness of this problem is a direct consequence of the sign property

Imλ± < 0,

which, through a Green’s formula, results itself from the presence of dissipation (1.4) in (1.8).
Then the solution u of (1.1) is given by

∀ x ∈ R, u(x) =


ui(−a) u−(x), x < −a,

ui(x), x ∈ (−a, a),

ui(a) u+(x), x > a.

(1.10)

In general, the problem is that computing λ±, that is to say solving (1.8), is as difficult as
the original problem. However, this is no longer true when the exterior medium (i.e. outside
(−a, a)) has a certain structure:
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• if the exterior medium is homogeneous (ρ and µ are constant), these coefficients can be
computed explicitly;

• if the exterior medium is periodic (ρ and µ are periodic), several methods for the
computation of these DtN coefficients are developed in [10, 19, 20];

• if the exterior medium is a weakly random perturbation of a periodic medium, the
coefficients can be approximated via an asymptotic analysis; see [11].

Our main objective in this paper is to compute the DtN coefficients for a quasiperiodic
exterior medium, in order to develop a numerical method according to (1.8), (1.9), (1.10).

The outline of the rest of the paper is as follows. In Section 2, we introduce the fundamental
notion of quasiperiodic functions (in 1D) and define what is a locally perturbed quasiperiodic
medium in the context of the problem (1.1). Sections 3 and 4 are the most important sections
of the paper. In Section 3, we link the solution of the 1D half-line problem with quasiperiodic
coefficients to the solution of a degenerate directional Helmholtz equation posed in dimension
n, with n > 1 defined as in Section 2. This is the so-called lifting approach whose principle
is presented in Section 3.1. More precisely, in Section 3.3, we characterize the solution of
the 1D quasiperiodic problem as the trace along a (broken) line of a nD problem posed in
a domain with the geometry of a half-waveguide: (0, 1)n−1 × R+. In between, we need to
dedicate the (rather long) Section 3.2 to fix the notations used in the rest of the paper and
present some useful preliminary material about an adapted functional framework for the
rigorous setting of our method. This concerns anisotropic Sobolev spaces with an emphasis
on trace theorems and related Green’s formula. In Section 4, we provide a method for solving
the half-waveguide problem of Section 3.3. In Section 4.1, we describe the structure of the
solution with the help of a propagation operator P and local cell problems. In Section 4.2, we
show that the operator P is characterized as a particular solution of a Riccati equation. In
Section 4.3, we first build a directional DtN operator Λ for the half-waveguide problem, from
which we deduce the DtN coefficients λ± we are looking for (cf. (1.7)). Finally, in Section
4.4, we analyze the Riccati equation from a spectral point of view and in Section 4.5 we
describe the spectrum of P. In Section 5 devoted to numerical results, we restrict ourselves
to n = 2 for the sake of simplicity. The first two subsections are devoted to the discretization
of the cell problems evoked above. We have considered two approaches: one, natural but
naive, consists in using 2D Lagrange finite elements (Section 5.1) while the other, called the
quasi-1D method, is better fitted to the anisotropy of the problem (Section 5.2). In Section
5.3, we explain how we can construct a discrete propagation operator from a discrete Riccati
equation that we choose to solve via a spectral approach, while Section 5.4 simply mimics
Section 4.3 at the discrete level. Section 5.5 is devoted to numerical results. In the first three
subsections, we provide various validations of our method for the half-line problem (Sections
5.5.1 and 5.5.3) and the whole line problem (Section 5.5.2). At last, in Section 5.5.4, we
address the question of the approximation of the spectrum of the propagation operator P by
the one of its discrete approximation.

Particular notation used throughout the paper. In what follows,
1. the equality modulo 1 is denoted by

∀ y ∈ R, z = y [1] ⇐⇒ z ∈ [0, 1) and y − z ∈ Z.
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and for all p, q ∈ N, p < q, we set Jp, qK := {j ∈ N, p ≤ j ≤ q}.

2. We introduce Cper(Rn) as the space of continuous functions F : Rn → R that are 1–
periodic with respect to each variable, and C∞0 (O) as the space of smooth functions
that are compactly supported in O ⊂ Rn.

3. For i ∈ J1, nK, we denote by ~ei the i-th unit vector from the canonical basis of Rn. For
any element y = (y1, . . . , yn) in Rn, we define ŷ as the vector (y1, . . . , yn−1) ∈ Rn−1, so
that y = (ŷ, yn). For y = (y1, . . . , yn) and z = (z1, . . . , zn), the Euclidean inner product
of y and z is denoted y · z := y1 z1 + · · · yn zn, and the associated norm is |y| := √y · y.

2 Quasiperiodicity

2.1 Quasiperiodic functions of one real variable

In this section, we present a brief overview of the main properties of quasiperiodic functions.
We refer to [3, 5, 22] for more complete presentations. Quasiperiodicity is defined as follows.

Definition 2.1. A continuous function f : R→ R is said to be quasiperiodic of order n > 1
if there exist a constant real vector θ = (θ1, . . . , θn), with θi > 0 for all i ∈ J1, nK, and a
continuous function F : Rn → R, 1–periodic with respect to each variable, such that

∀ x ∈ R, f(x) = F (xθ). (2.1)

The vector θ is called a cut direction, and F is a periodic extension of f .

A geometrical interpretation of this definition is to see the one-dimensional function f as the
trace of a n-dimensional function F along the line passing through (0, 0) and parallel to the
vector θ. This is illustrated in Figure 1 for n = 2 and θ = (1,

√
2).

θ

0 0.4 0.80

0.4

0.8

0

Size of periodicity cell
−4 −2 0 2 4
−2

0

2

Figure 1: Function F : (y1, y2) 7→ cos 2πy1 + cos 2πy2 in its periodicity cell (left), and whose
trace along θ = (1,

√
2) leads to a quasiperiodic function (right).

Periodic functions are obviously quasiperiodic. Other examples of quasiperiodic functions
are finite sums or products of periodic functions: if f1 and f2 are periodic, then f1 + f2 and
f1f2 can be expressed under the form (2.1). Note that f1 + f2 and f1f2 are not periodic if f1
and f2 are continuous functions with non-commensurable least periods. For instance, with
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f1(x) = cos 2πx and f2(x) = cos 2π
√

2x, one easily checks that the sum f1 + f2, represented
in Figure 1, is not periodic since it equals 2 only when x = 0.

In Definition 2.1, it is easy to see that neither the periodic extension nor the cut direction
are uniquely defined. Given (F,θ), it is always possible to lower the value of n, and change
the function F accordingly, so that the coefficients θ1, . . . , θn are linearly independent over
the integers (see [22, Chapter 2]), that is

∀ k ∈ Zn, k · θ = 0 ⇐⇒ k = 0. (2.2)

For n = 2 and θ = (θ1, θ2), the above condition amounts to saying that the ratio θ1/θ2 is
irrational. Due to this observation, vectors that satisfy (2.2) will be abusively referred to as
irrational vectors. A consequence of (2.2) is given by Kronecker’s approximation theorem.

Theorem 2.2 ([16, Theorem 444]). If θ is an irrational vector, then the set θ R + Nn is
dense in Rn.

If θ is an irrational vector, and if F ∈ Cper(Rn) satisfies F (θ R) = 0, then Theorem 2.2
ensures that F = 0. In other words, under the linear independence assumption, F is uniquely
determined by its restriction on the line θ R.

For n = 2, Theorem 2.2 implies that the broken line
{
(x θ1[1], x θ2[1]), x ∈ R

}
is dense in the

unit cell (0, 1)2. To illustrate this, Figure 2 represents the set
{
(x θ1[1], x θ2[1]), x ∈ (0,M)

}
in the unit cell for different values of M , when (1 ) θ1/θ2 ∈ Q (see the first row), and when
(2 ) θ1/θ2 ∈ R \ Q (see the second row for θ = (

√
2, 1) and the third one for θ = (π, 1)). For

M large enough, in the first case, this set is reduced to a finite union of segments, whereas in
the second case, it seems to fill the unit cell without ever passing through the same positions.
It is also interesting to see that for θ = (

√
2, 1), the unit cell is somehow filled uniformly,

contrary to the case where θ = (π, 1).

Finally, it is worth mentioning that Definition 2.1 extends to higher-dimensional continuous
functions as well. Moreover, the notion of quasiperiodicty can be defined at a discrete level, to
describe the properties of tilings that are cuts and projections of higher-dimensional periodic
tilings. These quasiperiodic tilings have been extensively studied [13, 23, 24, 27], and are
used for modelling quasicrystals [28].

2.2 Locally perturbed quasiperiodic media

A locally perturbed quasiperiodic medium is a medium corresponding to functions µ and
ρ that satisfy (1.2) and that are quasiperiodic outside a bounded interval, which can be
supposed to be (−a, a) (see (1.3)) without any loss of generality. More precisely,

µ(x) =
∣∣∣∣∣ µi(x) x ∈ (−a, a)
µp(xθ) x ∈ R \ (−a, a)

and ρ(x) =
∣∣∣∣∣ ρi(x) x ∈ (−a, a)
ρp(xθ) x ∈ R \ (−a, a),

where the functions µp, ρp belong to Cper(Rn) with n > 1, and θ ∈ Rn is an irrational vector
(see Condition (2.2)).
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0 10

1

θ
=

(3
,1

)

M = 1/3

0 1

M = 2/3

0 1

M = 1

0 1
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1
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1

θ
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(π
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Figure 2: Representation of the set
{
(x θ1[1], x θ2[1]), x ∈ (0,M)

}
in (0, 1)2 for different

values of M, when θ1/θ2 ∈ Q (first row), and when θ1/θ2 ∈ R \Q (second row for θ = (
√

2, 1)
and third row for θ = (π, 1)).

Remark 2.3. (a). Since θ is an irrational vector, Kronecker’s approximation theorem 2.2
ensures that the functions µp and ρp are entirely determined by their restrictions on the line
R θ. Therefore, µp and ρp satisfy (1.2) with respectively the same bounds as µ and ρ.

(b). The present study can be extended without difficulty to the case where µ (resp. ρ)
coincides with two different quasiperiodic functions in (−∞,−a) and in (a,+∞):

for ± x > ±a, µ(x) = µ±p (xθ± ) and ρ(x) = ρ±p (xθ± ),

where µ±p , ρ±p belong to Cper(Rn
±) with n± > 1, and where θ± ∈ Rn

± are irrational vectors.
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3 The half-line quasiperiodic problem
We now focus on the half-line quasiperiodic problems (1.8). As these problems are very
similar to each other, it is sufficient to study the half-line problem set on (a,+∞) and suppose
without loss of generality that a = 0. Let µθ := µp(θ ·) and ρθ := ρp(θ ·). Therefore, the
problem we consider in this section is the following:∣∣∣∣∣∣∣

− d

dx

(
µθ

du+
θ

dx

)
− ρθ ω

2 u+
θ = 0, in R+,

u+
θ (0) = 1.

(3.1)

Remark 3.1. The function u+
θ corresponds exactly to the solution u+ of (1.8) that was

introduced in Section 1 for very general media. The reason why this solution is relabeled u+
θ

is due to the fact that, because we consider here quasiperiodic media, the coefficients µ and ρ
that appear in (1.8) have been replaced by µθ and ρθ.

3.1 Lifting in a higher-dimensional periodic problem

We wish to exhibit some structure of the solution u+
θ . As the coefficients µθ and ρθ in (3.1)

are by definition traces of n–dimensional functions along the half-line θ R+, it is natural to
seek u+

θ as the trace along the same line of a function y ∈ Rn 7→ Ũ+
θ (y), that is to say:

a. e. x ∈ R, u+
θ (x) = Ũ+

θ (xθ), (3.2)

where Ũ+
θ shall be characterized as the solution of a n–dimensional PDE (in some sense, an

“augmented” problem in which y is the augmented space variable) with periodic coefficients,
as illustrated in Figure 3. This so-called lifting approach has been used in the homogenization
setting for the analysis of some correctors in presence of periodic halfspaces [14, 15] or periodic
structures separated by an interface [4], as well as for the homogenization of quasicrystals
and Penrose tilings [6, 30]. However, to our knowledge, very little seems to have been done
in other contexts (such as wave propagation), and in particular for numerical analysis and
simulation purposes.

To build a higher-dimensional PDE, one has to exploit the correspondence between the deriva-
tive of u+

θ and the partial derivatives of Ũ+
θ : according to the chain rule, for any smooth

enough function F : Rn → C, one has

∀ x ∈ R,
d

dx
[F (θ x)] = (Dθ F )(θ x), with Dθ = θ · ∇ =

n∑
i=1

θi
∂

∂yi
. (3.3)

This leads us to introduce the n–dimensional PDE set on a half-space (see Remark 3.2)

−Dθ

(
µp Dθ Ũ

+
θ

)
− ρp ω2 Ũ+

θ = 0, for yn > 0, (3.4a)

where we recall that the coefficients µp, ρp : Rn → R are continuous and 1–periodic with
respect to each variable. In addition, the boundary condition in (3.1) can be lifted onto the
inhomogeneous Dirichlet boundary condition

Ũ+
θ = ϕ̃, on yn = 0, (3.4b)
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y1

y2

•

θ R+

θ

0

− d

dx

(
µθ

du+
θ

dx

)
− ρθ ω

2 u+
θ = 0−Dθ

(
µp Dθ Ũ

+
θ

)
− ρp ω2 Ũ+

θ = 0

u+
θ (0) = 1 Ũ+

θ = ϕ̃

Figure 3: Illustration of the lifting approach for n = 2

where the data ϕ̃ : Rn−1 → C could be chosen continuous and must satisfy ϕ̃(0) = 1, for the
sake of consistency with the fact that u+

θ (0) = 1. Furthermore, to exploit the periodicity of
the coefficients µp and ρp with respect to the transverse variables yj , j < n, we can impose
the following:

ϕ̃ is 1–periodic, (3.5)

so that it is natural to impose that

Ũ+
θ (ϕ) is 1–periodic with respect to the transverse variables yj , j < n. (3.6)

In Section 3.3, we show how to reduce the above to a half-guide problem with periodic
coefficients. In order to do so, we shall need some preliminary materials, which is the object
of the next section.

