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Pierre Amenoagbadji, Sonia Fliss, Patrick Joly
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Abstract

This work is devoted to the resolution of the Helmholtz equation —(uu') — pw?u = f
in a one-dimensional unbounded medium. We assume the coefficients of this equation
to be local perturbations of quasiperiodic functions, namely the traces along a particular
line of higher-dimensional periodic functions. Using the definition of quasiperiodicity,
the problem is lifted onto a higher-dimensional problem with periodic coefficients. The
periodicity of the augmented problem allows us to extend the ideas of the DtN-based
method developed in [10, 19] for the elliptic case. However, the associated mathematical
and numerical analysis of the method are more delicate because the augmented PDE is
degenerate, in the sense that the principal part of its operator is no longer elliptic. We
also study the numerical resolution of this PDE, which relies on the resolution of Dirichlet
cell problems as well as a constrained Riccati equation.

1 Introduction and motivation

We consider the Helmholtz equation
d du 2 .
—%(u%>—pw u=f in R, (1.1)
where the coefficients u and p have positive upper and lower bounds:
Jpe,pe, Ve eR,  0<p- <p(@) <pgp and 0<p- <p(z) < py. (1.2)
The source term f belongs to L?(R) and is assumed to have a compact support:

Ja>0, suppf C(—a,a). (1.3)

Equation (1.1) is encountered when one is looking for time-harmonic solutions u(z) e’ of
the linear wave equation in heterogeneous media. For real frequencies w, the well-posedness
of this problem is unclear. In fact, on one hand, one expects that the physical solution u, if
it exists, may not belong to H'(R) due to possible wave propagation phenomena and a lack
of decay at infinity. On the other hand, uniqueness of a solution in H} (R) does not hold in
general. In this case, one needs a so-called a radiation condition that imposes the behaviour
of the solution at infinity. Such a condition can be obtained in practice using the limiting
absorption principle, which consists in (7) adding some absorption — that is some imaginary
part to w: Jmw, and (#) studying the limit of the solution u = u(w) as the absorption tends
to 0. The limiting absorption principle is a classical approach to study time-harmonic wave



propagation problems in unbounded domains; see for instance [1, 9, 31]. More recently, it
has been successfully applied for locally perturbed periodic media [10, 17, 20, 25].

In this paper, we will only address the case with absorption, that is
the frequency w satisfies Jmw > 0. (1.4)

Under these assumptions, (1.1) admits a unique solution in H!(R) by Lax-Milgram’s theorem.
Moreover, it can be shown (using for instance an argument similar to the one in [7]) that this
solution satisfies a sharp exponential decay property

Je,a>0, VzeR, |u(z)<ce @Imell (1.5)

Exploiting (1.5), a naive numerical method for treating the unboundedness would consist in
truncating the computational domain (with homogeneous Dirichlet boundary conditions for
instance) at a certain distance related to Jmw. However the cost and the accuracy of the
method would deteriorate when Jmw tends to 0. Our objective in this paper is to develop
a numerical method which is robust when Jmw tends to 0, in the particular case of locally
perturbed quasiperiodic media. More precisely, we solve the problem in the bounded domain
(—a,a) (which is independent of Jmw) by constructing transparent boundary conditions of
Dirichlet-to-Neumann type:

:I:u%—}—)\iuzo on =z = *a, (1.6)

where At are called Dirichlet-to-Neumann (DtN) coefficients. These coefficients are defined
by
du*

X = [ ] (), (1.7)

where u™ is the unique solution in H'(=+a, +00) of

d du*
(,u Y )—pwzui:O, for 4z > a,

Cdz\" dx (1.8)
ut(+a) = 1.
Knowing A*, one is then reduced to compute u](,aya) by solving the problem

d du’ ,

——(,u u)—pwzu’:f, for z € (—a,a),
dx dx (1.9)

du’ T .
{j:,u dm+)\ u}(j:a)—O.

The well-posedness of this problem is a direct consequence of the sign property
Jm At <0,

which, through a Green’s formula, results itself from the presence of dissipation (1.4) in (1.8).
Then the solution w of (1.1) is given by

u'(—a) u”(z), =< —a,
VezeR, wu(z)= u'(z), x € (—a,a), (1.10)

u'(a) ut(z), x> a.



In general, the problem is that computing A*, that is to say solving (1.8), is as difficult as
the original problem. However, this is no longer true when the exterior medium (7.e. outside
(—a,a)) has a certain structure:

o if the exterior medium is homogeneous (p and p are constant), these coefficients can be
computed explicitly;

o if the exterior medium is periodic (p and p are periodic), several methods for the
computation of these DtN coefficients are developed in [10, 19, 20];

e if the exterior medium is a weakly random perturbation of a periodic medium, the
coefficients can be approximated via an asymptotic analysis; see [11].

Our main objective in this paper is to compute the DtN coefficients for a quasiperiodic
exterior medium, in order to develop a numerical method according to (1.8), (1.9), (1.10).

The outline of the rest of the paper is as follows. In Section 2, we introduce the fundamental
notion of quasiperiodic functions (in 1D) and define what is a locally perturbed quasiperiodic
medium in the context of the problem (1.1). Sections 3 and 4 are the most important sections
of the paper. In Section 3, we link the solution of the 1D half-line problem with quasiperiodic
coefficients to the solution of a degenerate directional Helmholtz equation posed in dimension
n, with n > 1 defined as in Section 2. This is the so-called lifting approach whose principle
is presented in Section 3.1. More precisely, in Section 3.3, we characterize the solution of
the 1D quasiperiodic problem as the trace along a (broken) line of a nD problem posed in
a domain with the geometry of a half-waveguide: (0,1)"~! x Ry. In between, we need to
dedicate the (rather long) Section 3.2 to fix the notations used in the rest of the paper and
present some useful preliminary material about an adapted functional framework for the
rigorous setting of our method. This concerns anisotropic Sobolev spaces with an emphasis
on trace theorems and related Green’s formula. In Section 4, we provide a method for solving
the half-waveguide problem of Section 3.3. In Section 4.1, we describe the structure of the
solution with the help of a propagation operator P and local cell problems. In Section 4.2, we
show that the operator P is characterized as a particular solution of a Riccati equation. In
Section 4.3, we first build a directional DtN operator A for the half-waveguide problem, from
which we deduce the DtN coefficients A* we are looking for (cf. (1.7)). Finally, in Section
4.4, we analyze the Riccati equation from a spectral point of view and in Section 4.5 we
describe the spectrum of P. In Section 5 devoted to numerical results, we restrict ourselves
to n = 2 for the sake of simplicity. The first two subsections are devoted to the discretization
of the cell problems evoked above. We have considered two approaches: one, natural but
naive, consists is using 2D Lagrange finite elements (Section 5.1) while the other, called the
quasi-1D method, is better fitted to the anisotropy of the problem (Section 5.2). In Section
5.3, we explain how we can construct a discrete propagation operator from a discrete Riccati
equation that we choose to solve via a spectral approach, while Section 5.4 simply mimics
Section 4.3 at the discrete level. Section 5.5 is devoted to numerical results. In the first three
subsections, we provide various validations of our method for the half-line problem (Sections
5.5.1 and 5.5.3) and the whole line problem (Section 5.5.2). At last, in Section 5.5.4, we
address the question of the approximation of the spectrum of the propagation operator P by
the one of its discrete approximation.



Particular notation used throughout the paper. In what follows,

1. the equality modulo 1 is denoted by
VyeR, z=y[l] < =2€][0,1) and y—z€Z.
and for all p,g € N, p < ¢, we set [p,q] :={j €N, p<j<gq}.

2. We introduce €per(R™) as the space of continuous functions F' : R™ — R that are 1-
periodic with respect to each variable, and €5°(O) as the space of smooth functions
that are compactly supported in O C R™.

3. For i € [1,n], we denote by €; the i-th unit vector from the canonical basis of R™. For
any element y = (y1,...,%,) in R", we define ¥ as the vector (y1,...,9yn—1) € R* !, so
that y = (¥, yn). For y= (y1,...,yn) and 2= (21,..., z,), the Euclidean inner product
of y and zis denoted y- z:= 1y 21 + - - - Y 2, and the associated norm is |y| := /Yy~ y.

2 Quasiperiodicity
2.1 Quasiperiodic functions of one real variable

In this section, we present a brief overview of the main properties of quasiperiodic functions.
We refer to [3, 5, 22| for more complete presentations. Quasiperiodicity is defined as follows.

Definition 2.1. A continuous function f : R — R is said to be quasiperiodic of order n > 1
if there exist a constant real vector @ = (61,...,0,), with §; > 0 for all ¢ € [1,n], and a
continuous function F': R™ — R, 1-periodic with respect to each variable, such that

VeeR, f(z)=F(z0). (2.1)
The vector 0 is called a cut direction, and F' is a periodic extension of f.

A geometrical interpretation of this definition is to see the one-dimensional function f as the
trace of a n-dimensional function F' along the line passing through (0,0) and parallel to the
vector §. This is illustrated in Figure 1 for n = 2 and 8 = (1,/2).

2
0.8} -
0 0
0.4
0 0 ! -2 ! L1 Size of periodicity cell |
0 0.4 0.8 —4 -2 0 2 4

Figure 1: Function F : (y1,y2) — cos2my; + cos 2mys in its periodicity cell (left), and whose
trace along @ = (1, v/2) leads to a quasiperiodic function (right).



Periodic functions are obviously quasiperiodic. Other examples of quasiperiodic functions
are finite sums or products of periodic functions: if f; and fo are periodic, then f; + fo and
f1f2 can be expressed under the form (2.1). Note that fi + fo and f fo are not periodic if f;
and fo are continuous functions with non-commensurable least periods. For instance, with
fi(x) = cos 27z and fo(x) = cos2my/2z, one easily checks that the sum f; + fa, represented
in Figure 1, is not periodic since it equals 2 only when x = 0.

In Definition 2.1, it is easy to see that neither the periodic extension nor the cut direction
are uniquely defined. Given (F, @), it is always possible to lower the value of n, and change
the function F' accordingly, so that the coefficients 61, ...,60, are linearly independent over
the integers (see [22, Chapter 2]), that is

VkeZ", kE-0=0 <= k=0 (2.2)

For n = 2 and 6 = (61,62), the above condition amounts to saying that the ratio 6;/6s is
irrational. Due to this observation, vectors that satisfy (2.2) will be abusively referred to as
irrational vectors. A consequence of (2.2) is given by Kronecker’s approximation theorem.

Theorem 2.2 ([16, Theorem 444)). If 8 is an irrational vector, then the set @R + N" is
dense in R™.

If 6 is an irrational vector, and if F' € €.(R") satisfies F(@R) = 0, then Theorem 2.2
ensures that F' = 0. In other words, under the linear independence assumption, F' is uniquely
determined by its restriction on the line 8 R.

For n = 2, Theorem 2.2 implies that the broken line {(x 61[1],x 02[1]), 2 € R} is dense in the
unit cell (0,1)%. To illustrate this, Figure 2 represents the set {(x 61[1], 2 62[1]), = € (0, M)}
in the unit cell for different values of M, when (1) 6,/62 € Q (see the first row), and when
(2) 01/62 € R\ Q (see the second row for @ = (1/2,1) and the third one for 8 = (7,1)). For
M large enough, in the first case, this set is reduced to a finite union of segments, whereas in
the second case, it seems to fill the unit cell without ever passing through the same positions.
It is also interesting to see that for & = (1/2,1), the unit cell is somehow filled uniformly,
contrary to the case where 8 = (7, 1).