Remark 3.2. (a). One could have defined the augmented problem (3.4) on other half-spaces
{y ∈ Rn, yi > 0}. The choice of the half-space is purely arbitrary.

(b). At first glance, one could imagine restricting the whole study to a constant boundary
data ϕ̃ = 1. Though, in practice, this can be the case, the method used to solve the half-guide
problem requires to investigate the structure of Ũ+

θ (ϕ̃) for any ϕ̃ in an appropriate function
space (see Section 4 for more details).

3.2 Preliminary material

The main objective of this section is to establish rigorously some Green’s formulas that are
formally obvious, such as the one of Proposition 3.10. This requires first to introduce the
adapted functional framework and, since Green’s formulas involve boundary integrals, to
establish relevant trace theorems. Section 3.2.1 is devoted to these trace theorems, while we
present the corresponding Green’s formulas in Section 3.2.2. Finally, Section 3.2.3 highlights
a simple but useful link between the derivative Dθ and a single partial derivative with respect
to one real variable, through a so-called oblique change of variables.
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3.2.1 Anisotropic Sobolev spaces and trace theorems

For any open set O ⊂ Rn, let us first define the directional Sobolev space

H1
θ(O) :=

{
U ∈ L2(O) / Dθ U ∈ L

2(O)
}
, (3.7)

which is a Hilbert space, provided with the scalar product

(U, V )H1
θ

(O) :=
∫
O

(
Dθ U Dθ V + U V

)
.

Let us denote ‖ · ‖H1
θ

(O) the induced norm. We begin with the following density property,
whose proof can be found in [29, Appendix 1].

Lemma 3.3. The space C∞0 (O) is dense in H1
θ(O).

We denote the half-space Rn+ := {y ∈ Rn, yn > 0} and the half-cylinder Ω] := (0, 1)n−1 × R+

in the following. Let us introduce also the sets, for a ∈ {0, 1} and for any integer i ∈ J1, nK,

Σi,a = {y ∈ Rn+, yi = a} and Σ]
i,a = {y ∈ Σi,a, yj ∈ (0, 1), j ∈ J1, n− 1K, j 6= i}.

This definition is illustrated in Figure 4. Note that Σ]
n,a is bounded whereas Σ]

i,a for i 6= n is
unbounded in the direction yn. Moreover,

∂Ω] = Σ]
n,0 ∪

[ n−1⋃
i=1

(
Σ]
i,0 ∪ Σ]

i,1
)]
.

A trace operator can be defined from H1
θ(Rn+) on Σi,a. The main idea for doing so consists

in using a one-dimensional trace theorem on the θ–oriented line that starts from a point
(z1, . . . , zi−1, a, zi+1, . . . , zn) ∈ Σi,a, to obtain an inequality which will be integrated with
respect to zj , j 6= i. The 1D trace theorem which will be used is the following.

Proposition 3.4. Let L ∈ R∗+∪{+∞}. Then the mapping γL : u 7→ u(0) is continuous from
H1(0, L) to C. Moreover, the operator norm of γL is given by

‖γL‖2 = eL + e−L
eL − e−L =: [tanhL]−1 for L > 0, and ‖γ∞‖2 = 1. (3.8)

Proof. The continuity property is a classical result which can be proved by density.
By definition, ‖γL‖ := sup{|u(0)|, ‖u‖H1(0,L) = 1}. This corresponds to a constrained op-

timization problem. Using the standard theory, this leads to introduce a Lagrange multiplier
λ and to find a pair (λ, uL) ∈ C \ {0} ×H1(0, L) such that ‖uL‖H1(0,L) = 1 and

∀ v ∈ H1(0, L) λuL(0) v(0) =
∫ L

0

(duL
dx

dv

dx
+ uL v

)
dx, (3.9)

in which case, we have ‖γL‖2 = λ. The explicit solution of this problem leads to the result. �

Note that, in particular, ‖γL‖2 ∼
L→0

L−1.

We are now able to define traces on Σi,a in the following sense.
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(a) n = 2

Ω]

y2

y1

Σ1,0
=

Σ]
1,0

Σ1,1
=

Σ]
1,1

Σ2,0
Σ]

2,0

(b) n = 3

Σ3,0

Σ1,0

Σ2,0

y1

y2

y3
Ω]

Σ]
2,0

Σ]
2,1

Σ]
1,0

Σ]
1,1

Σ]
3,0 y1

y2

y3

Figure 4: Domains Ω], Σi,a and Σ]
i,a for n = 2 (a) and n = 3 (b).

Proposition 3.5. Fix a ∈ {0, 1} and i ∈ J1, nK. The mapping γi,a : C∞0 (Rn+) → C∞0 (Σi,a)
defined by γi,aU = U |Σi,a extends by continuity to a linear mapping still denoted γi,a, from
H1

θ(Rn+) to L2(Σi,a), and which satisfies the estimate

∀ U ∈ H1
θ(Rn+), ‖γi,aU‖2L2(Σi,a) ≤

1
θi
‖U‖2H1

θ
(Rn

+). (3.10)

Proof. One can simply prove the continuity estimate (3.10) for any function U ∈ C∞0 (Rn+)
and conclude using the density result of Proposition 3.3.

(i) Case i ∈ J1, n− 1K: Without loss of generality, we set i = 1. Define

Γ1,a := {z = (z2, . . . , zn), (a, z) ∈ Σ1,a} ≡ Rn−1
+ , where (a, z) = (a, z2, . . . , zn). (3.11)

For U ∈ C∞0 (Rn+) and given any z = (z2, . . . , zn) ∈ Γ1,a, consider the function

∀ x > 0, uz,θ(x) = U(xθ + (a, z)). (3.12)

As uz,θ belongs to H1(R∗+), Lemma 3.4 for L = +∞ combined with an integration with
respect to z ∈ Γ1,a leads to∫

Γ1,a

|uz,θ(0)|2 dz ≤
∫

Γ1,a

‖uz,θ‖2H1(R∗+)dz. (3.13)

On the other hand, let us introduce the transformation

T : y 7→
(
(y1 − a)/θ1, y2 − (y1 − a) θ2/θ1, · · · , yn − (y1 − a) θn/θ1

)
, (3.14)

which defines a C 1–diffeomorphism with a Jacobian determinant det JT = 1/θ1 6= 0. Since
the inverse image {T−1(x, z), z ∈ Γ1,a, x > 0} is nothing but the polyhedron

Q1,a := {y ∈ Rn+, y1 > a, yn > (y1 − a) θn/θ1} ⊂ Rn+,

10



it follows from the chain rule and from the change of variables y 7→ T y that
duz,θ
dx

(x) = Dθ U(xθ + (a, z)) and
∫

Γ1,a

‖uz,θ‖2H1(R∗+) dz = 1
θ1
‖U‖2H1

θ
(Q1,a). (3.15)

Finally, since uz,θ(0) = U(a, z2, · · · , zn), Equations (3.13) and (3.15) imply

‖U‖2L2(Σ1,a) ≤
1
θ1
‖U‖2H1

θ
(Q1,a) ≤

1
θ1
‖U‖2H1

θ
(Rn

+), (3.16)

which is exactly the desired estimate.

(ii) Case i = n: starting from the function uz,θ(x) := U(xθ+(z, a)) defined for x > 0 and for
any z = (z1, . . . , zn−1) with (z, a) ∈ Σn,a, the proof uses the exact same arguments as above,
except the inverse image under T becomes the whole half-spaceQn,a := {y ∈ Rn+, yn > a}. �

The previous result does not hold in general for functions which are only H1
θ in sub-domains

of the half-space Rn+. In particular when it comes to the half-cylinder Ω], one is led to apply
the one-dimensional trace theorem on segments that become smaller in the neighbourhood of
the “corners”, i.e. the intersections of two faces. To overcome this difficulty, let us consider
the sets (see Figure 5)

∀ 0 < b < 1/2, Σ],b
i,a = {y ∈ Σ]

i,a, dist(y, ∂Σ]
i,a) := inf

z∈ ∂Σ]i,a

|y− z| > b}. (3.17)

Using these domains, the traces on Σ]
i,a can be defined as locally integrable functions in the

sense of the following proposition.

Σ],b
2,1

Σ],b
1,0

Σ],b
3,0 y1

y2

y3

b

Ω]

Tn
y1

y2

y3

a Ω]
a,−

Ω]
θ

y1

y2

y3

Figure 5: From left to right: Σ],b
i,a (3.17), Tn (3.38), Ω]

a,− (3.37), and Ω]
θ (3.41) represented

for n = 3.

Proposition 3.6. Let a ∈ {0, 1} and i ∈ J1, nK. The mapping γ]i,a : C∞0 (Ω]) → C∞0 (Σ]
i,a)

defined by γ]i,aU = U |Σ]i,a
extends by continuity to a linear mapping still denoted γ]i,a, from

H1
θ(Ω]) to L2

loc(Σ]
i,a), and which satisfies the estimate

∀ 0 < b < 1/2, ∃ Cb > 0, ∀ U ∈ H1
θ(Ω]), ‖γ]i,aU‖2L2(Σ],bi,a) ≤

Cb
θi
‖U‖2H1

θ
(Ω]). (3.18)
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Proof. Using the density result stated in Proposition 3.3, one only has to show (3.18) for
U ∈ C∞0 (Ω]). Let us assume that i = 1 and a = 0, the arguments in the following extending
without any difficulty to i ∈ J1, nK and a ∈ {0, 1}. Define

Γ]1,0 := {z = (z2, . . . , zn), (0, z) ∈ Σ]
1,0} ≡ (0, 1)n−1 × R+. (3.19)

We introduce the length function defined by

∀ z ∈ Γ]1,0, λ1,0(z) :=
∣∣{θ R+(0, z)}∩Ω]

∣∣ = sup{x > 0, x θ1 ≤ 1, x θi+zi ≤ 1 ∀ i ∈ J2, n−1K}.

We deduce easily that

λ1,0(z) = min
{ 1
θ1

; min
2≤j≤n−1

(1− zj
θj

)}
. (3.20)

For U ∈ C∞0 (Ω]) and z ∈ Γ]1,0, we define

∀ 0 < x < λ1,0(z), uz,θ(x) = U(xθ + (0, z)). (3.21)

Since uz,θ ∈ H1(0, λ1,0(z)
)
, Lemma 3.4 and an integration with respect to z give∫

Γ]1,0

w1,0(z) |uz,θ(0)|2 dz ≤
∫

Γ]1,0

‖uz,θ‖2H1(0,γi,a(z)) dz, with w1,0(z) = tanh[λ1,0(z)]. (3.22)

On the other hand, consider the C 1–diffeomorphism T given by (3.14). The set Q]1,0 :=
{T−1(x, z), 0 < x < λ1,0(z), z ∈ Γ]1,0} is clearly included in Ω]. Thus, by analogy with
(3.16) in the proof of Proposition 3.5, we have from (3.21), the chain rule, and the change of
variables y 7→ T y that ∫

Γ]1,0

w1,0(z) |U(0, z)|2 dz ≤ 1
θ1
‖U‖2H1

θ
(Ω]). (3.23)

More generally, we can show that γ]i,a can be defined from H1
θ(Ω]) to the weighted space

L2(Σ]
i,a, wi,a dz), where the weight wi,a is given in (3.22) for i = 1 and a = 0. Now, the

expression (3.20) of λ1,0 implies that w1,0 degenerates at the neighbourhood of the corners
zj = 1. However, the weight w1,0 is bounded from below on Σ],b

1,0 with

inf
(0,z)∈Σ],b1,0

w1,0(z) = tanh
[

min
{ 1
θ1

; b min
2≤j≤n−1

1
θj

}]
> 0. (3.24)

If we set Cb := [inf(0,z)∈Σ],b1,0
w1,0(z)]−1 > 0, then (3.18) follows directly from (3.23) by inte-

grating with respect to {z, (0, z) ∈ Σ],b
1,0}, instead of Γ]1,0. �

Remark 3.7. The best constant in the previous proposition necessarily blows up when b tends
to 0. The above proof shows that traces could be defined on the whole faces in appropriate
weighted L2-spaces. More details about traces in anisotropic spaces can be found in [18].
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3.2.2 Green’s formulas

Let us now introduce the set H1
θ,loc(Rn+) of functions which are H1

θ in any half-cylinder S×R+
where S is a bounded open set in Rn−1. More rigorously, we define for any ϕ ∈ C∞0 (Rn−1)
the n–dimensional function ϕ̌ ∈ C∞(Rn) such that

ϕ̌(y1, . . . , yn−1, yn) = ϕ(y1, . . . , yn−1). (3.25)

Note that for any U ∈ L2
loc(Rn+), the support of ϕ̌ U is bounded in the directions yj , j 6= n.

Starting from this remark, we define

H1
θ,loc(Rn+) :=

{
U ∈ L2

loc(Rn+), ϕ̌ U ∈ H1
θ(R+

n ) ∀ϕ ∈ C∞0 (Rn−1)
}
. (3.26)

Let us introduce a 1D cut-off function χ ∈ C∞0 (R) such that χ = 1 on (0, 1), from which we
define χ̌] ∈ C∞0 (Rn) as

χ̌](y1, . . . , yn−1, yn) = χ(y1) . . . χ(yn−1). (3.27)

We deduce in particular that

∀ U ∈ H1
θ,loc(Rn+), U |Ω] = (χ̌] U)|Ω] ∈ H1

θ(Ω]). (3.28)

Moreover, by Proposition 3.5, it is obvious that we can define without any ambiguity the
trace map γ]i,a to H1

θ,loc(Rn+) as follows

∀ U ∈ H1
θ,loc(Rn+), γ]i,aU := γi,a(χ̌]U)|Σ]i,a

∈ L2(Σ]
i,a). (3.29)

For simplicity, when considering traces on Σ]
i,a, we shall write U instead of γ]i,aU . We can

now state the following Green’s formula.
Proposition 3.8. For any U, V ∈ H1

θ,loc(Rn+), we have the Green’s formula∫
Ω]

(
Dθ U V + U Dθ V

)
dy = 1

θn

∫
Σ]n,0

U V ds+
n−1∑
i=1

1
θi

( ∫
Σ]i,1

U V ds−
∫

Σ]i,0

U V ds
)
. (3.30)

Proof. Let U, V ∈ H1
θ,loc(Rn+). By definition, for any χ ∈ C∞0 (R) such that χ = 1 on (0, 1),

the functions χ̌] U and χ̌] V belong toH1
θ(Rn+), where χ̌] is defined in (3.27). Since Proposition

3.3 ensures that C∞0 (Rn+) is dense in H1
θ(Rn+), there exist two sequences (Uk)k∈N, (Vk)k∈N of

functions in C∞0 (Rn+), such that

Uk → χ̌] U and Vk → χ̌] V in H1
θ(Rn+), k → +∞.

It follows from Green’s formula for smooth functions that Uk and Vk satisfy (3.30) for any
k ∈ N. Passing to the limit and using the trace continuity result stated in Propsition 3.5
imply that (3.30) is satisfied by χ̌] U and χ̌] V , i.e. by U and V , since χ̌] = 1 in Ω]. �

We next focus on functions which are periodic with respect to their (n − 1) first variables.
More precisely, for any U ∈ L2(Ω]) and any ϕ ∈ L2(Σ]

n,0), we introduce the respective
periodic extensions Ũ ∈ L2

loc(Rn+) and ϕ̃ ∈ L2
loc(Σn,0) as defined for any i ∈ J1, n− 1K by a. e. y ∈ Rn+, Ũ(y + ~ei) = Ũ(y) and Ũ |Ω] = U.

a. e. s ∈ Σn,0, ϕ̃(s + ~ei) = ϕ̃(s) and ϕ̃|Σ]n,0
= ϕ.

(3.31)
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An appropriate functional framework is provided by the space

H1
θ,per(Ω]) =

{
U ∈ L2(Ω]), Ũ ∈ H1

θ,loc(Rn+)
}
⊂ H1

θ(Ω]), (3.32)

where the inclusion follows from (3.28) and (3.31). If C∞per(Ω]) denotes the set of smooth
functions in C∞(Ω]) which are 1–periodic with respect to their first n− 1 variables, that is,

C∞per(Ω]) =
{
V ∈ C∞(Ω]), Ṽ ∈ C∞(Rn+)

}
, (3.33)

then one can show the following result by adapting classical properties of H1 functions.

Lemma 3.9. The space C∞per(Ω]) is dense in H1
θ,per(Ω]).

Note that the traces of functions in H1
θ,per(Ω]) on Σ]

i,a are well-defined in L2 by (3.29).
Moreover, using the continuity estimate (3.10) we have

γ]i,a ∈ L(H1
θ,per(Ω]), L2(Σ]

i,a)). (3.34)

One has the characterization

H1
θ,per(Ω]) =

{
U ∈ H1

θ(Ω]), γ]i,0U = γ]i,1U ∀ i ∈ J1, n− 1K
}
, (3.35)

where the traces of functions in H1
θ(Ω]) are defined in Proposition 3.6 and the equality of

traces has to be understood up to the identification of functions on Σ]
i,0 and Σ]

i,1. It is clear
from (3.35) that H1

θ,per(Ω]) is a closed subspace of H1
θ(Ω]), thus it is an Hilbert space when

equipped with the norm of H1
θ(Ω]). From Proposition 3.8 and (3.35), we deduce the Green’s

formula on H1
θ,per(Ω]).

Proposition 3.10. For any U, V ∈ H1
θ,per(Ω]), we have the Green’s formula∫

Ω]

(
Dθ U V + U Dθ V

)
dy = 1

θn

∫
Σ]n,0

U V ds. (3.36)

From the Green’s formula (3.36), we can easily deduce the following result.

Corollary 3.11. Let a > 0, and define the sets with common boundary Σ]
n,a (see Figure 5):

Ω]
a,+ := Ω] ∩ {yn > a} and Ω]

a,− := Ω] ∩ {yn < a}. (3.37)

Consider a function U ∈ L2(Ω]) such that U± := U |Ω]a,±
∈ H1

θ,per(Ω]
a,±), where H1

θ,per(Ω]
a,±)

is defined as in (3.35). Then

U ∈ H1
θ,per(Ω]) ⇐⇒ γ]n,aU+ = γ]n,aU−.

We finish this section with a more technical Green’s formula, used in the proof of Proposition
3.17, involving functions U that only belong to H1

θ(Ω]), provided that the test function V
vanishes in the neighborhood of the skeleton Tn defined by

T2 = Σ]
2,0 and Tn = Σ]

n,0 ∪
[ n−1⋃
j=1

(
∂Σ]

j,0 ∪ ∂Σ]
j,1
)]

for n ≥ 3. (3.38)

This domain is represented in Figure 5 for n = 3.
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Proposition 3.12. For U ∈ H1
θ(Ω]) and V ∈ C∞0 (Ω] \ Tn), the Green’s formula (3.30) still

holds.

Proof. Consider U ∈ H1
θ(Ω]) and V ∈ C∞0 (Ω] \ Tn). Since by Proposition 3.3, C∞0 (Ω]) is

dense in H1
θ(Ω]), there exists a sequence (Uk)k∈N of functions in C∞0 (Ω]) which tends to U .

It follows from Green’s formula in Ω] for smooth functions that Uk and V satisfy (3.30) for
any k ∈ N. For 0 < b < 1/2, let Ω],b be the domain

Ω],b = {y ∈ Ω], dist(y, Tn) := inf
z∈Tn

|y− z| > b}. (3.39)

Since V ∈ C∞0 (Ω] \ Tn), there exists a real number 0 < b < 1/2 such that V |Ω],b ∈ C∞0 (Ω],b).
Consequently, for any i ∈ J1, n − 1K, the surface integral on Σ]

i,a is reduced to the set Σ],b
i,a

defined by (3.17). When k tends to +∞, we can then use the trace continuity result stated
in Proposition 3.6 on Σ],b

i,a, to deduce that (3.30) is satisfied by U and V . �

3.2.3 An oblique change of variables

Before stating Proposition 3.14 which is the main result of this section, let us introduce the
change of variables in Rn+:

(s, x) ∈ Rn+ 7→ y = (s, 0) + xθ ∈ Rn+, (3.40)

and denote by Ω]
θ the image of Ω] by the above transformation:

Ω]
θ := {(s, 0) + xθ, s ∈ (0, 1)n−1, x > 0}. (3.41)

This is illustrated in Figure 5 for n = 3 and in Figure 6 for n = 2 and |θ| = 1. The following
simple lemma will be used in the sequel.

Lemma 3.13. For any V ∈ L1(Ω]), we have∫
Ω]

θ

Ṽ (y) dy =
∫

Ω]
Ṽ (y) dy, (3.42)

where Ṽ ∈ L1
loc(Rn+) denotes the periodic extension of V , defined by (3.31).

Proof. We will use the notation k = (k1, . . . , kd) ∈ Zd for a vector of integers. For any
set O ⊂ Rn, let 1O be the indicator function of O, that is, the function which equals 1 in
O and 0 elsewhere. By density, it suffices to prove (3.42) for V ∈ C∞0 (Ω]). By additivity of
integration,∫

Ω]
θ

Ṽ (y) dy =
∫

Rn
+

1Ω]
θ
(y) Ṽ (y) dy =

∑
k∈Zn−1

∫
Ω]+(k,0)

1Ω]
θ
(y) Ṽ (y) dy,

where the sum over k ∈ Zn−1 is finite because of 1Ω]
θ
and because V is compactly supported.

We then use the change of variables z 7→ z + (k, 0) which leads to∫
Ω]

θ

Ṽ (y) dy =
∑

k∈Zn−1

∫
Ω]
1Ω]

θ
(z + (k, 0)) Ṽ (z) dz because Ṽ is periodic

=
∫

Ω]

[ ∑
k∈Zn−1

1Ω]
θ
−(k,0)(z)

]
Ṽ (z) dz by linearity. (3.43)
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Furthermore, by noticing that the collection of sets {Ω]
θ−(k, 0), k ∈ Zn−1} forms a partition

of Rn+, it follows that

∀ z ∈ Ω],
∑

k∈Zn−1

1Ω]
θ
−(k,0)(z) = 1Rn

+
(z) = 1. (3.44)

Combining (3.43) and (3.44) implies that (3.42) is satisfied for V ∈ C∞0 (Ω]). �

The inversion of the change of variables (3.40) leads us to introduce:

∀ y ∈ Rn, sθ(y) := ŷ − (yn/θn) θ̂ ∈ Rn−1, (3.45)

so that,
y = (s, 0) + xθ ⇐⇒ s = sθ(y) and x = yn/θn. (3.46)

The next proposition emphasizes the fact that through the change of variables (3.40), the
differential operator Dθ simply becomes the partial derivative with respect to yn (which is
obvious for smooth functions).

Proposition 3.14. Let Ψ ∈ L2(Ω]). Then the periodic function Ψθ defined as

a. e. y ∈ Rn+, Ψ̃θ(y) := Ψ̃(sθ(y), yn/θn), (3.47)

(where Ψ̃ is the periodic extension of Ψ) belongs to L2(Ω]) and

‖Ψθ‖L2(Ω]) =
√
θn ‖Ψ‖L2(Ω]). (3.48)

Moreover, if ∂ynΨ ∈ L2(Ω]), then Ψθ belongs to H1
θ,per(Ω]) with directional derivative

a. e. y ∈ Rn+, DθΨ̃θ(y) = ∂Ψ̃
∂yn

(sθ(y), yn/θn). (3.49)

Proof. The map (s, x) 7→ (s, 0) + xθ from Σ]
n,0 × R+ to Ω]

θ defines a C 1–diffeomorphism
with a non-vanishing Jacobian θn 6= 0. Therefore, by using the definition (3.41) of Ω]

θ, a
change of variables as well as the property sθ((s, 0) + xθ) = s, we obtain that∫

Ω]
θ

|Ψ̃θ(y)|2 dy = θn

∫
Σ]n,0

∫ +∞

0
|Ψ̃θ((s, 0) + xθ)|2 dx ds = θn

∫
Σ]n,0

∫ +∞

0
|Ψ̃(s, x)|2 dx ds.

We deduce from Lemma 3.13 that Ψθ ∈ L2(Ω]), and that (3.48) holds.

Now in order to derive the expression of DθΨ̃θ in the sense of distributions, consider a test
function Φ ∈ C∞0 (Rn+). The change of variables (s, x) 7→ (s, 0) + xθ combined with Fubini’s
theorem for integrable functions leads to∫

Rn
+

Ψ̃θ(y) DθΦ(y) dy = θn

∫
Rn−1

∫ +∞

0
Ψ̃(s, x) DθΦ((s, 0) + xθ) dxds. (3.50)

Furthermore the 1D function φs,θ defined by φs,θ(x) := Φ((s, 0) + xθ) belongs to C∞0 (R+)
and we have [dφs,θ/dx](x) = DθΦ((s, 0) + xθ) from the chain rule. Since ∂ynΨ is in L2, we
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can integrate by parts the inner integral in (3.50) to obtain∫
Rn

+

Ψ̃θ(y) DθΦ(y) dy = −θn
∫

Rn−1

∫ +∞

0

∂Ψ
∂yn

(s, x) φs,θ(x) dxds

= −
∫

Rn
+

∂Ψ
∂yn

(sθ(y), yn/θn) Φ(y) dy, (3.51)

where the last equality comes from the change of variables y 7→ (sθ(y), yn/θn). This gives
the expression of DθΨ̃θ in (3.49). �

Remark 3.15. It will be often useful to use (3.49) in the form

a. e. (s, x) ∈ Rn+, DθΨ̃θ((s, 0) + xθ) = ∂Ψ̃
∂yn

(s, x). (3.52)

The previous proposition allows in particular to deduce the surjectivity of the trace operator
from H1

θ,per(Ω]) to L2(Σ]
n,0).