Finally, it is worth mentioning that Definition 2.1 extends to higher-dimensional continuous
functions as well. Moreover, the notion of quasiperiodicty can be defined at a discrete level, to
describe the properties of tilings that are cuts and projections of higher-dimensional periodic
tilings. These quasiperiodic tilings have been extensively studied [13, 23, 24, 27], and are
used for modelling quasicrystals [28].

2.2 Locally perturbed quasiperiodic media

A locally perturbed quasiperiodic medium is a medium corresponding to functions g and
p that satisfy (1.2) and that are quasiperiodic outside a bounded interval, which can be
supposed to be (—a,a) (see (1.3)) without any loss of generality. More precisely,

pi(x)  z€(—a,a) pi(r) xz€(—a,a)

p(x) = and - p(w) = pp(28) xeR\ (—a,a),

T | p(@6) 2 €R\ (~a,a)



M=1/3 M =2/3 M=1 M>1

e}
—_
)
—_
@)
—_
@)
—

0= (v2,1)

0= (m1)

Figure 2: Representation of the set {(z61[1],z62[1]), = € (0,M)} in (0,1)? for different
values of M, when 6y /05 € Q (first row), and when 6y /6> € R\ Q (second row for 8 = (v/2,1)
and third row for 6 = (m,1)).

~—

where the functions f,, p, belong to €per(R") with n > 1, and € € R is an irrational vector
(see Condition (2.2)).

Remark 2.3. (a). Since 0 is an irrational vector, Kronecker’s approximation theorem 2.2
ensures that the functions p, and p, are entirely determined by their restrictions on the line
RO. Therefore, 1, and p, satisfy (1.2) with respectively the same bounds as p and p.

(b). The present study can extend without difficulty to the case where p (resp. p) coincides
with two different quasiperiodic functions in (—oo, —a) and in (a,+00):

for £ >+a, p(z)= u;,t(x 6+

~—

and plx) = pf (2 6%),

+

> R"i) with n* > 1, and where * € R are irrational vectors.

where |

—

, p;,t belong to Cper

(=}



3 The half-line quasiperiodic problem

We now focus on the half-line quasiperiodic problems (1.8). As these problems are very

similar to each other, it is sufficient to study the half-line problem set on (a, +00) and suppose

without loss of generality that a = 0. Let pug := p,(0-) and pg := pp(0-). Therefore, the

problem we consider in this section is the following:

d du
(Ma L

s —) — po w? u; =0, in Ry,

dx (3.1)

ug (0) = 1.

3.1 Lifting in a higher-dimensional periodic problem

We wish to exhibit some structure of the solution ug. As the coefficients yg and pg in (3.1)
are by definition traces of n—dimensional functions along the half-line @ R, it is natural to
seek u; as the trace along the same line of a n—dimensional function (7; that would be
characterized as the solution of a n—dimensional PDE with periodic coefficients. This so-
called lifting approach has been used in the homogenization setting for the analysis of some
correctors in presence of periodic halfspaces [14, 15] or periodic structures separated by an
interface [4], as well as for the homogenization of quasicrystals and Penrose tilings [6, 30].
However, to our knowledge, very little seems to have been done in other contexts (such as
wave propagation), and in particular for numerical analysis and simulation purposes.

To build a higher-dimensional PDE, one has to exploit the correspondence between the deriva-
tive of u; and the partial derivatives of Ug’ : according to the chain rule, for any smooth
enough function F': R®™ — C, one has

d , 0
Vz€eR, %[F(Ox)]:(DBF)(Hx), with Dgza-vzgei@. (3.2)

This leads us to introduce the n—dimensional PDE set on a half-space (see Remark 3.1)
—Dy (1 Dy UG ) — pp® U =0, for y, >0, (3.3a)

where we recall that the coefficients 1, p, : R — R are continuous and 1-periodic with
respect to each variable. In addition, the boundary condition in (3.1) can be lifted onto the
inhomogeneous Dirichlet boundary condition

[7;’ =@, on y,=0, (3.3b)

where the data @ : R"™! — C could be chosen continuous and must satisfy $(0) = 1, for the
sake of consistency with the fact that u;(()) = 1. Furthermore, to exploit the periodicity of
the coefficients y,, and p, with respect to the transverse variables y;, j < n, we could impose
the following:

¢ is 1-periodic, (3.4)

so that it is natural to impose that

ﬁ;r(gp) is 1-periodic with respect to the transverse variables y;, j <n. (3.5)



In Section 3.3, we show how to reduce the above to a half-guide problem with periodic
coefficients. In order to do so, we shall need some preliminary materials, which is the object
of the next section.

Remark 3.1. (a). One could have defined the augmented problem (3.3) on other half-spaces
{y € R", y; > 0}. The choice of the half-space is purely arbitrary.

(b). At first glance, one could imagine restricting the whole study to a constant boundary
data o = 1. Though, in practice, this can be the case, the method used to solve the half-guide
problem requires to investigate the structure of (7;(95) for any © in an appropriate function
space (see Section / for more details).

3.2 Preliminary material

The main objective of this section is to establish rigorously some Green’s formulas that are
formally obvious, such as the one of Proposition 3.9. This requires first to introduce the
adapted functional framework and, since Green’s formulas involve boundary integrals, to
establish relevant trace theorems. Section 3.2.1 is devoted to these trace theorems, while we
present the corresponding Green’s formulas in Section 3.2.2. Finally, Section 3.2.3 highlights
a simple but useful link between the derivative Dy and a single partial derivative with respect
to one real variable, through a so-called oblique change of variables.

3.2.1 Anisotropic Sobolev spaces and trace theorems
For any open set O C R, let us first define the directional Sobolev space
Hg(O) :={U € L*(0) / D, U € L*(0)}, (3.6)
which is a Hilbert space, provided with the scalar product
(U V) o) = /O (De UD,V + UV).
Let us denote || - || HY(0) the induced norm. We begin with the following density property,

whose proof can be found in [29, Appendix 1].

Lemma 3.2. The space 6§5°(0) is dense in Hg(O).

We denote the half-space R := {y € R", y,, > 0} and the half-cylinder Q* := (0,1)"~! x R"
in the following. Let us introduce also the sets, for a € {0, 1} and for any integer i € [1,n],

Yia={y€eR}, yi=a} and nga ={yeXiq yj€(0,1), je[l,n-1], j#i}.

This definition is illustrated in Figure 3. Note that EE%,CL is bounded whereas Egﬂ for ¢ #n is
unbounded in the direction ¥,,. Moreover,

n—1
o0 =%t U [ U @2,0 Uzil)}
=1
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Figure 3: Domains QF, %; , and Eg,a for n =2 (a) and n =3 (b).

A trace operator can be defined from H;(R’}r) on ¥; 4. The main idea for doing so consists
in using a one-dimensional trace theorem on the @-oriented line that starts from a point
(21,4, 21,0, Zit1,- .., 2n) € Xjq, to obtain an inequality which will be integrated with
respect to zj, j # . The 1D trace theorem which will be used is the following.

Proposition 3.3. Let L > 0. Then the mapping v, : u + u(0) is continuous from H'(0, L)
to C. Moreover, the operator norm of i, is given by

el +e L _1

Proof. The continuity property is a classical result which can be proved by density.

By definition, v, := sup{|u(0)|, ||ullf1(0,z) = 1} This corresponds to a constrained op-
timization problem. Using the standard theory, this leads to introduce a Lagrange multiplier
A and to find a pair (\,uz) € C\ {0} x H(0, L) such that lurllgio,r) =1 and

— L dup dv
1 _ L _
VoeHY(0,L) Aug(0)v(0) = /O (—dw Tt v) da, (3.8)
in which case, we have ||y ||? = A. The explicit solution of this problem leads to the result. W

Note that, in particular, lim |vyz|* =1 and ||yz||* ~ L7
L—+o00 L—0

We are now able to define traces on ¥; , in the following sense.

Proposition 3.4. Fiz a € {0,1} and i € [1,n]. The mapping i : 65°(RL) = €5°(Zia)
defined by v; U = Uls, , extends by continuity to a linear mapping still denoted v; q, from
HJ(RY) to L*(Z;,4), and which satisfies the estimate

n 1
VU € Hg(RY), [0aUlZzs, ) < o U773 g (3.9)



Proof. One can simply prove the continuity estimate (3.9) for any function U € €5°(R%)
and conclude using the density result of Proposition 3.2.

(1) Case i € [1,n — 1]: Without loss of generality, we set i = 1. Define

Tigi={z=(22,...,2n), (a,2) €S1,}=RY", where (a,2)=(a,22,...,2,). (3.10)
For U € 6§°(R"}.) and given any z = (22,...,2,) € I' 4, consider the function
Vao>0, uze(zr)=U(x0+(a,z). (3.11)

As u,g belongs to Hl(Rj_), Lemma 3.3 for L = +o0o combined with an integration with
respect to z € I' 4 leads to

/ 0 (0)[2 dz < /F sl s = (3.12)

l,a 1,a

On the other hand, let us introduce the transformation

T:y— ((y1 —a)/01,y2 — (y1 —a)O2/b1,- - ,yn — (Y1 — a) 0n/61), (3.13)

which defines a ¢!-diffeomorphism with a Jacobian determinant detJ = 1/6; # 0. Since
the inverse image {T"*(z, 2), z€ I'1,4, * > 0} is nothing but the polyhedron

Ql,a = {ye R:b-a Y1> G, Yn > (yl - CL) 9”/01} - Ri’

it follows from the chain rule and from the change of variables y — T y that

dug
dzx

1
_ 2 _ 2
() =DyU(x 0+ (a,2)) and /Fl,a ||“z70HH1(R1) dz= 5 ||U||H;(Q1,a)' (3.14)
Finally, since u,9(0) = U(a, 22, - , zn), Equations (3.12) and (3.14) imply

1 1
2 2 2
V120510 < 57 1010100 < 5 10 gcee: (3.15)
which is exactly the desired estimate.

(77) Case i = n: starting from the function u,g(z) := U(x 0+ (2, a)) defined for x > 0 and for
any z= (21,...,2n—1) with (2,a) € 3, 4, the proof uses the exact same arguments as above,
except the inverse image under T becomes the whole half-space Q,, o := {y € R}, y, > a}. N

The previous result does not hold in general for functions which are only Hg in sub-domains
of the half-space R’}. In particular when it comes to the half-cylinder OF one is led to apply
the one-dimensional trace theorem on segments that become smaller in the neighbourhood of
the “corners”, i.e. the intersections of two faces. To overcome this difficulty, let us consider
the sets (see Figure 4)

2,a?

VO<b<1/2, ¥ —{yext,  dist(y, 02¢,) = nf, |y 2| > b}, (3.16)
’ ’ z ;

10



Using these domains, the traces on Zga can be defined as locally integrable functions in the
sense of the following proposition.

il
A ‘”Aﬂx
TN | i
,b s
2 |
bl | a -
L 2 L Y2
T
DA S
£, Tn,
250 Y1 Y1

Figure 4: From left to right: Egz (3.16), T,, (3.37), Qg’_ (3.36), and Qf (3.40) represented
for n = 3.