Corollary 3.16. Let ϕ ∈ L2(Σ]
n,0), and ψ ∈ H1(R+) such that ψ(0) = 1. Then the periodic

function defined by

a. e. y ∈ Rn+, Rϕ (y) := ϕ̃(sθ(y)) ψ(yn/θn) (3.53)

belongs to H1
θ,per(Ω]), and its trace is Rϕ|Σ]n,0

= ϕ. Moreover, R defines a continuous map
from L2(Σ]

n,0) to H1
θ,per(Ω]).

3.3 Link with a periodic half-guide problem

For any boundary data ϕ ∈ L2(Σ]
n,0), we can now introduce U+

θ as the solution in H1
θ(Ω]) of

the half-guide problem∣∣∣∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µp Dθ U

+
θ

)
− ρp ω2 U+

θ = 0, in Ω],

U+
θ |Σ]n,0

= ϕ,

U+
θ |Σ]i,0

= U+
θ |Σ]i,1

∀ i ∈ J1, n− 1K,

µp Dθ U
+
θ |Σ]i,0

= µp Dθ U
+
θ |Σ]i,1

∀ i ∈ J1, n− 1K.

(3.54)

Note that the third equation above implies that U+
θ ∈ H1

θ,per(Ω]), the first one implies that
µp Dθ U

+
θ ∈ H1

θ(Ω]), and finally the fourth one implies that µp Dθ U
+
θ ∈ H1

θ,per(Ω]). The
space of the boundary data can seem surprising compared to the Helmholtz equation with
an elliptic principal part, but recall from Corollary 3.16 that the trace mapping on Σ]

n,0 is
surjective from H1

θ,per(Ω]) to L2(Σ]
n,0).

With the functional framework introduced in the previous section, we can now show that
Problem (3.54) is well-posed.
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Proposition 3.17. For any ϕ ∈ L2(Σ]
n,0), Problem (3.54) is equivalent to the variational

formulation∣∣∣∣∣∣∣
Find U+

θ ∈ H1
θ,per(Ω]) such that U+

θ |Σ]n,0
= ϕ and

∀ V ∈ H1
θ,per(Ω]) such that V |Σ]n,0

= 0,
∫

Ω]

(
µp Dθ U

+
θ Dθ V − ρp ω

2 U+
θ V

)
= 0,

(3.55)
for which Lax-Milgram’s theorem applies.

Proof. The variational formulation is obtained by multiplying the first equation of (3.54) by
V ∈ H1

θ,per(Ω]), and by using Green’s formula (3.36). The application of the Lax-Milgram’s
theorem in {V ∈ H1

θ,per(Ω]), γn,0V = 0}, thanks to Corollary 3.16, is direct.

For the equivalence, as usual, one picks test functions V ∈ C∞0 (Ω]) to deduce that the
solution U+

θ ∈ H1
θ,per(Ω]) of (3.55) satisfies the first equation of (3.54). This implies that

µp Dθ U
+
θ ∈ H1

θ(Ω]). The real difficulty is to show that U+
θ satisfies the fourth equation in

(3.54) or equivalently that µp Dθ U
+
θ ∈ H1

θ,per(Ω]). According to Proposition 3.6, we have

∀ 1 ≤ i ≤ n− 1, µp Dθ U
+
θ |Σ]i,a

∈ L2
loc(Σ]

i,a).

Therefore, Proposition 3.12 allows us to use Green’s formula (3.30) for U = µp Dθ U
+
θ and

for V ∈ C∞0 (Ω] \ Tn) ∩H1
θ,per(Ω]), where Tn is the skeleton defined in (3.38). By combining

this with the fact that U+
θ solves (3.55) and the first equation of (3.54), one obtains that for

any integer i ∈ J1, n− 1K,

∀ V ∈ C∞0 (Ω] \ Tn) ∩H1
θ,per(Ω]),

( ∫
Σ]i,1

µp Dθ U
+
θ V ds−

∫
Σ]i,0

µp Dθ U
+
θ V ds

)
= 0.

Furthermore, C∞0 (Σ]
i,0) is included in {V |Σ]i,0

, V ∈ C∞0 (Ω] \ Tn) ∩ H1
θ,per(Ω])}. In fact,

any ψ ∈ C∞0 (Σ]
i,0) admits the extension Ψ : y ∈ Ω] 7→ ψ(y1, . . . , yi−1, yi+1, . . . , yn), which

belongs to C∞0 (Ω] \ Tn) ∩H1
θ,per(Ω]). Finally, since C∞0 (Σ]

i,0) is dense in L2(Σ]
i,0), it is easy

to show that the fourth equation of (3.54) holds and that µp Dθ U
+
θ |Σ]i,1

∈ L2(Σ]
i,1) for any

i ∈ J1, n− 1K. �

We now make the link between U+
θ (ϕ) and the solution of the half-line problem (3.1) that

fully justifies the introduction of the half-guide problem (3.54).

To do so, first, let us introduce the quasiperiodic coefficients defined for any s ∈ Rn−1 by

∀ x ∈ R, µs,θ(x) := µp
(
(s, 0) + xθ

)
and ρs,θ(x) := ρp

(
(s, 0) + xθ

)
, (3.56)

as well as the one-dimensional problems∣∣∣∣∣∣∣
− d

dx

(
µs,θ

du+
s,θ
dx

)
− ρs,θ ω

2 u+
s,θ = 0, in R+,

u+
s,θ(0) = 1.

(3.57)

Note that (3.1) corresponds to (3.57) taken with s = 0.
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Figure 6: The half-cylinders Ω] and Ω]
θ (left), and the domains C]` and Σ]

n,k (right) for n = 2

Under the assumptions (1.2) and (1.4), Problem (3.57) admits a unique solution u+
s,θ in

H1(R+) for any s ∈ Rn−1. Moreover, u+
s,θ decays exponentially at infinity, uniformly with

respect to s, that is, there exist constants α, c > 0 depending only on µ±, ρ± such that

∀ s ∈ Rn−1,
∥∥e−α Imω x u+

s,θ
∥∥
H1(R+) ≤ c. (3.58)

Furthermore, thanks to the continuity of µp and ρp, we can show that u+
s,θ is continuous with

respect to s, as stated in the next proposition.

Proposition 3.18. The mapping s ∈ Rn−1 7→ u+
s,θ, which associates with a real vector s the

solution in H1(R+) of the problem (3.57), defines a uniformly continuous function which is
periodic of period 1 in each direction.

Proof. To show that s 7→ u+
s,θ is 1–periodic in each direction, one simply has to note that

since µs,θ and ρs,θ are 1–periodic with respect to each si, both u+
s,θ and u+

s+~ei,θ
satisfy the

same half-line problem (3.57). Thus, by well-posedness of (3.57), u+
s,θ = u+

s+~ei,θ
.

Now let us prove the regularity of s 7→ u+
s,θ. For any s1, s2 ∈ Rn−1, by writing the variational

formulations satisfied by u+
s1,θ

and u+
s2,θ

, and by substracting one from the other, we obtain

∀ v ∈ H1
0 (R+),

∫
R+

[
µs1,θ

d

dx
(u+

s1,θ
− u+

s2,θ
) dv
dx
− ρs1,θ ω

2 (u+
s1,θ
− u+

s2,θ
) v
]

=

∫
R+

[
(µs2,θ − µs1,θ)

du+
s2,θ

dx

dv

dx
− (ρs1,θ − ρs2,θ) ω2 u+

s2,θ

]
.

Now choose v = u+
s1,θ
−u+

s2,θ
∈ H1

0 (R+) in the above equality. The well-posedness of (3.57), a
Cauchy-Schwarz inequality applied to the right-hand side and (3.58) imply that there exists
a real number c > 0 independent of s and θ such that∥∥u+

s1,θ
− u+

s2,θ

∥∥
H1(R+) ≤ c

(
‖µs2,θ − µs1,θ‖∞ + ‖ρs2,θ − ρs1,θ‖∞

)
. (3.59)
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The functions µp and ρp are continuous and 1–periodic in each direction: from Heine-Cantor
theorem, they are uniformly continuous. Let us define the modulus of uniform continuity

∀ µ ∈ C 0(Rn), ∀ ε > 0, δ(µ, ε) = sup
y,z
{|µ(y)− µ(z)|, |y− z| < ε}

A function µ is uniformly continuous if δ(µ, ε) tends to 0 as ε tends to 0. It follows from
(3.59) that ∥∥u+

s1,θ
− u+

s2,θ

∥∥
H1(R+) ≤ c

(
δ(µp, |s1 − s2|) + δ(ρp, |s1 − s2|)

)
.

Therefore, s 7→ u+
s,θ is continuous from Rn−1 in H1(R+). �

Proposition 3.19. Let sθ be the mapping defined by (3.45), and Ũ+
θ (resp. ϕ̃) be the periodic

extension of U+
θ (resp. ϕ) the solution of (3.54). Then, we have

a. e. y ∈ Rn+, Ũ+
θ (ϕ̃)(y) = ϕ̃

(
sθ(y)

)
u+

sθ(y),θ(yn/θn), (3.60)

or equivalently

a. e. (s, x) ∈ Rn−1 × R+, Ũ+
θ (ϕ̃)((s, 0) + θ x) = ϕ̃(s) u+

s,θ(x). (3.61)

Moreover if ϕ̃ is continuous in the neighbourhood of 0 and satisfies ϕ̃(0) = 1, then

a. e. x ∈ R, u+
θ (x) = Ũ+

θ (ϕ̃)(xθ) (3.62)

Proof. We begin by proving (3.60). Let us denote for a. e. y ∈ Rn+, U1(y) the right-hand
side of (3.60). Note that Ψ : (s, x) 7→ ϕ̃(s) u+

s,θ(x) is 1–periodic with respect to s (thanks to
Proposition 3.18), and belongs to L2(Ω]) since

‖Ψ‖2L2(Ω]) =
∫

Σ]n,0

|ϕ(s)|2 ‖u+
s,θ‖

2
L2(R+) ds ≤ θn c2 ‖ϕ‖2L2(Σ]n,0), with c = sup

s
‖u+

s,θ‖L2(R+).

Moreover, since for all s, u+
s,θ ∈ H1(R+), ∂ynΨ is also in L2(Ω]) (using similar inequalities to

the above). By Proposition 3.14, U1 belongs to H1
θ,per(Ω]) with

a. e. y ∈ Rn+, Dθ Ũ1(y) = ϕ̃
(
sθ(y)

) du+
sθ(y),θ
dx

(yn/θn).

Finally, since u+
s,θ(0) = 1, it is clear that U1|Σ]n,0

= ϕ. By repeating the same argument, we
can show that µpDθ U1 belongs to H1

θ,per(Ω]) with

a. e. y ∈ Rn+, Dθ [µpDθ Ũ1](y) = ϕ̃
(
sθ(y)

) d

dx

(
µsθ(y),θ

du+
sθ(y),θ
dx

)
(yn/θn).

Since u+
s,θ satisfies (3.57), it is clear that U1 satisfies (3.54). By well-posedness of (3.54), we

have U1 = U+
θ .

The equivalence between (3.60) and (3.61) is directly obtained using the change of variables
(s, x) 7→ ((s, 0) + θ x). Moreover, we have from Proposition 3.18 that s 7→ u+

s,θ is continuous.
If in addition to that, ϕ̃ is continuous in a neighbourhood of 0, then (3.61) becomes true for
any s in that neighbourhood. In particular, (3.61) can be written for s = 0, thus leading to
(3.62). �
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In particular, we deduce from the above proprosition that

a. e. y ∈ Rn+, Dθ Ũ
+
θ (ϕ̃)(y) = ϕ̃

(
sθ(y)

) du+
sθ(y),θ
dx

(yn/θn). (3.63)

Remark 3.20. The half-guide solution U+
θ depends on ϕ whereas u+

s,θ does not. In this
sense, the relation (3.60) can seem surprising at first sight. Numerical results presented in
Section 5.5 will illustrate this property.

4 Resolution of the half-guide problem
The advantage of the lifting process lies in the periodic nature of (3.54), which allows us to
exploit tools that are well-suited for periodic waveguides. In this paper, we use a DtN-based
method [10, 19], developed for the elliptic1 Helmholtz equation −∇ · (µp ∇U)− ρp ω2 U = 0
in unbounded periodic guides. This method does not rely on decay properties, and therefore
remains robust when the absorption tends to 0. As we essentially transpose this method to
our directional Helmholtz equation, we will see below that the framework remains exactly
the same, although the analysis has to be adapted. Let us mention the recursive doubling
method [32, 8], suited for bounded periodic waveguides, and a method [33] based on the
Floquet-Bloch transform, although its extension to our non-elliptic equation seems unclear.

In what follows, C]` is the cell defined for every ` ∈ N by

C]0 = (0, 1)n and C]` = C]0 + `~en, so that Ω] =
⋃
`∈N

C]` . (4.1)

For ` > 0, we call Σ]
n,` the interface between the cells C]` and C]`+1, that is, Σ]

n,` = Σ]
n,0 + `~en.

By periodicity, each cell C]` can be identified to C]0. Similarly, each interface Σ]
n,` can be

identified to Σ]
n,0. The cells and interfaces are represented in Figure 6.

4.1 Structure of the solution

The solution U+
θ (ϕ) of (3.54) has a particular structure that we explain in this section.

Denote by P ∈ L
(
L2(Σ]

n,0)
)
the operator

∀ ϕ ∈ L2(Σ]
n,0), Pϕ :=U+

θ (ϕ)|Σ]n,1
, (4.2)

where L2(Σ]
n,1) and L2(Σ]

n,0) have been identified to each other in an obvious manner. This
identification will be used systematically in what follows, even if not mentioned. Note that
the operator P is well-defined, due to the continuity of the trace operator on Σ]

i,a (3.34).

Proposition 4.1. For any ϕ in L2(Σ]
n,0), we have

∀ ` ∈ N, a. e. y ∈ Ω], U+
θ (ϕ)(y + `~en) = U+

θ (P`ϕ)(y). (4.3)

Moreover, the spectral radius of P is strictly less than one.
1By elliptic Helmholtz equation, we refer to the Helmholtz equation with an elliptic principal part.
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Proof. We only present the outline of the proof, which is quite similar to the one in [10,
19]. Given ϕ ∈ L2(Σ]

n,0), consider the function U1 defined in Ω] by U1(y) = U+
θ (ϕ)(y + ~en)

for almost any y ∈ Ω]. Since the coefficients µp and ρp are periodic, one deduces that U1
satisfies the volume equation as well as the periodicity condition in (3.54). Furthermore,

U1|Σ]n,0
=U+

θ (ϕ)|Σ]n,1
= Pϕ.

Thus, by well-posedness of (3.54), we have (4.3) for ` = 1. The result (4.3) for ` ≥ 2 is proved
by induction.

It remains to show that the spectral radius is strictly less than 1. To this end, by analogy
with (3.58), one can show the existence of constants α, c > 0 such that

∀ ϕ ∈ L2(Σ]
n,0),

∥∥eα Imω yn/θn U+
θ

∥∥
H1

θ
(Ω]) ≤ c ‖ϕ‖L2(Σ]n,0). (4.4)

Since P`ϕ = U+
θ (ϕ)(·, `), the estimate above implies that ‖P`‖ ≤ c e−α Imω `/θn . Hence, using

Gelfand’s formula [26, §10.3], the spectral radius can be estimated as follows:

ρ(P) = lim
`→+∞

‖P`‖1/` ≤ e−β Imω/θn < 1.

�

The operator P is called the propagation operator, as it describes how the solution of (3.54)
evolves from one interface to another. Provided that P is known, the solution U+

θ (ϕ) may
be constructed using local cell problems. Let us first introduce the appropriate functional
framework in a periodicity cell

H1
θ,per(C]0) :=

{
U ∈ H1

θ(C]0), Ũ ∈ H1
θ,loc(B0)

}
, (4.5)

where B0 := Rn+ ∩ {0 < yn < 1}. Similarly to Section 3.2.1, one can show that any function
of H1

θ,per(C]0) has a L2 trace on the boundary of C]0. We can prove in particular that

H1
θ,per(C]0) =

{
U ∈ H1

θ(C]0) / U |yi=0 =U |yi=1, ∀ i ∈ J1, n− 1K
}
.

We can now introduce the local cell problems: for all ϕ ∈ L2(Σ]
n,0), for j ∈ {0, 1}, let

Ej(ϕ) ∈ H1
θ,per(C]0) satisfy∣∣∣∣∣ −Dθ

(
µp Dθ E

j)− ρp ω2 Ej = 0, in C]0,
µp Dθ E

j |yi=0 =µp Dθ E
j |yi=1 ∀ i ∈ J1, n− 1K,

(4.6)

defined for j = 0, 1, with the boundary conditions∣∣∣∣∣ E
0|Σ]n,0

= ϕ and E0|Σ]n,1
= 0,

E1|Σ]n,0
= 0 and E1|Σ]n,1

= ϕ.
(4.7)

A variational formulation can be derived as in Proposition 3.17, and the well-posedness follows
once again from a lifting argument (see Proposition 3.14) combined with Lax-Milgram’s
theorem in H1

θ,per(C]0).
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Proposition 4.1 implies that U+
θ (ϕ)(·+ `~en)|Σ]n,0

= P`ϕ. Hence, if the propagation operator
P is known, by linearity, the solution of the half-guide problem can be entirely constructed
cell by cell as follows:

∀ ` ∈ N, U+
θ (ϕ)(·+ `~en)|C]0 = E0(P`ϕ) + E1(P`+1ϕ). (4.8)

4.2 Characterization of the propagation operator: the Riccati equation

In the sequel, 〈·, ·〉 denotes the canonical L2 scalar product on Σ]
n,0 (or equivalently on Σ]

n,1).

In order to characterize the propagation operator P, it is useful to introduce the local DtN
operators T jk ∈ L(L2(Σ]

n,0)), defined for j, k = 0, 1 by

∀ ϕ ∈ L2(Σ]
n,0), T jkϕ = (−1)k+1 θn

[
µp Dθ E

j(ϕ)
]
|Σ]

n,k
. (4.9)

where Ej(ϕ) satisfies (4.6)-(4.7). By Green’s formula (3.30), note that for all j, k = 0, 1 and
for (ϕ,ψ) ∈ L2(Σ]

n,0)2, these operators satisfy〈
T jkϕ, ψ

〉
=
∫
C]0

[
µp Dθ E

j(ϕ) Dθ E
k(ψ)− ρp ω2 Ej(ϕ) Ek(ψ)

]
. (4.10)

Before deriving other useful properties of the local DtN operators, we need to introduce some
additional notations. For any closed operator A ∈ L(L2(Σ]

n,0)), we denote A∗ the adjoint of
A, and A its « complex conjugate », that is,

∀ ϕ ∈ L2(Σ]
n,0), Aϕ = Aϕ.

It is not difficult to see that A∗ = A∗, and A = A.

Proposition 4.2. The local DtN operators T jk satisfy[
T 00

]∗
= T 00,

[
T 11

]∗
= T 11,

[
T 01

]∗
= T 10,

[
T 10

]∗
= T 01. (4.11)

Furthermore, the operators T 00, T 11, and T 00 + T 11 are invertible.

Proof. The property (4.11) follows from Green’s formula applied to Ej(ϕ) and Ek(ψ), see
for instance [10, Proposition 2.2.4] in the case of the Helmholtz equation.

The operators T 00, T 11, and T 00 + T 11 are bounded. We are going to show that they are
also coercive. Their invertibility will then follow from Lax-Milgram’s theorem.

From the expression (4.10), one has the existence of a constant c ≡ c(µ−, ρ−, |ω|) > 0
such that

−|ω| Im
[ 1
ω

〈
T kkϕ, ϕ

〉]
≥ c Imω ‖Ek(ϕ)‖2H1

θ
(C]0) ≥ c̃ Imω ‖ϕ‖

2
L2(Σ]n,0),

since from (3.34), the trace application from H1
θ,per(C]0) to L2(Σ]

n,0) is continuous. It follows
that the operators T 00 and T 11 are coercive, and therefore invertible. The inequalities above
summed for k = 0, 1 imply the coercivity and hence the invertibility of T 00 +T 11 as well. �

23



As seen earlier, the solution of the half-guide problem (3.54) is given by (4.8). Now let us
use the characterization of H1

per,θ(Ω]), namely, Corollary 3.11 with a = 1, so that Ω]
a,− = C]0

and Ω]
a,+ = Ω] \ C]0. Since µp Dθ U

+
θ (ϕ) belongs to H1

θ,per(Ω]), the directional derivative of
U+

θ (ϕ) is continuous across the interface Σ]
n,1, i.e.[

µp Dθ U
+
θ (ϕ)

]
|Σ]n,1

=
[
µp Dθ U

+
θ (ϕ)((·+ ~en)

]
|Σ]n,0

, (4.12)

or equivalently,[
µp Dθ E

0(ϕ)
]
|Σ]n,1

+
[
µp Dθ E

1(Pϕ)
]
|Σ]n,1

=
[
µp Dθ E

0(Pϕ)
]
|Σ]n,0

+
[
µp Dθ E

1(P2ϕ)
]
|Σ]n,0

.

(4.13)

By using the definition of the local DtN operators T jk, (4.13) leads to the following charac-
terization.

Proposition 4.3. The propagation operator P defined by (4.2) is the unique solution of the
constrained Riccati equation∣∣∣∣∣∣

Find P ∈ L(L2(Σ]
n,0)) such that ρ(P) < 1 and

T 10P2 + (T 00 + T 11)P + T 01 = 0.
(4.14)

Proof. The proof is identical to the one for the elliptic Helmholtz equation [19, Theorem
4.1]. We know from Proposition 4.1 that P has a spectral radius which is strictly less than
1. Moreover (4.13) ensures that P satisfies the Riccati equation.

In order to prove the uniqueness, let us consider an operator P1 which satisfies (4.14). The
function defined cell by cell by

∀ ϕ ∈ L2(Σ]
n,0), ∀ ` ∈ N∗, U1(ϕ)(·+ `~en)|C]0 = E0(P`1ϕ) + E1(P`+1

1 ϕ),

solves (3.54) in each cell C` and is continuous across each interface Σ]
n,`, by definition (4.6),

(4.7) of E0 and E1. By Corollary 3.11, U1 is locally H1
θ in Ω].

Moreover, since P1 satisfies (4.14), the directional derivative µpDθ U1 is continuous across
each interface. Thus, using Corollary 3.11, we deduce that U1 satisfies (3.54) in Ω].

Furthermore, given that ρ(P1) < 1, Gelfand’s formula and the well-posedness of the cell
problems ensure that there exist positive constants c, ρ∗, with ρ∗ < 1 such that, for ` ∈ N
large enough,

‖U1(ϕ)‖H1
θ

(C]
`
) ≤ c ρ`∗ ‖ϕ‖L2(Σ]n,0).

Hence U1(ϕ) belongs to H1
θ,per(Ω]) and satisfies the half-guide problem (3.54). By well-

posedness of (3.54), U1(ϕ) and U+
θ (ϕ) coincide, and thus have the same trace on Σ]

n,1, that
is P1ϕ = Pϕ for any ϕ ∈ L2(Σ]

n,0). �
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As a consequence, the propagation operator can be obtained by solving the Riccati equation
in (4.14), and by choosing the unique solution whose spectral radius is strictly less than 1.
One important thing to retain from the above is that both the propagation operator and the
solution of the half-guide problem only require the computation of E0, E1, and the operators
T 00, T 10, T 01, and T 11, which involve problems defined on a periodicity cell. However, the
resolution of the constrained Riccati equation (4.14) is not obvious at all. The properties of
this equation are investigated in further details in Section 4.4.

4.3 The DtN operator and the DtN coefficient

The goal of this part is to see how the half-guide problem and the local cell problems can be
used to compute the DtN coefficient λ+. We recall that

λ+ = −µθ(0) du
+
θ

dx
(0).

Therefore, it is natural to introduce the DtN operator Λ ∈ L(L2(Σ]
n,0)) defined by

∀ ϕ ∈ L2(Σ]
n,0), Λϕ := −θn

[
µp Dθ U

+
θ (ϕ)

]
|Σ]n,0

. (4.15)

This operator also has the following properties, whose proof is exactly identical to the one of
Proposition 4.2.
Proposition 4.4. One has Λ∗ = Λ. Moreover, Λ and Λ + T 11 are invertible operators.

Taking the directional derivative of (4.8) (for ` = 0) on Σ]
n,0 and using the definition (4.9) of

the local DtN operators T 00 and T 10 leads to

Λ = T 00 + T 10P. (4.16)

Besides, by writing the formula (3.63) after multiplication by µp, and by evaluating it for
y = (s, 0), so that sθ(y) = s, we obtain

Λϕ(s) = θn λθ(s) ϕ(s), with λθ(s) = −
[
µs,θ

du+
s,θ
dx

]
(0), (4.17)

namely, Λ is a multiplication operator. We deduce from (4.17) the DtN coefficient λ+.
Proposition 4.5. The function λθ : Rn−1 → C defined by (4.17) is continuous. Moreover,
if ϕ ∈ Cper(Rn−1) is a given function which satisfies ϕ(0) = 1, then we have

λ+ = λθ(0) = 1
θn

(Λϕ)(0). (4.18)

Proof. Using Green’s formula, we have that for all s ∈ Rn−1

λθ(s) = as(u+
s,θ, u

+
s,θ), with as(u, v) =

∫
R+

(
µs,θ

du

dx

dv

dx
− ρs,θ ω

2 u v
)
.

The continuity of u 7→ as(u, u) results directly from the properties of the coefficients µp and
ρp. Moreover, Proposition 3.18 ensures that the function s 7→ u+

s,θ is continuous. Therefore,
as the composition of these two functions, λθ is also continuous.