Prop051t10n 3.5. Let a € {0,1} and i € [1,n]. The mapping ~}, : €§° (Qﬁ) — CKO (Ejj )

2,a

defined by 7 U = U|gﬁ extends by continuity to a linear mapping still denoted %a, from
H} () to L2 (Ef,a) (md which satisfies the estimate

loc
VO<b<1/2, 3C,>0, YUeH), [+ U||L22ub)_9 U3ty (3:17)

Proof. Using the density result stated in Proposition 3.2, one only has to show (3.17) for
U e é5° (ﬁﬁ) Let us assume that ¢ = 1 and a = 0, the arguments in the following extending
without any difficulty to ¢ € [1,n] and a € {0,1}. Define

Iy ={2=(22,...,2z2), (0,2)€X{,}=(0,1)"" xR;. (3.18)
We introduce the length function defined by
Vze qu, Mo(2) := [{OR+(0,2)}NQ = sup{z > 0, 26, <1, x6;+2 <1 Vi [2,n—-1]}.

We deduce easily that

Moz )—111111{917 min (1_Zj)}. (3.19)

1 2<j<n—1\ §;
For U € %&o(ﬁ ) and z € T} 0» we define
VO<z<Mpo(2), uze(zr)=U(x0+(0,2). (3.20)

Since u,g € H! (0, A\1,0(2)), Lemma 3.3 and an integration with respect to z give

/ﬁ wlyo(z) |uz,0(0)|2 dz < /Fti HUZ,BH%{l(O,%’a(Z)) dz, with U)Lo(z) = tanh[)\Lo(z)]. (321)

1—‘ll,O 1,0

11



On the other hand, consider the ¢'~diffeomorphism T given by (3.13). The set Q%,o =
{T Yz, 2), 0<2< Ao(2), z€ I’%ﬂ} is clearly included in Q* Thus, by analogy with
(3.15) in the proof of Proposition 3.4, we have from (3.20), the chain rule, and the change of
variables y — T y that

1
/ﬁ wio(2) 100, 2) dz < o U1y p) (3.22)
1 2]

F1,0

More generally, we can show that ’yﬁa can be defined from H(}(Qﬁ) to the weighted space
L2(%%  w; 4 dz), where the weight w;, is given in (3.21) for i = 1 and a = 0. Now, the

1,09
expression (3.19) of A\ implies that w; o degenerates at the neighbourhood of the corners

zj = 1. However, the weight w1y o is bounded from below on E% with

. 1 1
(o,zl)réfzg"g w1,0(2) = tanh [mln {E’ b2§1zjqf1§1711171 0]}} > 0. (3.23)

If we set Cy := [inf(o Hexh w1 0(2)]7t > 0, then (3.17) follows directly from (3.22) by inte-
’ 1,0

grating with respect to {z, (0,2) € E%}, instead of F%70~ ]

Remark 3.6. The best constant in the previous proposition necessarily blows up when b tends
to 0. The above proof shows that traces could be defined on the whole faces in appropriate
weighted L?-spaces. More details about traces in anisotropic spaces can be found in [18].

3.2.2 Green’s formulas

Let us now introduce the set of H 917 loc functions which are “L? with respect to the last variable”.
More rigorously, we define for any ¢ € 45°(R"!) the n—dimensional function ¢ € €>°(R")
such that

P15 Yn—1:Yn) = @Y1, Yn—1). (3.24)
Note that for any U € L? (R?), the support of ¢ U is bounded in the directions y;, j # n.

loc
Starting from this remark, we define

loc n

Hg 1,.(RL) = {U € L. (RY), U € Hy(RY) Vo e %&(Rn—l)}. (3.25)

Let us introduce a 1D cut-off function y € ¢5°(R) such that x =1 on (0,1), from which we
define x4 € 5°(R") as

Xt (W5 Un—1,Yn) = X(W1) - X(Yn—1)- (3.26)
We deduce in particular that
VU € Hg 1o (R}), Ulat =(Xg U)ot € Hy(QF). (3:27)

Moreover, by Proposition 3.4, it is obvious that we can define without any ambiguity the
trace map ’yf’a to H&loc(R’}r) as follows

vUe Hé,loc(R?r>7 ")/l-jﬂU f:%,a(f(ﬂU)’EEa S Lz(zg,a>' (328)

For simplicity, when considering traces on Egﬂ, we shall write U instead of fyli{aU . We can
now state the following Green’s formula.
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Proposition 3.7. For any U,V € Hg,loc(Ri)z we have the Green’s formula

o . 1 - n—ll
/Qﬁ (DU V +U D, V) dyzgnfzngVdst;gi(

Proof. Let U,V € Hel,loc(Ri)- By definition, for any x € ¢5°(R) such that y =1 on (0, 1),
the functions Y4 U and x4 V belong to Hj (R™), where x4 is defined in (3.26). Since Proposition
3.2 ensures that ﬁo(ﬁ) is dense in Hj(R"), there exist two sequences (Uy)ren, (Vi)ken of
functions in €5 (R’ ), such that

Uv ds—/ UV ds). (3.29)
=, D

Us— XU and Vi —x3V in H(R}), k— +oo.

It follows from Green’s formula for smooth functions that Uy and Vj, satisfy (3.29) for any
k € N. Passing to the limit and using the trace continuity result stated in Propsition 3.4
imply that (3.29) is satisfied by x3 U and x4 V', i.e. by U and V, since x3 =1 in O, |

We next focus on functions which are periodic with respect to their (n — 1) first variables.
More precisely, for any U € L*(QF) and any ¢ € LQ(E%O), we introduce the respective

periodic extensions U € L? (R%) and ¢ € L} (5,) as defined for any i € [1,n — 1] by

loc loc

a.e. yeRY, U(y+é)= U(y) and Ulgt = U.
(3.30)
a.e. S€Xn0, P(s+6&)=0(s) and @lgi =
An appropriate functional framework is provided by the space
Hp e () = {U € L2(9), U € H10(RL)} C H(2), (3.31)

where the inclusion follows from (3.27) and (3.30). If €°5.(QF) denotes the set of smooth

per
functions in €*° (Qﬂ) which are 1-periodic with respect to their first n — 1 variables, that is,

Coo(F) = {V e 6(F), Vew Ry}, (3.32)

then one can show the following result by adapting classical properties of H! functions.

Lemma 3.8. The space €°5.(QF) is dense in Hel,per(Qﬁ)'

per

Note that the traces of functions in Héper(ﬂu) on Eg,a are well-defined in L? by (3.28).
Moreover, using the continuity estimate (3.9) we have

Wa € LIH e, (), L2(SE ). (3.33)
One has the characterization

Hp yor( ) = {U € HY(F), iU =~,U Vi€ [1,n—1]}, (3.34)

where the traces of functions in H}(QF) are defined in Proposition 3.5 and the equality of
traces has to be understood up to the identification of functions on Eg,o and 2271. It is clear
from (3.34) that Hal,per(Qﬁ) is a closed subspace of Hg ("), thus it is an Hilbert space when
equipped with the norm of Hg(Qﬁ). From Proposition 3.7 and (3.34), we deduce the Green’s
formula on Hé,per(Qﬁ)‘

13



Proposition 3.9. For any U,V € H&per(Qﬁ), we have the Green’s formula
/ (D UV +U D, V) dy=—~ [ UVas. (3.35)
of Hn EEL,O
From the Green’s formula (3.35), we can easily deduce the following result.

Corollary 3.10. Let a > 0, and define the sets with common boundary ng (see Figure J):
Qﬁ7+ =0 N{y, >a} and Q?%_ = QN {y, < al. (3.36)

a

Consider a function U € L*(QF) such that Uy := Ulat | € Hé,per(Qg,:t)7 where H(;per(Qg,i)
is defined as in (3.34). Then

Ue Hel,per(Qﬁ) — ’Yg,aU-i— = fyg,aU—'

We finish this section with a more technical Green’s formula, used in the proof of Proposition
3.16, involving functions U that only belong to Hp(QF), provided that the test function V
vanishes in the neighborhood of the skeleton T, defined by

n—1
T,=%hy and T,=3h,U [ U 024,005t ,)| forn > 3. (3.37)
j=1

This domain is represented in Figure 4 for n = 3.

Proposition 3.11. For U € H}() and V € %&O(ﬁﬁ \ T}.), the Green’s formula (3.29) still
holds.

Proof. Consider U € Hj(Q%) and V € Cgooo(ﬁﬁ \ T},). Since by Proposition 3.2, Cgooo(ﬁﬁ) is
dense in Hj(QF), there exists a sequence (Ug)ren of functions in €§° (ﬁﬂ) which tends to U.
It follows from Green’s formula in QFf for smooth functions that Uy, and V satisfy (3.29) for
any k € N. For 0 < b < 1/2, let Q% be the domain

QP = {ye O, dist(y, Tn) == inf |y—2 > b} (3:38)

Since V € %OOO(Qﬁ \ T;,), there exists a real number 0 < b < 1/2 such that V|gse € G5°(Q8).
Consequently, for any i € [1,n — 1], the surface integral on ¥4 is reduced to the set Efz

1,a

defined by (3.16). When k tends to 400, we can then use the trace continuity result stated
in Proposition 3.5 on $¥°, to deduce that (3.29) is satisfied by U and V. [

i,a°

3.2.3 An oblique change of variables
Before stating the main result of this section, let us introduce the change of variables in R’} :
(s,z) eR} = y=(50)+26 cRY, (3.39)
and denote by Q% the image of Qf by the above transformation:
Q) :={(5,0)+26, sc(0,1)" L >0} (3.40)

This is illustrated in Figure 4 for n = 3 and in Figure 5 for n = 2 and |@| = 1. The following
simple lemma will be used in the sequel.

14



Lemma 3.12. For any V € LY(QF), we have

ol V(y) dy = /Qﬁ V(y) dy, (3.41)

where V € L} (R%) denotes the periodic extension of V', defined by (3.30).

loc

Proof. We will use the notation k = (ki,...,kg) € Z? for a vector of integers. For any
set O C R", let 1» be the indicator function of O, that is, the function which equals 1 in
O and 0 elsewhere. By density, it suffices to prove (3.41) for V € €5°(Q%). By additivity of
integration,

fPwan=[ 1w Ve a= 3 [ 10w V)i,

kezn—1

where the sum over k € Z"! is finite because of Log and because V' is compactly supported.
We then use the change of variables z — z+ (k,0) which leads to

/ Viy) dy = Z / Lot (2 + (k,0)) V(z) dz because V is periodic
94 kezn—1 9

= /Qﬁ [ Z 1 ﬂﬂg_(kjo)(z)} V(z) dz by linearity. (3.42)
kezn—

Furthermore, by noticing that the collection of sets {Qf — (k,0), k& Z"~1} forms a partition
of R, it follows that

VzeQ, > lgjko)(?) = lri(2) =1, (3.43)
kezr—1
Combining (3.42) and (3.43) implies that (3.41) is satisfied for V € €5°(04). [

The inversion of the change of variables (3.39) leads us to introduce:
VyeR", sp(y): =9 — (yn/0n)0 € R* L, (3.44)
so that,
y=1(s0)4+20 <= s=sg(y) and z=y,/0,. (3.45)

The next proposition emphasizes the fact that through the change of variables (3.39), the
differential operator D, simply becomes the partial derivative with respect to y, (which is
obvious for smooth functions).