If in addition ϕ is continuous, then Λϕ is also continuous. Hence, (Λϕ)(0) = θn λθ(0)ϕ(0)
which yields the desired result. �
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4.4 Spectral properties of the Riccati equation

We now present some properties regarding Equation (4.14). These properties will be exploited
for the numerical resolution of the Riccati equation, by constructing the operator P from its
eigenpairs (this will be done in Section 5.3 after space discretization). For this reason, it is
worhwhile to reformulate a spectral version (Proposition 4.7) of the Riccati equation that
would characterize these eigenpairs, while taking into account the spectral radius constraint.
This is precisely the purpose of this section.

Recall that T (P) = 0, where T is the bounded operator defined by

∀ X ∈ L
(
L2(Σ]

n,0)
)
, T (X) = T 10X2 + (T 00 + T 11)X + T 01. (4.19)

In the sequel, we will write T (λ) for T (λI). We begin with the following factorization lemma.

Lemma 4.6. Let P be the propagation operator defined by (4.2). For any number λ ∈ C,

T (λ) = (λP∗ − I) (Λ + T 11) (P − λ), (4.20)

where T 11 is defined by (4.9) and Λ is defined by (4.15).

Proof. Let λ ∈ C. Since the propagation operator satisfies T (P) = 0, one obtains that

T (λ) = T (λ)− T (P)

=
[
T 10(λ+ P) + T 00 + T 11

]
(λ− P)

= (λT 10 + Λ + T 11) (λ− P), from (4.16). (4.21)

We use once again the fact that T (P) = 0 which, by the expression (4.16), is equivalent to
T 01 = −(Λ + T 11) P. By transposing this equation, and by taking the complex conjugate,
one obtains that [T 01]∗ = −P∗ (Λ + T 11)∗. Since

[
T 11]∗ = T 11 and

[
T 01]∗ = T 10 as ensured

by Proposition 4.2, and since Λ∗ = Λ from Proposition 4.4, it follows that

T 10 = −P∗ (Λ + T 11).

Inserting this expression of T 10 in (4.21) therefore leads to

T (λ) =
[
−λP∗ (Λ + T 11) + Λ + T 11

]
(λ− P) = (I − λP∗) (Λ + T 11) (λ− P).

which is the desired result. �

The previous factorization lemma allows one to characterize the spectrum of the propagation
operator as follows.

Proposition 4.7. For any complex number λ, one has

λ ∈ σ(P) ⇐⇒ 0 ∈ σ
[
T (λ)

]
and |λ| < 1. (4.22)
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Proof. Proving (4.22) amounts to showing that for any λ ∈ C such that |λ| < 1, P − λ
is invertible if and only if T (λ) is invertible. To this end, using Lemma 4.6, it is sufficient
to prove that (λP∗ − I) (Λ + T 11) is an invertible operator. Proposition 4.4 ensures the
invertibility of Λ + T 11 already. It thus remains to show that λP∗ − I is invertible, which is
true when |λ| < 1.

Indeed, if λ = 0, then λP∗−I = −I is obviously invertible. Otherwise, it is not difficult to
see that P and P∗ have the same spectrum. Hence, given that |1/λ| > 1 > ρ(P∗), it follows
that 1/λ does not belong to σ(P∗). In other words, P∗−(1/λ) I is an invertible operator. �

Remark 4.8. Note that the property (4.22) can be proved easily (and without Lemma 4.6)
for the point spectrum:

λ ∈ σp(P) ⇐⇒ 0 ∈ σp
[
T (λ)

]
and |λ| < 1. (4.23)

This property was already proved in [19] for the Helmholtz equation. In this context, this was
sufficient since the operator P was compact, which is no longer the case here.

Finally, it is worth noting that the values λ 6= 0 for which 0 ∈ σ
[
T (λ)

]
can be paired in the

following way.

Proposition 4.9. For any complex number λ 6= 0, one has the following equivalence:

0 ∈ σ
[
T (λ)

]
⇐⇒ 0 ∈ σ

[
T (1/λ)

]
. (4.24)

Proof. Let λ ∈ C∗. From the properties of the local DtN operators (see Proposition 4.2),
we deduce that

[T (λ)]∗ = λ2 T 01 + λ(T 00 + T 11) + T 10 = λ2 T (1/λ). (4.25)

The operators T (λ) and [T (λ)]∗ have the same spectrum, hence the result. �

Remark 4.10. As Proposition 4.9 shows, the values λ 6= 0 for which

0 ∈ σ
[
T (λ)

]
come by pairs (λ, λ−1). From a numerical point of view, it suffices to choose λ such that
|λ| < 1 and discard λ−1.

4.5 Spectral properties of the propagation operator

This section, contrary to Section 4.4 is not related to the construction of our numerical
method; it is of theoretical interest. On one hand, the result of this section, that is Proposition
4.11, is useful for interpreting some of the numerical results in Section 5.5.3. On the other
hand, it emphasizes the differences between the spectral properties of P, and the ones of
the corresponding operator for classical waveguide problems. For the elliptic Helmholtz
equation, P is compact (see [19, Theorem 3.1]) and its spectrum hence consists only in
isolated eigenvalues which accumulate to 0. However, the picture is completely different in
this case, because the spectrum has no isolated points.
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One useful way to study the properties of the propagation operator (especially its spectrum)
is through an analytic formula: according to (3.60), P can be expressed for all ϕ in L2(Σ]

n,0)
and for s ∈ Rn−1 as

Pϕ(s) = pθ(s) ϕ̃
(
s− δ

)
, with pθ(s) = u+

s−δ,θ(1/θn) and δ = θ̂ /θn ∈ Rn−1. (4.26)

Note that since θ is an irrational vector, δ is also an irrational vector.
The properties of the mapping s 7→ u+

s,θ stated in Proposition 3.18 imply that the fonction
pθ is continuous and 1-periodic in each direction.

Operators that can be written under the form (4.26) are known as weighted shift operators,
and have been studied for instance in [2]. In particular, the spectral properties of P are given
by the following result.

Proposition 4.11. Let pθ : Σ]
n,0 → C be the function defined in (4.26). Then, pθ(s) 6= 0 for

all s in Σ]
n,0, and the spectral radius of P is given by

ρ(P) = exp
(∫

Σ]n,0

log |pθ(s)| ds
)
. (4.27)

Moreover, the spectrum of P is a circle of radius ρ(P).

This result can be found in [2, Theorem 2.1] for n = 2. We give below the proof for n > 2,
which requires the following lemma (see Theorem 6.1 and Example 6.1 of [21]), known as a
particular case of Birkhoff’s ergodic theorem for continuous functions.

Lemma 4.12. Let ψ : Σ]
n,0 → C be continuous and 1–periodic in each direction. Let α ∈ Rn−1

be an irrational vector. Then, we have the following uniform convergence:

lim
`→+∞

∥∥∥1
`

`−1∑
m=0

ψ(· −mα)−
∫

Σ]n,0

ψ
∥∥∥
∞

= 0.

Proof of Proposition 4.11. Let us first show by contradiction that pθ or equivalently
the function s 7→ u+

s,θ(1/θn) is nowhere vanishing. To do so, we use an argument of unique
continuation. In fact, assume that there exists s ∈ Σ]

n,0 such that u+
s,θ(1/θn) = 0. Then u+

s,θ
satisfies the problem

− d

dx

(
µs,θ

du+
s,θ
dx

)
− ρs,θ ω

2 u+
s,θ = 0, in (1/θn,+∞), and u+

s,θ(1/θn) = 0.

From the well-posedness of this problem, it follows that u+
s,θ = 0 in (1/θn,+∞). Therefore,

by unique continuation, one deduces that u+
s,θ = 0 in R+, which contradicts the boundary

condition u+
s,θ(0) = 1.

We now establish the expression of the spectral radius ρ(P). One has ρ(P) = lim
`→+∞

‖P`‖1/`
from Gelfand’s formula, and by induction, P` can be expressed under the form

P`ϕ(s) = p
(`)
θ (s) ϕ(s− `δ), with p

(`)
θ (s) =

`−1∏
m=0

pθ(s−mδ).
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Since the translation operator ϕ 7→ ϕ(· − `δ) is isometric and bijective, the norm of P` is
equal to the norm of the multiplication operator ϕ 7→ p

(`)
θ ϕ, that is ‖p(`)

θ ‖∞. Hence, given
that pθ(s) 6= 0 for all s, one has

ρ(P) = lim
`→+∞

∥∥∥ `−1∏
m=0

pθ(· −mδ)
∥∥∥1/`

∞
= lim

`→+∞
exp

∥∥∥1
`

`−1∑
m=0

log
(
|pθ(· −mδ)|

)∥∥∥
∞

Since θ is an irrational vector, δ = θ̂/θn is also an irrational vector. Therefore, Lemma 4.12
can be applied with α = δ, and ψ : s 7→ log |pθ(s)|, which is well-defined and continuous.
Hence the spectral radius is given by

ρ(P) = Mlog(pθ) := exp
(∫

Σ]n,0

log |pθ(s)| ds
)
.

Let us now characterize the spectrum. To begin, note that the inverse of P is well-defined,
since pθ vanishes nowhere: for all ϕ ∈ L2(Σ]

n,0), P−1ϕ(s) := pθ(s)−1 ϕ̃
(
s + δ

)
. Therefore, all

the computations above can be applied to P−1, thus yielding

ρ(P−1) = Mlog(p−1
θ ) = 1

Mlog(pθ) = 1
ρ(P)

Since the spectrum of P is always included in the annulus ρ(P−1)−1 ≤ |z| ≤ ρ(P), it follows
that σ(P) is included in the circle |z| = ρ(P) = Mlog(pθ).

Conversely, for k ∈ Zn−1, let Sk be the multiplication operator by s ∈ Rn−1 7→ exp(2iπ k · s).
From the expression (4.26) of the propagation operator, we obtain that

Sk P S−1
k = e2iπ k · δ P.

The operators P and e2iπk · δ P are similar, and thus have the same spectrum. Now consider
an element λ0 of σ(P). Then, |λ0| = Mlog(pθ), and λk := e2iπk · δ λ0 also belongs to σ(P) for
all k ∈ Zn−1. Since δ is irrational, we have from Kronecker’s theorem (Theorem 2.2) that
the set {λk, k ∈ Zn−1} is dense in the circle |z| = |λ0| = Mlog(pθ). Consequently, this whole
circle is included in the spectrum, since the latter is a closed set. �

5 Resolution algorithm and discretization issues for n = 2
In order to compute the solution of Equation (1.1), the previous sections provide an algorithm
which sums up as follows:

1. Compute the solution u+
θ of (1.8) and the DtN coefficient λ+ defined by (1.7) by using

the following procedure:

(a). for any boundary data ϕ ∈ L2(Σ]
n,0), compute the solutions E0(ϕ), E1(ϕ) of the

local cell problems (4.6);
(b). compute the local DtN operators (T 00, T 01, T 10, T 11), defined by (4.9)–(4.10);
(c). compute the propagation operator P as the unique solution of the constrained

Riccati equation (4.14);
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(d). using an arbitrarily chosen boundary data ϕ ∈ Cper(Rn−1) which satisfies ϕ(0) = 1,
• from (4.8), construct the solution U+

θ of the half-guide problem cell by cell;
• deduce the half-line solution u+

θ via the formula (3.62);
(e). compute the DtN operator Λ defined by (4.16), and deduce λ+ from (4.18).

2. Compute the solution u−θ of (1.8) and the DtN coefficient λ− defined by (1.7) by using
exactly the same procedure as in Step 1 (but independently from Step 1).

3. Finally, solve the interior problem (1.9) in (−a, a), and extend the solution everywhere
by using (1.10), as well as Step 1 and Step 2.

For convenience sake, the quasiperiodicity order is set to n = 2. The most original aspects of
the algorithm are the steps (1.a)–(1.d), and the rest of this section focuses on the discretiza-
tion of these four steps. We present in Sections 5.1 and 5.2 two different methods that are
linked to a choice of discretization of the step (1.a), which influences the implementation of
the steps (1.b) and (1.d). The treatment of the step (1.c) is independent of this choice, and
will be presented in Section 5.3.

per per

Figure 7: Two-dimensional mesh for the 2D method (left), and family of one-dimensional
meshes for the quasi-1D method (right)

5.1 A fully two-dimensional method

The first method is inspired from the resolution of the elliptic Helmholtz equation (see [10]
for instance), and consists in solving directly the local cell problems on an unstructured mesh
of the periodicity cell C]0 = (0, 1)2 (see Figure 7).

We start from a triangular mesh Th(C]0) of C]0 = (0, 1)2 with a mesh step h > 0. We assume
that this mesh is periodic, in the sense that one can identify the mesh nodes on the boundary
yi = 0 with those on yi = 1, for 1 ≤ i ≤ 2. In particular for i = 1, this condition allows us to
handle the periodic boundary conditions.

Now let Vh(C]0) be the usual H1–conforming approximation by Lagrange finite elements of
order d > 0. We also introduce

Vh,per(C]0) :=
{
V ∈ Vh(C]0) / V |y1=0 =V |y1=1

}
as an internal approximation of H1

θ,per(C]0). Finally, to approximate L2(Σ]
2,0) and L2(Σ]

2,1),
we consider the following subspaces:

∀ a ∈ {0, 1}, Vh,per(Σ]
2,a) =

{
Vh|Σ]2,a

/ Vh ∈ Vh,per(C]0)
}
.
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Since the mesh nodes on Σ]
2,0 and Σ]

2,1 can be identified to each other by periodicity of
Th(C]0), we can also make the identification Vh,per(Σ]

2,0) ≡ Vh,per(Σ]
2,1) ≡ Vh,per(0, 1), as in the

continuous case. Set N := dimVh,per(0, 1), and consider a basis (ϕp)1≤p≤N .

For any data ϕh ∈ Vh,per(0, 1), we denote by E0
h(ϕh), E1

h(ϕh) ∈ Vh,per(C]0) the solutions of
the discrete counterpart of the local cell problems (4.6)–(4.7) defined in a weak sense. In
practice, one has to compute Ejh(ϕp), where (ϕp)1≤p≤N is a basis of Vh,per(0, 1).

Similarly to the weak expression (4.10) of the continuous local DtN operators, the discrete
local DtN operators T jkh ∈ L(Vh,per(0, 1)), j, k = 0, 1, are defined for any ϕh, ψh ∈ Vh,per(0, 1)
as follows:〈

T jkh ϕh, ψh
〉

=
∫
C]0

[
µp Dθ E

j
h(ϕh) Dθ E

k
h(ψh)− ρp ω2 Ejh(ϕh) Ekh(ψh)

]
.

In practice, these operators are represented as N × N matrices Tjk whose components are
given by Tjkpq =

〈
T jkh ϕq, ϕp

〉
, for p, q ∈ J1, NK.

Let ϕh ∈ Vh,per(0, 1) ⊂ Cper(R) such that ϕh(0) = 1. The computation of the propagation
operator Ph ∈ L(Vh,per(0, 1)) is presented in Subsection 5.3. Once this operator is determined,
the solution of the half-guide problem (3.54) can be approximated with the function defined
cell by cell by

∀ ` ∈ N, U+
θ,h(ϕh)(·+ `~en)|C]0 = E0

h(P`h ϕh) + E1
h(P`+1

h ϕh).

Finally, a suitable approximation of the solution of the half-line problem 3.1 is provided by

∀ x ∈ R, u+
θ,h(x) = U+

θ,h(ϕ)(θ x).

5.2 A quasi one-dimensional method

Though easy to implement, the two-dimensional approach described in the previous section
does not exploit the fibered properties of the directional derivative Dθ . However, the periodic
half-guide problem can be seen as a concatenation in a certain sense of one-dimensional half-
line problems. This fibered structure is the core of the method presented in this section.

5.2.1 Presentation

For any s ∈ R, we consider the one-dimensional cell problems∣∣∣∣∣∣∣∣∣∣
− d

dx

(
µs,θ

dejs,θ
dx

)
− ρs,θ ω2 ejs,θ = 0, in (0, 1/θ2) := Iθ,

e0
s,θ(0) = 1 and e0

s,θ(1/θ2) = 0,

e1
s,θ(0) = 0 and e1

s,θ(1/θ2) = 1.

(5.1)

Then, by analogy with Proposition 3.19, one easily shows that the local cell problems are
concatenations of one-dimensional cell problems, in the following sense.
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Proposition 5.1. For any boundary data ϕ in L2(0, 1), the solutions E0(ϕ) and E1(ϕ) of
the local cell problems (4.6) are given by

a. e. y ∈ C]0, Ej(ϕ)(y) = ϕ̃
(
sθ(y) + j θ1/θ2

)
ejsθ(y),θ

(
y2
θ2

)
, (5.2)

where ejs,θ denotes the solution of the cell problems (5.1).

Proposition 5.1 also highlights the structure of the local DtN operators. To see this, let us
introduce the local DtN functions tjkθ defined for j, k = 0, 1, by

∀ s ∈ R, tjkθ (s) = (−1)k+1θ2

[
µs,θ

dejs,θ
dx

](
j

θ2

)
. (5.3)

Note that by periodicity of µp and ρp, the maps s 7→ ejs,θ and tjkθ are 1–periodic.

By applying the directional derivative operator Dθ to (5.2), and by using the relationship
between Dθ E

j(ϕ) and dejs,θ/dx given by (3.52), it follows that the local DtN operators
defined by (4.9) are weighted translation operators, similarly to the propagation operator.

Proposition 5.2. The operators T jk can be written for ϕ ∈ L2(0, 1) and s ∈ (0, 1) as

T 00ϕ(s) = t00
θ (s) ϕ̃(s) and T 10ϕ(s) = t10

θ (s) ϕ̃(s+ θ1/θ2),

T 11ϕ(s) = t11
θ (s− θ1/θ2) ϕ̃(s) and T 01ϕ(s) = t01

θ (s− θ1/θ2) ϕ̃(s− θ1/θ2),
(5.4)

where we recall that ϕ̃ denotes the periodic extension of ϕ on R, defined by (3.31).

Finally, the solution u+
θ of the half-line problem (3.1) can be computed directly from the

functions ejs,θ and from the propagation operator. In fact, given a function ϕ ∈ Cper(Σ]
n,0)

such that ϕ(0) = 1, taking formally the trace along θ R in (4.8) leads to

∀ ` ∈ N, u+
θ (·+ `/θ2)|Iθ

= (P̃`ϕ)(` θ1/θ2) e0
`θ1/θ2,θ

+ (P̃`+1ϕ)((`+ 1) θ1/θ2) e1
`θ1/θ2,θ

. (5.5)

The proof of this result is similar to those of (4.8) and Proposition 4.1.

Expressions (5.2), (5.4), and (5.5) form the basis of the quasi one-dimensional or quasi-1D
strategy, which consists in approximating the solutions ejs,θ as well as the functions tjkθ and
finally the local DtN operators T jk. Then once the propagation operator is computed by
solving the constrained Riccati equation (4.14), the solution u+

θ may be constructed directly
cell by cell using (5.5).

5.2.2 Discretization

The quasi-1D approach requires two distinct approximate spaces associated to the transverse
and the θ–oriented directions (see Figure 7).
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Transverse direction. We begin with a one-dimensional mesh Th(0, 1) of Σ]
2,0 ≡ (0, 1)

with a mesh step h > 0. Let Vh(0, 1) be the approximation space of H1(0, 1) by Lagrange
finite elements of order d > 0. We denote by (ϕp)0≤p≤N the usual nodal basis, which satisfies
in particular ϕp(sq) = δp,q, where (sp)0≤p≤N are points (including the mesh vertices) such
that 0 = s0 < · · · < sN = 1. Then an internal approximation of L2(0, 1) is

Vh,per(0, 1) := Span{ϕ0 + ϕN , ϕ1, . . . , ϕN−1},

which is chosen so that Vh,per(0, 1) ⊂ Cper(0, 1). In particular, from the definition of the basis
functions ϕi, one has the following decomposition

∀ϕh ∈ Vh,per(0, 1), ϕh =
N∑
p=0

ϕh(sp)ϕp, with ϕh(s0) = ϕh(sN ). (5.6)

θ–oriented direction. Let Thθ
(Iθ) denote a mesh of the line segment Iθ with a mesh step

hθ > 0. Set Vhθ
(Iθ) as the approximation space of H1(Iθ) by Lagrange finite elements of

order dθ > 0 and define Vhθ ,0(Iθ) := Vhθ
(Iθ) ∩H1

0 (Iθ).

The approximation of e0
s,θ and e1

s,θ can be seen as a two-step process. First, for any s ∈ R,
consider the solution ejs,θ,hθ

of the discrete variational formulation associated to (5.1).

In practice, the solution ejs,θ,hθ
can only be computed for a finite number of s ∈ (0, 1). This

is where the discretization in the transverse direction comes into play: given x ∈ Iθ, the
function s 7→ ejs,θ,hθ

(x) may be interpolated in Vh,per(0, 1).
The interpolation process requires to compute the discrete solution ejs,θ,hθ

only for s = sp,
p ∈ J0, N − 1K. Then, using the decomposition formula (5.6), ejs,θ shall be approximated by

∀ (s, x) ∈ (0, 1)× Iθ, ejs,θ,h(x) =
N∑
p=0

ejsp,θ,hθ
(x) ϕp(s), with h = (h, hθ). (5.7)

where ej0,θ,hθ
= ej1,θ,hθ

(because ejs,θ is 1–periodic with respect to s).
From the solutions ejs,θ,h, we introduce the discrete local DtN functions

∀ s ∈ (0, 1), tjkθ,h(s) = θn

∫ 1/θn

0

(
µs,θ

dejs,θ,h
dx

deks,θ,h
dx

− ρs,θ ω2 ejs,θ,h e
k
s,θ,h

)
,

which are inspired from the weak expression (5.3) of the local DtN functions tjkθ . Then, by
analogy with (5.4), we define the discrete DtN operators T jkh ∈ L(Vh,per(0, 1)) for any ϕh,
ψh ∈ Vh,per(0, 1) as follows:

〈
T jkh ϕh, ψh

〉
=
∫ 1

0
tjkθ,h(s− k θ1/θ2) ϕh(s+ (j − k) θ1/θ2) ψh(s) ds. (5.8)

These discrete DtN operators, when computed for ϕh, ψh being the basis functions of
Vh,per(0, 1), are represented as N × N matrices, where N = dimVh,per(0, 1). The integrals
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which appear in (5.8) are evaluated in practice using a specifically designed quadrature rule
whose description is omitted here.

Finally, let ϕh ∈ Vh,per(0, 1) ⊂ Cper(R) such that ϕh(0) = 1. Then using (5.5), the solution of
the half-line problem (3.1) can be approximated with the function defined cell by cell by

∀ ` ∈ N, u+
θ,h(·+ `/θ2)|Iθ

= (P`hϕh)(` θ1/θ2) e0
`θ1/θ2,θ,h + (P`+1

h ϕh)((`+ 1) θ1/θ2) e1
`θ1/θ2,θ,h.

where Ph ∈ L(Vh,per(0, 1)) corresponds to a suitable discrete RN×N approximation of P. The
computation of such an operator is the subject of the next subsection.

5.3 Approximation of the propagation operator

In order to find a suitable approximation Ph ∈ L(Vh,per(0, 1)) of the propagation operator P,
it is natural to introduce the discrete constrained Riccati equation∣∣∣∣∣∣

Find Ph ∈ L(Vh,per(0, 1)) such that ρ(Ph) < 1 and Th(Ph) = 0, where

Th(Ph) := T 10
h P2

h + (T 00
h + T 11

h )Ph + T 01
h ,

(5.9)

and where (T 00
h , T 01

h , T 10
h , T 11

h ) are obtained via one of the methods described in Sections
5.1 and 5.2. Using the same arguments as for the elliptic Helmholtz equation [10], it can be
proved that this discrete equation admits a unique solution.

In order to solve (5.9), two methods have been proposed in [19]: a spectral decomposition
method, and a modified Newton method. Here, we only describe the spectral approach.

The spectral decomposition method consists in characterizing Ph by means of its eigenpairs
(λi, ψi) of Ph. Doing so however raises an important question: is Ph completely defined by
its eigenpairs? This is equivalent to wondering if Ph is diagonalizable or not. The diagonaliz-
ability of Ph is an open question, but for the sake of simplicity, we will assume in the sequel
that this is the case, namely

The family of eigenfunctions (ψi)1≤i≤N forms a basis of Vh,per(0, 1).

In practice, this is the situation that we always have encountered. Moreover, in the case where
this assumption fails to be true, one can still adapt the method, and recover Ph through a
Jordan decomposition. (See [10, Section 2.3.2.3] for more details.)

The spectral approach relies on the results presented in Section 4.4, which remain true for the
discrete equation. In particular, by analogy with Proposition 4.7, (λh, ψh) ∈ C× Vh,per(0, 1)
is an eigenpair of Ph if and only if it satisfies

Th(λh)ψh = 0, with ψh 6= 0 and |λh| < 1.

Solving the Riccati equation hence comes down to solving a quadratic eigenvalue problem:∣∣∣∣∣∣
Find (λh, ψh) ∈ C× Vh,per(0, 1) such that ψh 6= 0, |λh| < 1 and

λ2
h T 10

h ψh + λh (T 00
h + T 11

h )ψh + T 01
h ψh = 0.

(5.10)
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If one sets N = dimVh,per(0, 1), then (5.10) can be reduced to a 2N × 2N linear eigenvalue
problem, thus yielding 2N eigenvalues. In order to pick the N eigenvalues of the propagation
operator, we need a criterion. To do so, note that with the 2D or the quasi-1D method,
the properties of the local DtN operators (Proposition 4.2) remain preserved for the discrete
operators T jkh . Hence Proposition 4.9 admits the following discrete version:

Ker Th(λh) 6= {0} ⇐⇒ Ker Th(1/λh) 6= {0}.

Therefore, as already expected with Remark 4.10, the solutions of (5.10) can be grouped into
pairs (λh, 1/λh), where 0 < |λh| < 1. Consequently, in order to compute Ph, one can solve
(5.10) (using for instance linearization techniques), and choose the N eigenpairs (λh, ψh)
which satisfy |λh| < 1.