Proposition 3.13. Let U € L*(QF). Then the periodic function ¥q defined as

a.e. yERL,  Tp(y) := U(sp(y), yn/0n), (3.46)
(where W is the periodic extension of ) belongs to L2(Q) and
1Wollr2at)y = VOn [WlL2(t)- (3.47)

Moreover, if 8,V € L?(Q%), then Wy belongs to Héper(Qﬁ) with directional derivative

~ ov
a.e. y€RY, DoVg(y) = @(Sa(y),yn/en). (3.48)
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Proof. The map (s,z) — (s,0) + 26 from ZB%O x R to Qf defines a €'-diffeomorphism
with a non-vanishing Jacobian 6, # 0. Therefore, by using the definition (3.40) of Qf, a
change of variables as well as the property sg((s,0) 4+ 2 6) = s, we obtain that

_ +oo +oo
[P dy=00 [ [ 1050+ 20) dods =6, [ [ [¥(s.a) dwds.
Qf st o /o 2f 5 J0
We deduce from Lemma 3.12 that ¥y € L2(9F), and that (3.47) holds.

Now in order to derive the expression of Dg\flg in the sense of distributions, consider a test
function ® € ¢°(R’). The change of variables (s, z) — (s,0) 4+ 2 @ combined with Fubini’s
theorem for integrable functions leads to

~ +o0

To(y) De®(y) dy en/ / T (s,2) Do®((5,0) + 2 0) duds. (3.49)
R™ Rn—1.J0
Furthermore the 1D function ¢s¢ defined by ¢sg(x) := ®((s,0) + 2 0) belongs to €5°(R4)
and we have [ddsg/dz](x) = De®((s,0) + x0) from the chain rule. Since 9,V is in L?, we
can integrate by parts the inner integral in (3.49) to obtain

" 0w
\Ifg(y) ng)(y) dy = _en/ / 87(3, ZL‘) (,25570(.%) dxds
Rn—1 J0 yn

ov

= — R T%(se(y)ayn/en) CI)(y) dy, (3'50)

R}

where the last equality comes from the change of variables y — (sg(y),yn/0). This gives
the expression of DgWg in (3.48). [

Remark 3.14. It will be often useful to use (3.48) in the form

a.e. (s,x) € RY, DgUg((s,0) +z60) = g;](s, x). (3.51)

The previous proposition allows in particular to deduce the surjectivity of the trace operator
from Hyg (0% to L* (% ).

Corollary 3.15. Let ¢ € LQ(EEMO), and v € HY(R,) such that 1(0) = 1. Then the periodic
function defined by

a.e. yeRY, Re(y) := @(s0(y) ¥(yn/0n) (3.52)
belongs to H§7per(Qﬁ), and its trace is 7290]2910 = . Moreover, R defines a continuous map
from L2(Zgz,0) to HHI,per(Qﬁ)‘

3.3 Link with a periodic half-guide problem

For any boundary data ¢ € LQ(Z?%O), we can now introduce U, as the solution in Hj(92¥) of
the half-guide problem

~Dy (11 DUg) — ppw? Uy =0, in QF
UJ‘EEL,O =¥

‘ (3.53)
Uglst, =Uy |5t Vie[l,n—1],

o Do Uq |5t =1y Do Uq st Vi€ [Ln—1].
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Note that the third equation above implies that U;’ € H Bl,per(Qﬁ)’ the first one implies that
1y Dy Uy € Hg(€), and finally the fourth one implies that p, Dy U, € Hg ,,(9%). The
space of the boundary data could seem surprising compared to the Helmholtz equation with
an elliptic principal part, but recall from Corollary 3.15 that the trace mapping on 25170 is
surjective from H917per(ﬂﬁ) to LQ(E%O).

With the functional framework introduced in the previous section, we can now show that
Problem (3.53) is well-posed.

Proposition 3.16. For any ¢ € LQ(ZEMD), Problem (3.53) is equivalent to the variational
formulation

Find Uy € H(;per(m) such that UJ\ZQM =@ and

V'V € Hp ., (QF) such that Vgt =0, /ﬁ (up DyUyS DV —p, W* US V) =0,
) N Q
(

3.54)
for which Lax-Milgram’s theorem applies.

Proof. The variational formulation is obtained by multiplying the first equation of (3.53) by
Ve Hel,per(Qﬁ)y and by using Green’s formula (3.35). The application of the Lax-Milgram’s
theorem in {V € H&per(m), Ym0V = 0}, thanks to Corollary 3.15, is direct.

For the equivalence, as usual, one picks test functions V € %@O(Qﬁ) to deduce that the
solution U, € Hévper(m) of (3.54) satisfies the first equation of (3.53). This implies that

pp DyUy € H 5(9%). The real difficulty is to show that U, satisfies the fourth equation in
(3.53) or equivalently that u, Dy Uy € Héyper(m). According to Proposition 3.5, we have

V1 Siﬁn—L Kp DBUé‘r|Ega GLZQOC(Eg,a)'

Therefore, Proposition 3.11 allows us to use Green’s formula (3.29) for U = p;, D, U; and
for V.e €5°(Q"\ T,) N Hé,per(Qﬁ)’ where T,, is the skeleton defined in (3.37). By combining

this with the fact that U, solves (3.54) and the first equation of (3.53), one obtains that for
any integer i € [1,n — 1],

VV e %Oo(ﬁﬁ \ T) N Hp per(QF), </zﬁ tp Dy Uy V ds — /zﬁ pp DgUg V ds) =0.
2,1 7,0

Furthermore, 5°(%,) is included in {Vsz , V € G°(QF\ o) N HY . (Q9)}. In fact,
any 1 € CKOOO(ZE{O) admits the extension ¥ : y € QF — Y(y1,...,Y%i_1,Yit1,--->Yn), Which
belongs to ‘Ké’o(ﬁﬁ \T,) N Héper(ﬂﬁ). Finally, since ‘5000(230) is dense in LQ(EQ’O), it is easy
to show that the fourth equation of (3.53) holds and that y, D, U;]ggl € L2(Z§71) for any
i€ l,n—1]. [ |

We now make the link between Uy (o) and the solution of the half-line problem (3.1) that
fully justifies the introduction of the half-guide problem (3.53).

To do so, first, let us introduce the quasiperiodic coefficients defined for any s € R*~! by

Ve eR, pso(z):=pp((s,0)+20) and pso(z):=pp((s,0)+20), (3.55)
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Figure 5: The half-cylinders Qf and Qf (left), and the domains Cj and Egz,k (right) for n = 2

as well as the one-dimensional problems
d dut
dx

— 2t = i
(/’1’370 d.’]: ) ps,B w us79 07 m R+7 (356)
u;fe(O) =1.

Note that (3.1) corresponds to (3.56) taken with s = 0.

Under the assumptions (1.2) and (1.4), and by Remark 2.3, Problem (3.56) admits a
unique solution ujg € H'(R,) for any s € R*"!. Moreover, ujg decays exponentially at
infinity, uniformly with respect to s, that is, there exist constants éx, ¢ > 0 depending only on

4, p+ such that
Vse Rn_l, He—aﬁmwxuze

P (3.57)

Furthermore, thanks to the continuity of y,, and p,, we can show that uje is continuous with
respect to s, as stated in the next proposition.

Proposition 3.17. The mapping s € R" 1 — U:e; which associates with a real vector s the

solution in H'(Ry) of the problem (3.56), defines a uniformly continuous function which is
periodic of period 1 in each direction.

Proof. To show that s — ujg is 1-periodic in each direction, one simply has to note that
since piz9 and pgg are 1-periodic with respect to each s;, both uje and uj+é¢ o satisfy the
same half-line problem (3.56). Thus, by well-posedness of (3.56), ujﬁ = u;a’e.

Now let us prove the regularity of s +— u:(,. For any s1, s, € R"~!, by writing the variational
formulations satisfied by ujl g and u's‘; > and by substracting one from the other, we obtain

d d’U 2 _
Vv e Hy(Ry), /R [NSLG I (u:l,e - “;;,0) —T T Ps,0 W (U;,e - “;Z,e) U} =
+

dx
dul g @
/R [(NSQ,G - N81,9) ﬁ dr (pslﬂ - ,032,9) w? us+2,0]‘

+
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Now choose v = u:l 0~ u;zﬂ € H}(Ry) in the above equality. The well-posedness of (3.56), a
Cauchy-Schwarz inequality applied to the right-hand side and (3.57) imply that there exists
a real number ¢ > 0 independent of s and 8 such that

H“sl, - u;;,eHHl(RJr) <c <||N8270 — s ,0lloo + || Psr.0 — psheHOO)‘ (3.58)

The functions p, and p, are continuous and 1-periodic in each direction: from Heine-Cantor
theorem, they are uniformly continuous. Let us define the modulus of uniform continuity

Vueb'R"), Ve>0, d(ue)= sup{[u(y) — u(2)|. |y — 2 <<}

A function g is uniformly continuous if §(u,e) tends to 0 as € tends to 0. It follows from
(3.58) that

lud 0 = ul ol im,) < € (81 181 = 82]) + 6(pp, 51 = 521))-

Therefore, s+ u/, is continuous from R"~! in H(RT). [ |

Proposition 3.18. Let sy be the mapping defined by (3.44), and (7; (resp. @) be the periodic
extension of U, (resp. ¢) the solution of (3.30). Then, we have

a.e. y€RY, Uy (@)(y) = B(s6(v) ul ) o(Un/0n). (3.59)

Moreover if ¢ is continuous in the neighbourhood of 0 and satisfies p(0) = 1, then
a.e. €R, wuj(zx) =Ug(p)(x0) (3.60)

Proof. We begin by proving (3.59). Let us denote for a.e. y € R, U;(y) the right-hand
side of (3.59). Note that ¥ : (s,z) — @(s) ulp(x) is 1-periodic with respect to s (thanks to
Proposition 3.17), and belongs to L?(9) since

H‘I’HH of) /jj s)|? Huse”L2(R+) ds < 6, ¢ HSDHL? oh o) with ¢ = SUP Hu39||L2 (Ry)-

Moreover, since for all s, uf, € H(R"), 9,, ¥ is also in L?(Q*) (using similar inequalities to
the above). By Proposition 3.13, U; belongs to H(;per(m) with

+

n T = duse(y)19
ac yeRL Doli(y) = Flso(s) — 222 (yn/6,)

Finally, since ujﬂ(O) = 1, it is clear that Ul\ggL , = ¢- By repeating the same argument, we

can show that 1,Dg U; belongs to Hel,per(Qﬁ) with

du™

d se(y),ﬂ
2082 ) (n/ On)

a.e. y€RY,  Dglup Do Ur)(y) = #(s0(y)) %(ﬂs(;(y),ﬂ

Since uje satisfies (3.56), it is clear that U; satisfies (3.53). By well-posedness of (3.53), we
have U; = Ue
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Using the change of variables (s, x) — ((s,0) + @ x), one sees that (3.59) is equivalent to
a.e. (8,2) ER" xRy, Ug(§)((s,0)+0z)=3(s) uly(x). (3.61)

We have from Proposition 3.17 that s — u:ﬂ is continuous. If in addition to that, @ is

continuous in a neighbourhood of 0, then (3.61) becomes true for any s in that neighbourhood.

In particular, (3.61) can be written for s = 0, thus leading to (3.60). |
In particular, we deduce from the above proprosition that
a.e. y €RY, Dy Uy (9)(y) = 4(s0(y) — 1 == (yn/n)- (3.62)

Remark 3.19. The half-guide solution U; depends on p whereas U:B does not. In this
sense, the relation (3.59) could seem surprising at first sight. Numerical results presented in
Section 5.5 will illustrate this property.

4 Resolution of the half-guide problem

The advantage of the lifting process lies in the periodic nature of (3.53), which allows us to
exploit tools that are well-suited for periodic waveguides. In this paper, we use a DtN-based
method [10, 19], developed for the elliptic! Helmholtz equation —V - (1, VU) — p, w? U =0
in unbounded periodic guides. This method does not rely on decay properties, and therefore
remains robust when the absorption tends to 0. As we essentially transpose this method to
our directional Helmholtz equation, we will see below that the framework remains exactly
the same, although the analysis has to be adapted. Let us mention the recursive doubling
method [32, 8], suited for bounded periodic waveguides, and a method [33] based on the
Floquet-Bloch transform, although its extension to our non-elliptic equation seems unclear.

In what follows, CE is the cell defined for every ¢ € N by
Ci=(0,1)" and C}=Ci+(&, sothat QF=|]C}. (4.1)
£eN

For £ > 0, we call X} 70 the interface between the cells C} and C£+1v that is, 2f he= =% ot lén.
By periodicity, each cell Ce can be identified to Cg Similarly, each interface Xf n.0 can be
identified to Xf 0- The cells and interfaces are represented in Figure 5

4.1 Structure of the solution

The solution Uy (¢) of (3.53) has a particular structure that we explain in this section.
Denote by P € L(L*(3%)) the operator

Voe L (Sho), Pe=Uf(p)lst,, (4.2)

where L2(Z§Z’1) and LQ(E%O) have been identified to each other in an obvious manner. This
identification will be used systematically in what follows, even if not mentioned. Note that
the operator P is well-defined, due to the continuity of the trace operator on E?ya (3.33).

!By elliptic Helmholtz equation, we refer to the Helmholtz equation with an elliptic principal part.
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Proposition 4.1. For any ¢ in LQ(ZEMO), we have
VEeEN, ae. y€ Q) U (o) (y+ L&) = Uy (P'o)(y). (4.3)
Moreover, the spectral radius of P is strictly less than one.

Proof. We only present the outline of the proof, which is quite similar to the one in [10,
19]. Given ¢ € L%(S}, ), consider the function U; defined in F by U, (y) = Uy (¢)(y + &)
for almost any y € QFf. Since the coefficients tp and p, are periodic, one deduces that U
satisfies the volume equation as well as the periodicity condition in (3.53). Furthermore,

Uilst , =Uy (9)Ist, = Py

Thus, by well-posedness of (3.53), we have (4.3) for £ = 1. The result (4.3) for £ > 2 is proved
by induction.

It remains to show that the spectral radius is strictly less than 1. To this end, by analogy
with (3.57), one can show the existence of constants «, ¢ > 0 such that

v = L2(27ﬂ%0)7 Heaﬁmwyn/en U;_HHé(Qﬁ) <c HSDHLZ(ZSL,O)' (44)

Since Plp = Uy (¢)(-, ¢), the estimate above implies that | P|| < ¢ e=#Im«/0n  Hence, using
Gelfand’s formula [26, §10.3], the spectral radius can be estimated as follows:

p(P) = lim |PY|V¢ < e BImw/tn <1,
{—+00

The operator P is called the propagation operator, as it describes how the solution of (3.53)
evolves from one interface to another. Provided that P is known, the solution Uy (¢) may
be constructed using local cell problems. Let us first introduce the appropriate functional
framework in a periodicity cell

Hp per(CE) 1= {U € H(CF), U € H 1,e(Bo) (4.5)

where By := R} N {0 < y,, < 1}. Similarly to Section 3.2.1, one can show that any function
of Hal’per(Cg) has a L? trace on the boundary of C§. We can prove in particular that

Hp yr(CB) = {U € H(CE) | Uly=o =Uly=1, Vi € [1,n 1]}

We can now introduce the local cell problems: for all ¢ € L2(EEL,O)7 for j € {0,1}, let
Ei(p) € Héper((fg) satisfy

—Dy (11 Dy E’) — ppw® E? =0, in C§, (46)
Hp DeEj|yi:0:Np DeEj’yizl Vie[l,n—1],
defined for j = 0,1, with the boundary conditions
Elst =¢ and Est =0,
| ‘ n,0 ‘ n,l (47)

Ellst =0 and E'lst = .
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A variational formulation can be derived as in Proposition 3.16, and the well-posedness follows
once again from a lifting argument (see Proposition 3.13) combined with Lax-Milgram’s
theorem in H‘%’per(Cg).

Proposition 4.1 implies that Uy (¢)(- + ¢ €n)lst = Ply. Hence, if the propagation operator
P is known, by linearity, the solution of the half-guide problem can be entirely constructed
cell by cell as follows:

VIEN, Uf(p)(-+ L&)t = E°(P'o) + E'(Py). (4.8)

4.2 Characterization of the propagation operator: the Riccati equation

In the sequel, (-,-) denotes the canonical L? scalar product on EgL,O (or equivalently on 25“1).

In order to characterize the propagation operator P, it is useful to introduce the local DtN
operators Tk € E(LZ(E%O)), defined for j,k = 0,1 by

Ve L(She), Te= (=10, 1y Dy B (9)] It . (4.9)

where E7(p) satisfies (4.6)-(4.7). By Green’s formula (3.29), note that for all j, k = 0,1 and
for (p, 1) € LQ(ZEL7O)2, these operators satisfy

(0. 0) = [ [ Do B(0) Dy B = pp o Y@ EF@)]. - (410)

Before deriving other useful properties of the local DtN operators, we need to introduce some
additional notations. For any closed operator A € £(L2(E§LO)), we denote A* the adjoint of
A, and A its « complex conjugate », that is,

Ve LlX(Shy), Ap=Ap.
It is not difficult to see that A* = A", and A=A
Proposition 4.2. The local DtN operators T7* satisfy
EAGINE L TSR L TR S R

Furthermore, the operators T, T, and T + T are invertible.

Proof. The property (4.11) follows from Green’s formula applied to E7(p) and E*(v)), see
for instance [10, Proposition 2.2.4] in the case of the Helmholtz equation.

The operators 7%, T and 7% + 7! are bounded. We are going to show that they are
also coercive. Their invertibility will then follow from Lax-Milgram’s theorem.

From the expression (4.10), one has the existence of a constant ¢ = ¢(pu—, p—,|w|) > 0
such that

S s ~ k(12 . 2
—|w| Jm L}<T ®, <P>} > ¢ Imw [EX(9) g (cp) = ¢ Tmw H@Hp(z%):
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since from (3.33), the trace application from H;W(Cg) to LQ(ZEL’O) is continuous. It follows
that the operators 7% and 7! are coercive, and therefore invertible. The inequalities above
summed for k = 0, 1 imply the coercivity and hence the invertibility of 7% +7! as well. W

As seen earlier, the solution of the half-guide problem (3.53) is given by (4.8). Now let us

use the characterization of H perg(m), namely, Corollary 3.10 with a = 1, so that Qﬁ,, = Cg
and Qg L+ = Q*\ C§. Since p, DyUy (i) belongs to Héper(Qﬁ), the directional derivative of

Uq (¢) is continuous across the interface X, i.e.

1o Do Uy (2)] I, = |1p Do Uy (2)((- + &) I, (4.12)

or equivalently,

(1 Dy E°9)] I, + [1p Dy B*(P)] I,
(4.13)
= [y Dy B*(P@)| It + [0 Dy B'(P%0)] |2,

By using the definition of the local DtN operators 77, (4.13) leads to the following charac-
terization.

Proposition 4.3. The propagation operator P is the unique solution of the constrained
Riccati equation
Find P € L(L*(}4)) such that p(P) <1 and
(4.14)
TP + (T + TP+ T" =0.
Proof. The proof is identical to the one for the elliptic Helmholtz equation [19, Theorem
4.1]. We know from Proposition 4.1 that P has a spectral radius which is strictly less than
1. Moreover (4.13) ensures that P satisfies the Riccati equation.

In order to prove the uniqueness, let us consider an operator P; which satisfies (4.14). The
function defined cell by cell by

VoeL’(Shy), VEeN*, Ul(p)(-+L&)lct = E°(Pip) + E'(P{y),

solves (3.53) in each cell C; and is continuous across each interface X 7.0 by definition (4.6),
(4.7) of E® and E'. By Corollary 3.10, U is locally H} in QF.

Moreover, since P; satisfies (4.14), the directional derivative p,DpU; is continuous across
each interface. Thus, using Corollary 3.10, we deduce that U; satisfies (3.53) in Q.

Furthermore, given that p(P;) < 1, Gelfand’s formula and the well-posedness of the cell
problems ensure that there exist positive constants ¢, px, with p, < 1 such that, for £ € N
large enough,

10 ()| 3 ety < ¢ py lellrzst, -

Hence Up(¢) belongs to Hgmer(m) and satisfies the half-guide problem (3.53). By well-

posedness of (3.53), U () and Uy () coincide, and thus have the same trace on En 1, that
is P1p = Py for any ¢ € Lz(ZELO). [ |
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As a consequence, the propagation operator can be obtained by solving the Riccati equation
in (4.14), and by choosing the unique solution whose spectral radius is strictly less than 1.
One important thing to retain from the above is that both the propagation operator and the
solution of the half-guide problem only require the computation of E°, E', and the operators
700 710 701 "and T, which involve problems defined on a periodicity cell. However, the
resolution of the constrained Riccati equation (4.14) is not obvious at all. The properties of
this equation are investigated in further details in Section 4.4.

4.3 The DtN operator and the DtIN coefficient

The goal of this part is to see how the half-guide problem and the local cell problems can be
used to compute the DtN coefficient A\*. We recall that

dut
At = —ug(0) —2(0).
1e(0) dw()

Therefore, it is natural to introduce the DtN operator A € E(LZ(E%O)) defined by

Vo€ LA(So) A= 0 [up DyUs (9)] Isf, (4.15)

This operator also has the following properties, whose proof is exactly identical to the one of
Proposition 4.2.

Proposition 4.4. One has A* = A. Moreover, A and A + T are invertible operators.

Taking the directional derivative of (4.8) (for £ = 0) on EBL’O and using the definition (4.9) of
the local DtN operators 7% and 7'° leads to

A=T% 471D, (4.16)

Besides, by writing the formula (3.62) after multiplication by pu,, and by evaluating it for
y = (s,0), so that sg(y) = s, we obtain

dul,
Ap(s) =0, Ag(8) p(s), with Ag(s) = —[u&g d; }(0), (4.17)

namely, A is a multiplication operator. We deduce from (4.17) the DtN coefficient A*.

Proposition 4.5. The function Ay : R~ — C defined by (4.17) is continuous. Moreover,
if © € Cper(R™Y) is a given function which satisfies p(0) = 1, then we have

1
AT = Xg(0) = 7= (A9)(0). (4.18)
Proof. Using Green’s formula, we have that for all s € R*~!
. du dv 9
Ao(s) = as(uze,uze), with  as(u,v) = /R (u&g T 4y Peow U v).