5.4 The DtN coefficient

Finally, consider a function ϕh ∈ Vh,per(0, 1) ⊂ Cper(R) which satisfies ϕh(0) = 1. Then by
analogy with (4.16), and in the spirit of Proposition 4.5, we define the discrete DtN operator
and the discrete DtN coefficient as follows:

Λh = T 10
h Ph + T 00

h and λ+
h = (Λhϕh)(0)

θ2
,

where T 10
h and T 00

h are computed using one of the methods presented in Sections 5.1 and 5.2,
and where Ph is the solution of the discrete Riccati equation (5.9).

5.5 Numerical results

We present some numerical results to validate the method, to illustrate its efficiency, and to
compare the multi-dimensional and the quasi one-dimensional methods in the case where the
order of quasiperiodicity is set to n = 2. Simulations will be carried out with the periodic
coefficients µp and ρp, defined for y = (y1, y2) ∈ R2 by

µp(y) = 1.5 + cos(2πy1) cos(2πy2) and ρp(y) = 1.5 + 0.5 sin(2πy1) + 0.5 sin(2πy2).

We set θ = (cosπ/3, sin π/3). As the ratio θ2/θ1 =
√

3 is irrational, θ is an irrational vector.
For a = 1, the source term f is the cut-off function

∀ x ∈ R, f(x) = exp
(
100

(
1− 1/(1− x2)

))
χ(−1,1),

and the local perturbations µi and ρi are defined as piecewise constants, so that the coefficients
µ and ρ of the model problem (1.1) are represented in Figure 8.
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Figure 8: The locally perturbed quasiperiodic coefficients µ and ρ, and the source term f .

5.5.1 The half-line and the half-guide solutions

The model problem (1.1) is solved by computing the solutions of the half-line problems (1.8),
as well as the DtN coefficients λ±. In this part, only results regarding the numerical resolution
of the problem (3.1) are going to be presented, as the problem set on (−∞,−a) provides the
same overall results.

Error analysis In order to validate the method, we introduce for L > 0 the unique function
u+

θ,L inH1(0, L) that satisfies Problem (3.1) on the truncated domain (0, L), with u+
θ,L(L) = 0.

Similarly, define ΩL := (0, 1)n−1 × (0, L), and for any ϕ ∈ L2(Σ]
n,0), let U+

θ,L(ϕ) ∈ H1
θ(ΩL)

denote the unique function that satisfies (3.54) on ΩL, with U+
θ,L(ϕ)|y2=L = 0.

In presence of absorption, the solutions u+
θ and U+

θ (ϕ) decay exponentially at infinity (see
(3.58) and (4.4)), and by studying the problems satisfied by u+

θ,L−u
+
θ and U+

θ,L(ϕ)−U+
θ (ϕ),

it can be proved as in [11] that there exist constants α, c > 0 such that for any L > 0,

‖u+
θ,L − u

+
θ ‖H1(0,L) ≤ c e−α ImωL ‖u+

θ ‖H1(0,L)

‖U+
θ,L(ϕ)− U+

θ (ϕ)‖H1
θ

(ΩL) ≤ c e−α ImωL ‖U+
θ (ϕ)‖H1

θ
(ΩL).

(5.11)

with α =
√
ρ−/µ+. In particular, if L is chosen large enough, then u+

θ,L and U+
θ,L(ϕ) can be

viewed as suitable approximations of u+
θ and U+

θ (ϕ), and thus can serve as reference solutions.
In the upcoming results, to make the truncation errors in (5.11) negligible with respect to
the errors induced by the numerical method, we choose L so that

exp
(
−
√
ρ−/µ+ Imω L

)
≤ 10−10. (5.12)

The corresponding solutions u+
θ,L and U+

θ,L(ϕ), which will be denoted by u+
ref and U+

ref(ϕ)
respectively, are computed via P1 Lagrange finite elements, with a mesh step h = 5× 10−4.
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In the following, the boundary data is fixed to ϕ = 1, and is omitted in the notation of U+
θ

and U+
ref. Also, we only plot relative errors corresponding to the 1D solution, as the errors

for the 2D solution behave similarly. In Figure 9, the relative error

ε(u+
θ ) :=

‖u+
θ,h − u

+
ref ‖H1(0,4/θ2)

‖u+
ref ‖H1(0,4/θ2)

(5.13)

is represented with respect to the mesh step h, and for both the 2D and the quasi-1D method
(with hθ = h for the quasi-1D method). The solutions are computed using Lagrange finite
elements of degree 1.

One sees that the errors tend to 0 as h at least, as expected for P1 Lagrange finite elements.
With the quasi-1D method however, ε(u+

θ ) behaves as h2. This is a special superconvergence
phenomenon, which is probably due to the fact that the problems solved in practice with
the quasi-1D method are one-dimensional. Note also that in general, the quasi-1D method
appears to be more accurate than the 2D method.
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Figure 9: Relative error in H1 norm of the half-line solution for different values of ω.

For a fixed mesh step, the relative error increases with the real frequency Reω. This is a well-
known particularity of the Helmholtz equation: since Reω represents the spatial frequency
of the time-harmonic waves, the discretization parameter h has to be adapted in order to
take their oscillations into account.

Representation of the half-guide solution The half-guide solution is represented in
Figure 10 for different values of ω, when ϕ = 1.
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Figure 10: Real part of the half-guide solution computed using the quasi-1D approach, with
P1 Lagrange finite elements and h = 2× 10−3, and for different values of ω.

Dependence with respect to the boundary data The goal of this part is to see how
the half-line and the half-guide solutions depend on the boundary data ϕ. To do so, we
choose three different datas:

ϕ1(s) = 1, ϕ2(s) = cos(2πs), and ϕ3(s) = 1− 1[1/3,2/3](s). (5.14)

We set ω = 8 + 0.25 i, and we display results obtained with the quasi-1D method, knowing
that the 2D method yields the same conclusions. The computations are carried out using P1

Lagrange finite elements, with mesh steps h = hθ = 2× 10−3.

Size of periodicity cell

0 1 2 3 4
−1

0

1 ϕ1 ϕ2 ϕ3

Figure 11: Real part of the half-line solution computed using the quasi-1D approach, with
P1 Lagrange finite elements and h = 2× 10−3, and for different values of ϕ.
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Figure 12: Real part of the half-guide solution computed using the quasi-1D approach, with
P1 Lagrange finite elements and h = 2× 10−3, and for different values of ϕ.

As expected, and as Figures 11 and 12a–12c show, the aspect of half-guide solution changes
extensively with respect to the boundary data, whereas the half-line solution looks invariant.

5.5.2 The whole line problem

The solutions u±θ of the half-line problems (1.8) allow one to compute the DtN coefficients
λ±, to solve (1.9), and then to compute the solution u of Problem (1.1) using (1.10). Recall
that the coefficients µ, ρ, and the source term f are shown in Figure 8. The solution of (1.1)
is represented in Figure 13 for different values of ω.

(a) ω = 8 + 0.25 i

−6 −4 −2 0 2 4 6
−1

0

1
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(b) ω = 20 + 0.25 i
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Figure 13: Real part of the solution of (1.1) computed using the quasi-1D approach, with P1

Lagrange finite elements and h = 2× 10−3, and for different values of ω.

5.5.3 About the dependence with respect to the absorption

We come back to the numerical resolution of Problem (3.1), and we study the convergence
of the 2D and quasi-1D methods depending on the absorption, especially when it tends to
0. As in Section 5.5.1, the solutions are computed with Lagrange finite elements of degree 1.
The relative error ε(u+

θ ) defined (5.13) is represented in Figure 14 for both the 2D and the
quasi-1D method, and for different values of Imω.
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Figure 14: Relative error in H1 norm of the half-line solution for different values of ω.
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As Figure 14 shows, the error deteriorates with Imω. It would mean that the numerical
method becomes less efficient as the absorption decreases. This issue is closely related to the
well-posedness of the local cell problems with Dirichlet boundary conditions when Imω = 0.
In fact, for the elliptic Helmholtz equation, it is known (see [10, Section 3.2.1.1] for instance)
that the local cell problems are well-posed except for a countable set of frequencies which
correspond to the eigenvalues of the associated differential operator. In our case however, as
the differential operator has a non-elliptic principal part, it also has a continuous spectrum,
and one can show that when µp and ρp are non-constant, the local cell problems are well-
posed only for frequencies in a bounded set (that can even be empty). An alternative to avoid
this problem is to use a Robin-to-Robin operator instead of the DtN operator, which would
involve solving well-posed local cell problems with Robin boundary conditions, as it is done
in [12] for periodic media. This will be done in a forthcoming paper for quasiperiodic media.

5.5.4 About the spectral approximation of the propagation operator

As explained in Subsection 5.3, the discrete propagation operator Ph is computed by means
of its eigenpairs. In this section, the eigenvalues of Ph are compared with the spectrum of
the exact propagation operator which, according to Proposition 4.11, is a circle of radius

Mlog(pθ) = exp
( ∫ 1

0
log |pθ(s)| ds

)
, with pθ(s) = u+

s−θ1/θ2,θ
(1/ sin θ2).

To compute this radius, u+
s,θ is approximated by the unique function u+

s,θ,L that satisfies (3.57)
on a truncated domain (0, L), with u+

s,θ,L(L) = 0. One can show similar estimates to (5.11),
and if L is chosen large enough (for instance, if L satisfies (5.12)), then u+

s,θ,L can be used
as a reference solution. In practice, u+

s,θ,L is computed for several s, and finally the integral
that defines Mlog(pθ) is evaluated using a rectangular quadrature rule.

The spectra of Ph and P are shown in Figure 16 for ω = 8 + 0.25 i, and for different values of
the discretization parameter h (with hθ = h for the quasi-1D method). Figure 15 represents
the number Nh of eigenvalues of Ph that are close by 5% to σ(P), namely

Nh = #
{
λh ∈ σ(Ph)

/ ∣∣∣∣ |λh| −Mlog(pθ)
Mlog(pθ)

∣∣∣∣ ≤ 5%
}
. (5.15)

In Figure 15, one sees that Nh increases with 1/h, which means that more and more eigen-
values of Ph are close to σ(P) when h decreases. In other words, a finer discretization leads
to a better approximation of the spectrum. The number Nh of such eigenvalues also seems
to increase linearly with 1/h (up to a subsequence for the quasi-1D method). Finally, note
that Nh is higher with the quasi-1D method than with the 2D method.

As Figure 16 shows, the eigenvalues of Ph are all included in the disk of radius ρ(P), but one
observes some spectral pollution. This is a classical phenomenon when one approximates the
spectrum of an operator which is neither compact nor self-adjoint. What is striking however,
is that the pollution behaviours are very different depending on the method used.

On one hand, the eigenvalues obtained with the 2D approach tend to accumulate to 0. A
likely explanation for this phenomenon is that solving the local cell problems on 2D meshes
does not take their directional structure into account. Since the location of the eigenvalues
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of Ph is similar to the one obtained in the elliptic case, for which P is compact (see [19,
Theorem 3.1]), we believe the 2D method somehow regularizes the half-guide problem (3.54)
by introducing an elliptic (discrete) approximation of the corresponding differential operator.

On the other hand, with the quasi-1D approach, the spectrum of Ph “oscillates” as the
discretization parameter h tends to 0. This phenomenon has to do with the particular nature
of P which is a weighted translation operator. We strongly suspect that one can extract a
subsequence (Ph′) whose spectrum converges towards σ(P) in a sense to be defined precisely,
as it is suggested by the peaks in Figure 15. The investigation of this assumption as well as
the construction of such a subsequence are subject to ongoing works.

With both approaches, it has been observed numerically that the eigenfunctions associated
to the spurious eigenvalues were highly oscillating functions that were badly approximated
by the discretization, whereas the components of the half-guide solution with respect to these
eigenfunctions are very small. This might explain why the spectral pollution does not have
a visible influence on the approximation of the half-guide and the half-line solutions, as the
errors in Figure 9 seem to suggest.

6 Perspectives and ongoing works
A numerical method has been proposed to solve Helmholtz equation in 1D unbounded
quasiperiodic media. Using the presence of absorption, we justified that this equation could
be lifted onto a higher-dimensional problem which, in turn, can be solved using a Dirichlet-
to-Neumann approach. For the discretization, we presented a multi-dimensional method,
as well as a so-called quasi one-dimensional method. As shown by numerical simulations,
both methods provide a suitable approximation of the solution as long as there is absorption.
However, the quasi-1D method proved to be more efficient than the 2D method, as it takes
the anisotropy of the problems involved into account.

The method presented opens up numerous perspectives, and raises multiple questions that are
subject to ongoing works. For instance, it would be interesting to approximate efficiently the
spectrum of the propagation operator, even though the spectral pollution seems to have no
major impact on the efficiency of the overall method. Another key extension concerns the case
where the absorption tends to 0. This extension, which will be presented in a subsequent
paper, involves replacing the DtN method by a Robin-to-Robin method as explained in
Section 5.5.1, and finding a way to characterize the propagation operator which is no longer
uniquely defined.

Finally, an approach which is similar to the one presented in this paper can be used to study
the propagation of waves in presence of a 2D periodic half-space when the interface does
not lie in any direction of periodicity, or in presence of two 2D periodic half-spaces with
non-commensurable periods.
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