+

The continuity of u — as(u, u) results directly from the properties of the coefficients p, and
pp- Moreover, Proposition 3.17 ensures that the function s+ uje is continuous. Therefore,
as the composition of these two functions, Ay is also continuous. 7

If in addition ¢ is continuous, then Ay is also continuous. Hence, (A¢)(0) = 6, Ay(0)¢(0)
which yields the desired result. |
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4.4 Spectral properties of the Riccati equation

We now present some properties regarding Equation (4.14). After the discretization of the
half-guide problem, these properties are expected to remain valid, and therefore, will come
handy for the numerical resolution of the Riccati equation. Recall that 7(P) = 0, where T
is the bounded operator defined by

VX €eL(LAEhy), TX)=TUX2+ (T +7T"X + 7. (4.19)

In the sequel, we will write T () for T(AI).
Due to the spectral radius constraint, it is useful to rephrase the Riccati equation (4.14)
in terms of the spectrum of P. To this end, we begin with the following factorization lemma.

Lemma 4.6. Let P be the propagation operator defined by (4.2). For any number A € C, we
have

TA) =P =I) (A+T") (P-)), (4.20)
where T is defined by (4.9) and A is defined by (4.15).

Proof. Let A € C. Since the propagation operator satisfies 7 (P) = 0, one obtains that

T(A)=T() —T(P)
= [T+ P) + T + T (A -P)
= AT+ A+TY (A=P), from (4.16). (4.21)
We use once again the fact that 7(P) = 0 which, by the expression (4.16), is equivalent to
T = —(A 4 T') P. By transposing this equation, and by taking the complex conjugate,

one obtains that [701]" = —P* (A + T11)*. Since [T™]" = 7L and [T°!]" = T10 as ensured
by Proposition 4.2, and since A* = A from Proposition 4.4, it follows that

T =P (A+T").
Inserting this expression of 710 in (4.21) therefore leads to
TO) = [-APF A+ T+ A+ T (A=P) = (1= XP) (A+T") (A= P).

which is the desired result. u
The previous factorization lemma allows one to characterize the spectrum of the propagation
operator as follows.
Proposition 4.7. For any compler number X\, one has

Aeo(P) < 0€0o[T(\)] and [N <1. (4.22)

Proof. Proving (4.22) amounts to showing that for any A € C such that |A| < 1, P — A
is invertible if and only if 7(A) is invertible. To this end, using Lemma 4.6, it is sufficient
to prove that (AP* — I) (A + T'!) is an invertible operator. Proposition 4.4 ensures the
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invertibility of A + 7! already. It thus remains to show that AP* — I is invertible, which is
true when || < 1.

Indeed, if A = 0, then AP* —I = —1 is obviously invertible. Otherwise, it is not difficult to
see that P and P* have the same spectrum. Hence, given that [1/A| > 1 > p(P*), it follows
that 1/ does not belong to o(P*). In other words, P* —(1/A) I is an invertible operator. M

Remark 4.8. Note that the property (4.22) can be proved easily (and without Lemma 4.6)
for the point spectrum.:

Ae€op(P) < 0€0,[T(N)] and [N <1. (4.23)

This property was already proved in [19] for the Helmholtz equation. In this context, this was
sufficient since the operator P was compact, which is no longer the case here.

Finally, it is worth noting that the values A # 0 for which 0 € o[7T(\)] can be paired in the
following way.

Proposition 4.9. For any complex number A # 0, one has the following equivalence:
0e€a[T(N)] < 0eca[TQ/N)]. (4.24)

Proof. Let A € C*. From the properties of the local DtN operators (see Proposition 4.2),
we deduce that

[T =T+ XNTO+ T+ T = T(1/N). (4.25)
The operators 7 (\) and W have the same spectrum, hence the result. |
Remark 4.10. As Proposition 4.9 shows, the values X\ # 0 for which
0€a[T(\)]
come by pairs (\,A\"1). From a numerical point of view, it suffices to choose A such that
Al <1 and discard \7*.

4.5 Spectral properties of the propagation operator

For the elliptic Helmholtz equation, P is compact (see [19, Theorem 3.1]) and its spectrum
hence consists only in eigenvalues which accumulate to 0. However, this is no longer the case
here since, as we will see, P has some continuous spectrum.

One useful way to study the properties of the propagation operator (especially its spectrum)
is through an analytic formula: according to (3.59), P can be expressed for all ¢ in LZ(ZQL,O)
and for s € R*! as

Pep(s) =po(s) (s —6), with pe(s)=ul 54(1/0,) and &6=6/0, cR"" (4.26)

Note that since @ is an irrational vector, d is also an irrational vector.
The properties of the mapping s +— u:ﬂ stated in Proposition 3.17 imply that the fonction
pg is continuous and 1-periodic in each direction.
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Operators that can be written under the form (4.26) are known as weighted shift operators,
and have been studied for instance in [2]. In particular, the spectral properties of P are given
by the following result.

Proposition 4.11. Let pg : Efw — C be the function defined in (4.26). Then, pg(s) # 0 for
all s in E,ﬂlyo, and the spectral radius of P is given by

p(P) = exp (/EN

n,0

log |pe(s)| ds) . (4.27)

Moreover, the spectrum of P is a circle of radius p(P).

This result can be found in [2, Theorem 2.1] for n = 2. We give below the proof for n > 2,
which requires the following lemma (see Theorem 6.1 and Example 6.1 of [21]), known as a
particular case of Birkhoff’s ergodic theorem for continuous functions.

Lemma 4.12. Let : E%O — C be continuous and 1-periodic in each direction. Let o € R !
be an irrational vector. Then, we have the following uniform convergence:

/—
tim_ |7 Z:Owc—ma) —/ngwHoo =

L—~+o0

Proof of Proposition 4.11. Let us first show by contradiction that pg or equivalently
the function s — u/y(1/6,) is nowhere vanishing. To do so, we use an argument of unique

continuation. In fact, assume that there exists s € E%O such that u}y(1/6,) = 0. Then ul,
satisfies the problem

_a
dz

dujﬂ 2, + _ .
Hso — = | ~Psow uge =0, in (1/0,,+oc), and ul 0(1/0n) =

From the well-posedness of this problem, it follows that “je = 0in (1/6,,+00). Therefore,
by unique continuation, one deduces that uje = 0 in R4, which contradicts the boundary
condition u},(0) = 1.

We now establish the expression of the spectral radius p(P). One has p(P) = lim ||P¢||'/*
from Gelfand’s formula, and by induction, P’ can be expressed under the form T

Plo(s) = pf:)(s) o(s—49), with pé H pe(s — md).

m=0

Since the translation operator ¢ + (- — £8) is isometric and bijective, the norm of P’ is

equal to the norm of the multiplication operator ¢ pg) ©, that is ||p4(9€)|]00. Hence, given

that pg(s) # 0 for all s, one has

l—+o0 L—~+o0 00

= lim H H po(- —md) H e = lim eXpH% § log (\p9(~—m5)])H
m=0
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Since @ is an irrational vector, § = 0/6,, is also an irrational vector. Therefore, Lemma 4.12
can be applied with a = 4, and ¢ : s — log|pg(s)|, which is well-defined and continuous.
Hence the spectral radius is given by

p(P) = Miog(po) i= exp ( /.

n,0

log [pe(s)| ds) )

Let us now characterize the spectrum. To begin, note that the inverse of P is well-defined,
since pg vanishes nowhere: for all ¢ € L2(F, 3), P~'p(s) := pg(s) ™ @(s+ 6). Therefore, all
the computations above can be applied to P~!, thus yielding

1 1

" Mig(pe)  p(P)

Since the spectrum of P is always included in the annulus p(P~1)™1 < |z| < p(P), it follows
that o(P) is included in the circle |z| = p(P) = Miog(pe)-

p(P™") = Miog(pg ")

Conversely, for k € Z"~! let Sj, be the multiplication operator by s € R"~! i exp(2ir k- s).
From the expression (4.26) of the propagation operator, we obtain that

Sk P S, =Tk OP,

The operators P and %7 9 P are similar, and thus have the same spectrum. Now consider
an element \g of (P). Then, |\g| = Miog(pa), and Ay, := €279 \¢ also belongs to o(P) for
all k € Z"1. Since § is irrational, we have from Kronecker’s theorem (Theorem 2.2) that
the set {\g, k€ Z"1} is dense in the circle |z| = [A\g| = Miog(pg). Consequently, this whole
circle is included in the spectrum, since the latter is a closed set. |

5 Resolution algorithm and discretization issues for n = 2

In order to compute the solution of Equation (1.1), the previous sections provide an algorithm
which sums up as follows:

1. Compute the solution ug of (1.8) and the DN coefficient X defined by (1.7) by using
the following procedure:

a). for alny boundary data %) S L2 Eﬁ s compute the solutions EO L), El (Y2 of the
n,0
local cell problems (46),

(b). compute the local DtN operators (79, 701 710 711 defined by (4.9)—(4.10);

(¢). compute the propagation operator P as the unique solution of the constrained
Riccati equation (4.14);

(d). using an arbitrarily chosen boundary data ¢ € €pe,(R" 1) which satisfies p(0) = 1,

o from (4.8), construct the solution U; of the half-guide problem cell by cell;
o deduce the half-line solution ug via the formula (3.60);

(e). compute the DtN operator A defined by (4.16), and deduce AT from (4.18).
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2. Compute the solution ug of (1.8) and the DtN coefficient A\~ defined by (1.7) by using
the exact same procedure as Step 1 (but independently from Step 1).

3. Finally, solve the interior problem (1.9) in (—a,a), and extend the solution everywhere
by using (1.10), as well as Step 1 and Step 2.

For convenience sake, the quasiperiodicity order is set to n = 2. The most original aspects of
the algorithm are the steps (7.a)—(1.d), and the rest of this section focuses on the discretiza-
tion of these four steps. We present in Sections 5.1 and 5.2 two different methods that are
linked to a choice of discretization of the step (7.a), which influences the implementation of
the steps (1.b) and (1.d). The treatment of the step (1.c) is independent of this choice, and
will be presented in Section 5.3.

per per

/

Figure 6: Two-dimensional mesh for the 2D method (left), and family of one-dimensional
meshes for the quasi-1D method (right)

5.1 A fully two-dimensional method

The first method is inspired from the resolution of the elliptic Helmholtz equation (see [10]
for instance), and consists in solving directly the local cell problems on an unstructured mesh
of the periodicity cell C§ = (0,1)? (see Figure 6).

We start from a triangular mesh 7,(C§) of C§ = (0,1)? with a mesh step h > 0. We assume
that this mesh is periodic, in the sense that one can identify the mesh nodes on the boundary
y; = 0 with those on y; = 1, for 1 < ¢ < 2. In particular for ¢ = 1, this condition allows us to
handle the periodic boundary conditions.

Now let V;,(C§) be the usual H'-conforming approximation by Lagrange finite elements of
order d > 0. We also introduce

Viper(C8) == {V € Vi(C8) / V=0 =V]y,=1}

as an internal approximation of Héyper(Cg). Finally, to approximate LQ(Egvo) and LQ(EgJ),
we consider the following subspaces:

Vae{0,1},  Viperl ti2,a) = {Vh’Eg,a / Vi € Vh,per(cg)}-

Since the mesh nodes on 25’0 and EEJ can be identified to each other by periodicity of
T (C), we can also make the identification vh,per(zg,o) = V;hper(Eg’l) = Vhper(0,1), as in the
continuous case. Set N := dim V}, ;¢-(0, 1), and consider a basis (¢p)1<p<n-
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For any data ¢, € Vi per(0,1), we denote by E}(¢n), E} (¢n) € Vh,peT(Cg) the solutions of
the discrete counterpart of the local cell problems (4.6)—(4.7) defined in a weak sense. In
practice, one has to compute EY (¢p,), where (¢p)1<p<n is a basis of Vj per(0,1).

Similarly to the weak expresswn (4.10) of the continuous local DtN operators, the discrete
local DtN operators ’T] € L(Vhper(0,1)), j, k= 0,1, are defined for any ¢y, 9n € Vi per(0,1)
as follows:

(T on, vn) = /cg |10 Dy Ej(i21) Dy EE(¥n) — pp«® Ef(on) Ef(n) | .

In practice, these operators are represented as N x N matrices T/ whose components are
given by Tjk <7' g, Pp), for p,q € [1, N].

Let ¢n € Vhper(0,1) C Gper(R) such that ¢5,(0) = 1. The computation of the propagation
operator Py, € L(Vh per(0, 1)) is presented in Subsection 5.3. Once this operator is determined,
the solution of the half-guide problem (3.53) can be approximated with the function defined
cell by cell by

VLEN, Uy (on)(-+L&)let = BL(Pron) + Ey(P on)-
Finally, a suitable approximation of the solution of the half-line problem 3.1 is provided by
VxeR, u;h(x) = Uéfh(go)(Oa:).

5.2 A quasi one-dimensional method

Though easy to implement, the two-dimensional approach described in the previous section
does not exploit the fibered properties of the directional derivative D, . However, the periodic
half-guide problem can be seen as a concatenation in a certain sense of one-dimensional half-
line problems. This fibered structure is the core of the method presented in this section.

5.2.1 Presentation

For any s € R, we consider the one-dimensional cell problems

d des . .
d (IU’SG dr 9) — Ps,0 WQ ei,o = 07 m (0, 1/02) = Ig,

879(0) =1 and 6379(1/02) = O7 (51)
elg(0)=0 and elg(1/62) = 1.

Then, by analogy with Proposition 3.18, one easily shows that the local cell problems are
concatenations of one-dimensional cell problems, in the following sense.

Proposition 5.1. For any boundary data ¢ in L*(0,1), the solutions E°(¢) and E'(p) of
the local cell problems (4.6) are given by

ne yeCh B = Bs0() +01/00) el o 2): 6:2)

where egﬂ denotes the solution of the cell problems (5.1).
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Proposition 5.1 also highlights the structure of the local DtN operators. To see this, let us
introduce the local DtN functions tfgk defined for j, k = 0,1, by

‘ dej .
VseR, #5(s) = (—1)*1, [MS,G diﬂ (52) (5.3)

Note that by periodicity of p, and p,, the maps s — eg g and tjék are 1—periodic.
By applying the directional derivative operator D, to (5.2), and by using the relationship

between Dy E7(p) and dei o/dx given by (3.51), it follows that the local DtN operators
defined by (4.9) are weighted translation operators, similarly to the propagation operator.

Proposition 5.2. The operators T7% can be written for ¢ € L*(0,1) and s € (0,1) as
T%¢(s) = t§"(s) &(s) and  T'¢(s) = tg"(s) G(s + 01/62),
11
0

5.4
T'o(s) =tg'(s —01/62) (s) and  TOp(s) = tg' (s — 61/62) &(s — 61/62), o4

where we recall that @ denotes the periodic extension of ¢ on R, defined by (3.30).

Finally, the solution u;r of the half-line problem (3.1) can be computed directly from the
functions efw and from the propagation operator. In fact, given a function ¢ € ‘err(zgvo)
such that ¢(0) = 1, taking formally the trace along @R in (4.8) leads to

VLEN, ug(-+0/02)|1, = (P')(€01/02) €y, 19,0 + (PH10) (€ +1) 01/02) egg, g, - (5:5)

The proof of this result is similar to those of (4.8) and Proposition 4.1.

Expressions (5.2), (5.4), and (5.5) form the basis of the quasi one-dimensional or quasi-1D
strategy, which consists in approximating the solutions 62,0 as well as the functions ték and
finally the local DtN operators 77%. Then once the propagation operator is computed by
solving the constrained Riccati equation (4.14), the solution u; may be constructed directly

cell by cell using (5.5).
5.2.2 Discretization
The quasi-1D approach requires two distinct approximate spaces associated to the transverse

and the @—oriented directions (see Figure 6).

Transverse direction. We begin with a one-dimensional mesh .7, (0, 1) of 25,0 = (0,1)
with a mesh step h > 0. Let V4(0,1) be the approximation space of H'(0,1) by Lagrange
finite elements of order d > 0. We denote by (¢p)o<p<n the usual nodal basis, which satisfies
in particular ¢p(sq) = 9,4, Where (sp)o<p<ny are points (including the mesh vertices) such
that 0 = sg < --- < sy = 1. Then an internal approximation of L?(0,1) is

Vh,per(07 1) = Span{@o + PN, P15 >SON—1}7
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which is chosen so that V}, per(0,1) C €per(0,1). In particular, from the definition of the basis
functions ;, one has the following decomposition

N
Von € Vhper(0,1),  on =Y @nlsp) op, with @n(s0) = n(sn). (5.6)
p=0

0—oriented direction. Let J},(lg) denote a mesh of the line segment Iy with a mesh step
hg > 0. Set Vy,(Ip) as the approximation space of H'(Ig) by Lagrange finite elements of
order dg > 0 and define Vy, o(Ig) := Vi, (Ig) N H} (Ip).

The approximation of eg’e and 6;70 can be seen as a two-step process. First, for any s € R,

consider the solution eg 0.n Of the discrete variational formulation associated to (5.1).

In practice, the solution egﬂ’he can only be computed for a finite number of s € (0,1). This
is where the discretization in the transverse direction comes into play: given x € Iy, the
function s — es 0.n,(¥) may be interpolated in Vj per(0,1).

The mterpolatlon process requires to compute the discrete solutlon e 5.0.hg only for s = sp,

p € [0,N —1]. Then, using the decomposition formula (5.6), el , shall be approximated by
. N .
V(s,2) € (0,1) x Ip, €] g,(x)= > €5 0o (2) p(s), with h= (h, he). (5.7)
p=0

j g A T
where € g . = €1 g 1, (because €5, is 1-periodic with respect to s).

From the solutions eg o n» We introduce the discrete local DtN functions

1/6, de’ dek L
k 9 h ,0.h
Vse(0,1), tj =0, / Ms o — ; — Ps,0 w? ei,a,h 65,0,@ )v

which are inspired from the weak expression (5.3) of the local DtN functions tg,k. Then, by
analogy with (5.4), we define the discrete DtN operators T,fk € L(Vh,per(0,1)) for any ¢y,
Y € Vhper(0,1) as follows:

(T on, vn) = /0 1 ty(s = k61/62) (s + ( — k) 01/02) Gn(s) ds. (5.8)

These discrete DtN operators, when computed for ¢p, 1, being the basis functions of
Vi per(0, 1), are represented as N x N matrices, where N = dim V}, 5¢r(0,1). The integrals
which appear in (5.8) are evaluated in practice using a specifically designed quadrature rule
whose description is omitted here.

Finally, let 5, € Vh per(0,1) C Gper(R) such that ¢p,(0) = 1. Then using (5.5), the solution of
the half-line problem (3.1) can be approximated with the function defined cell by cell by

VLEN, ug,(-+£/62)|1, = (Pren)(L01/02) €9, 10,00+ (P on) (€ + 1) 601/02) €lg, 10, 0.1
RN><N

where Pp, € L(Vh, per(0,1)) corresponds to a suitable discrete approximation of P. The
computation of such an operator is the subject of the next subsection.
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5.3 Approximation of the propagation operator

In order to find a suitable approximation Py, € L(Vh per(0, 1)) of the propagation operator P,
it is natural to introduce the discrete constrained Riccati equation

Find Py, € LV per(0,1)) such that p(Pp) < 1 and Tp(Pp) = 0, where
(5.9)
To(Pa) i=Ta P + (T + T ) Pu+ T

and where (T2, 7%, 7,10, ;1) are obtained via one of the methods described in Sections
5.1 and 5.2. Using the same arguments as for the elliptic Helmholtz equation [10], it can be
proved that this discrete equation admits a unique solution.

In order to solve (5.9), two methods have been proposed in [19]: a spectral decomposition
method, and a modified Newton method. Here, we only describe the spectral approach.

The spectral decomposition method consists in characterizing Pp, by means of its eigenpairs
(X\iy i) of Pp. Doing so however raises an important question: is P}, completely defined by
its eigenpairs? This is equivalent to wondering if Py, is diagonalizable or not. The diagonaliz-
ability of Pj, is an open question, but for the sake of simplicity, we will assume in the sequel
that this is the case, namely

The family of eigenfunctions (;)1<i<n forms a basis of V} per(0,1).

In practice, this is the situation that we always have encountered. Moreover, in the case where
this assumption fails to be true, one can still adapt the method, and recover Pj, through a
Jordan decomposition. (See [10, Section 2.3.2.3] for more details.)

The spectral approach relies on the results presented in Section 4.4, which remain true for the
discrete equation. In particular, by analogy with Proposition 4.7, (A, %) € C X V per(0, 1)
is an eigenpair of Py, if and only if it satisfies

Tn(Ap) v =0, with ¢, #0 and |[A\y] < 1.
Solving the Riccati equation hence comes down to solving a quadratic eigenvalue problem:

Find (An,¥n) € C X Vh per(0,1) such that i, # 0, [Ay] <1 and
(5.10)
Mo Ta"n + M (T3 + T )on + TN = 0.

If one sets N = dim V}, per(0,1), then (5.10) can be reduced to a 2N x 2N linear eigenvalue
problem, thus yielding 2N eigenvalues. In order to pick the N eigenvalues of the propagation
operator, we need a criterion. To do so, note that with the 2D or the quasi-1D method,
the properties of the local DtN operators (Proposition 4.2) remain preserved for the discrete
operators 7;fk Hence Proposition 4.9 admits the following discrete version:

Ker Tp(A\n) #{0} <= KerT,(1/A\n) # {0}.

Therefore, as already expected with Remark 4.10, the solutions of (5.10) can be grouped into
pairs (Ap, 1/Ap), where 0 < |Ay| < 1. Consequently, in order to compute P, one can solve
(5.10) (using for instance linearization techniques), and choose the N eigenpairs (Ap,¥p)
which satisfy |A\,| < 1.
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5.4 The DtN coeflicient

Finally, consider a function ¢y, € Vh per(0,1) C €per(R) which satisfies ¢4 (0) = 1. Then by
analogy with (4.16), and in the spirit of Proposition 4.5, we define the discrete DtN operator
and the discrete DtN coefficient as follows:

(Anen)(0)

Ap = TPy + 720 and N\ = 7 ,
2

where 77110 and 77100 are computed using one of the methods presented in Sections 5.1 and 5.2,
and where P}, is the solution of the discrete Riccati equation (5.9).
5.5 Numerical results

We present some numerical results to validate the method, to illustrate its efficiency, and to
compare the multi-dimensional and the quasi one-dimensional methods in the case where the
order of quasiperiodicity is set to n = 2. Simulations will be carried out with the periodic
coefficients p,, and p,, defined for y = (y1,42) € R? by

pp(y) = 1.5+ cos(2myy) cos(2my2) and  pp(y) = 1.5+ 0.5 sin(27y;) + 0.5 sin(27ys).

We set @ = (cosm/3,sinm/3). As the ratio f2/0; = /3 is irrational, @ is an irrational vector.
For a = 1, the source term f is the cut-off function

VzeR, f(x)=exp (100 1-1/(1- :nQ))) X(=1,1)5

and the local perturbations p; and p; are defined as piecewise constants, so that the coefficients
w and p of the model problem (1.1) are represented in Figure 7.

—6 —4 -2 0 2 4 6
T T 1 T 1 T T
2 ! ! |
= e | |
| | 1 | 1 | |
—6 —4 -2 0 2 4 6
0.5 E E i
—f o J e ‘
—6 —4 -2 0 2 4 6

Figure 7: The locally perturbed quasiperiodic coefficients u and p, and the source term f.

5.5.1 The half-line and the half-guide solutions

The model problem (1.1) is solved by computing the solutions of the half-line problems (1.8),
as well as the DtN coefficients A*. In this part, only results regarding the numerical resolution

34



of the problem (3.1) are going to be presented, as the problem set on (—oo, —a) provides the
same overall results.

Error analysis In order to validate the method, we introduce for L > 0 the unique function
u;’L in H'(0, L) that satisfies Problem (3.1) on the truncated domain (0, L), with ug’L(L) =0.
Similarly, define Q7 := (0,1)""! x (0, L), and for any ¢ € LZ(Z%O), let U;L(go) € Hy(y)
denote the unique function that satisfies (3.53) on Qp, with U;L(gp)|y2:,; =0.

In presence of absorption, the solutions ug and U, (¢) decay exponentially at infinity (see
(3.57) and (4.4)), and by studying the problems satisfied by ug ; — us and Uy, (¢) — Uy (),
it can be proved as in [11] that there exist constants «, ¢ > 0 such that for any L > 0,

lug 1, — ug 0,0y < ce” P Jlug || 10,1

”U;:L((P) - U;(‘P)HH;(QL) < cemaImel |’U;<SO)HH;(QL)'

with o« = \/p_/p4. In particular, if L is chosen large enough, then u;L and U;L(gp) can be
viewed as suitable approximations of ug and U, ; (), and thus can serve as reference solutions.
In the upcoming results, to make the truncation errors in (5.11) negligible with respect to
the errors induced by the numerical method, we choose L so that

exp (—y/p—/ps Imw L) <1071, (5.12)

The corresponding solutions ug ; and UJ (), which will be denoted by u;;f and U;Zf(go)

(5.11)

respectively, are computed via P! Lagrange finite elements, with a mesh step h = 5 x 1074,

In the following, the boundary data is fixed to ¢ = 1, and is omitted in the notation of UJ
and U:;f. Also, we only plot relative errors corresponding to the 1D solution, as the errors
for the 2D solution behave similarly. In Figure 8, the relative error

+ +
u —Uu 1
g(u;') — || 6,h refHH (0,4/62)

(5.13)
Hu:af | 1 (0,4/65)

is represented with respect to the mesh step h, and for both the 2D and the quasi-1D method
(with hg = h for the quasi-1D method). The solutions are computed using Lagrange finite
elements of degree 1.

One sees that the errors tend to 0 as h at least, as expected for P! Lagrange finite elements.
With the quasi-1D method however, s(u;) behaves as h?. This is a special superconvergence
phenomenon, which is probably due to the fact that the problems solved in practice with
the quasi-1D method are one-dimensional. Note also that in general, the quasi-1D method
appears to be more accurate than the 2D method.

For a fixed mesh step, the relative error increases with the real frequency SRew. This is a well-
known particularity of the Helmholtz equation: since PRew represents the spatial frequency
of the time-harmonic waves, the discretization parameter h has to be adapted in order to
take their oscillations into account.
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Figure 8: Relative error in H' norm of the half-line solution for different values of w.

Representation of the half-guide solution The half-guide solution is represented in
Figure 9 for different values of w, when ¢ = 1.

(a) w=8+0.251 (b) w=20+0.251 (c) w=2040.05i
4 4

2 2
1 1
1 0 1 0
-1 -1

Figure 9: Real part of the half-guide solution computed using the quasi-1D approach, with
P! Lagrange finite elements and h = 2 x 1073, and for different values of w.
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Dependence with respect to the boundary data The goal of this part is to see how
the half-line and the half-guide solutions depend on the boundary data ¢. To do so, we
choose three different datas:

©1(s) =1, @a(s) = cos(2ms), and 3(s) =1— 1}1/32/3(5) (5.14)

We set w = 8 4+ 0.251, and we display results obtained with the quasi-1D method, knowing
that the 2D method yields the same conclusions. The computations are carried out using P*
Lagrange finite elements, with mesh steps h = hg = 2 x 1073.

Size of periodicity cell

0 1 2 3 4

Figure 10: Real part of the half-line solution computed using the quasi-1D approach, with
P! Lagrange finite elements and h = 2 x 1073, and for different values of .

(a) ¢1 (b) ¥2 (©) ¢s

0 [ — |
0 0.5 1

Figure 11: Real part of the half-guide solution computed using the quasi-1D approach, with
P! Lagrange finite elements and h = 2 x 1073, and for different values of .

As expected, and as Figures 10 and 11a—11c show, the aspect of half-guide solution changes
extensively with respect to the boundary data, whereas the half-line solution looks invariant.
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5.5.2 The whole line problem

The solutions uf,t of the half-line problems (1.8) allow one to compute the DtN coefficients
AE, to solve (1.9), and then to compute the solution u of Problem (1.1) using (1.10). Recall
that the coefficients p, p, and the source term f are shown in Figure 7. The solution of (1.1)
is represented in Figure 12 for different values of w.

(a) w=28+40.251

1 | |
0 MVV\A/V\/\AA/\/\/\/\/\
—1f | | | | | |
—6 —4 —2 0 2 4 6
(b) w=20+0.251
1| | |
0L
—1[ ! ! ! ! ! |
—6 —4 —2 0 2 4 6
(¢) w=20+0.051
1| | |
ol
—1f | | | | | |
—6 —4 -2 0 2 4 6

Figure 12: Real part of the solution of (1.1) computed using the quasi-1D approach, with P!
Lagrange finite elements and h = 2 x 1073, and for different values of w.

5.5.3 About the dependence with respect to the absorption

We come back to the numerical resolution of Problem (3.1), and we study the convergence
of the 2D and quasi-1D methods depending on the absorption, especially when it tends to
0. As in Section 5.5.1, the solutions are computed with Lagrange finite elements of degree 1.
The relative error £(u, ) defined (5.13) is represented in Figure 13 for both the 2D and the
quasi-1D method, and for different values of Jmw.

As Figure 13 shows, the error deteriorates with Jmw. It would mean that the numerical

method becomes less efficient as the absorption decreases. This issue is closely related to the
well-posedness of the local cell problems with Dirichlet boundary conditions when Jmw = 0.
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Figure 13: Relative error in H' norm of the half-line solution for different values of w.

In fact, for the elliptic Helmholtz equation, it is known (see [10, Section 3.2.1.1] for instance)
that the local cell problems are well-posed except for a countable set of frequencies which
correspond to the eigenvalues of the associated differential operator. In our case however, as
the differential operator has a non-elliptic principal part, it also has a continuous spectrum,
and one can show that when p, and p, are non-constant, the local cell problems are well-
posed only for frequencies in a bounded set (that can even be empty). An alternative to avoid
this problem is to use a Robin-to-Robin operator instead of the DtN operator, which would
involve solving well-posed local cell problems with Robin boundary conditions, as it is done
in [12] for periodic media. This will be done in a forthcoming paper for quasiperiodic media.

5.5.4 About the spectral approximation of the propagation operator

As explained in Subsection 5.3, the discrete propagation operator Py is computed by means
of its eigenpairs. In this section, the eigenvalues of P, are compared with the spectrum of
the exact propagation operator which, according to Proposition 4.11, is a circle of radius

1
Mog(pe) = exp (/0 log [pe(s)]| ds), with  pg(s) = u:_gl/(bﬁ(l/sin 02).

To compute this radius, ujﬂ is approximated by the unique function uj’a ; that satisfies (3.56)
on a truncated domain (0, L), with u/, ; (L) = 0. One can show similar estimates to (5.11),
and if L is chosen large enough (for instance, if L satisfies (5.12)), then uf;e, ; can be used
as a reference solution. In practice, ujg 1 is computed for several s, and finally the integral
that defines Miog(pg) is evaluated usin’g a rectangular quadrature rule.

The spectra of Py, and P are shown in Figure 15 for w = 8 +0.251, and for different values of
the discretization parameter h (with hg = h for the quasi-1D method). Figure 14 represents
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Figure 14: Number of eigenvalues of Py, that are close by 5% to o(P) with respect to h.

the number N}, of eigenvalues of P}, that are close by 5% to o(P), namely

|)‘h| - Mlog(pe)
Mlog(pﬁ?)

In Figure 14, one sees that N, increases with 1/h, which means that more and more eigen-
values of Py, are close to o(P) when h decreases. In other words, a finer discretization leads
to a better approximation of the spectrum. The number N, of such eigenvalues also seems
to increase linearly with 1/h (up to a subsequence for the quasi-1D method). Finally, note
that Ny, is higher with the quasi-1D method than with the 2D method.

Ny = #{)\h cao(P) / < 5%}. (5.15)

As Figure 15 shows, the eigenvalues of P}, are all included in the disk of radius p(P), but one
observes some spectral pollution. This is a classical phenomenon when one approximates the
spectrum of an operator which is neither compact nor self-adjoint. What is striking however,
is that the pollution behaviours are very different depending on the method used.

On one hand, the eigenvalues obtained with the 2D approach tend to accumulate to 0. A
likely explanation for this phenomenon is that solving the local cell problems on 2D meshes
does not take their directional structure into account. Since the location of the eigenvalues
of Py, is similar to the one obtained in the elliptic case, for which P is compact (see [19,
Theorem 3.1]), we believe the 2D method somehow regularizes the half-guide problem (3.53)
by introducing an elliptic (discrete) approximation of the corresponding differential operator.

On the other hand, with the quasi-1D approach, the spectrum of P;, “oscillates” as the
discretization parameter h tends to 0. This phenomenon has to do with the particular nature
of P which is a weighted translation operator. We strongly suspect that one can extract a
subsequence (Py) whose spectrum converges towards o(P) in a sense to be defined precisely,
as it is suggested by the peaks in Figure 14. The investigation of this assumption as well as
the construction of such a subsequence are subject to ongoing works.

Fortunately, as seen in the previous section, the spectral pollution does not have any visible
influence on the approximation of the half-guide and the half-line solutions.
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Figure 15: Eigenvalues of the discrete propagation operator (circle-shaped markers) compared
to the spectrum of the exact propagation operator (circle in dashed line) for w = 8 + 0.251,
and for different values of the discretization parameter.

6 Perspectives and ongoing works

A numerical method has been proposed to solve Helmholtz equation in 1D unbounded
quasiperiodic media. Using the presence of absorption, we justified that this equation could
be lifted onto a higher-dimensional problem which, in turn, can be solved using a Dirichlet-
to-Neumann approach. For the discretization, we presented a multi-dimensional method,
as well as a so-called quasi one-dimensional method. As shown by numerical simulations,
both methods provide a suitable approximation of the solution as long as there is absorption.
However, the quasi-1D method proved to be more efficient than the 2D method, as it takes
the anisotropy of the problems involved into account.

The method presented opens up numerous perspectives, and raises multiple questions that are
subject to ongoing works. For instance, it would be interesting to approximate efficiently the
spectrum of the propagation operator, even though the spectral pollution seems to have no
major impact on the efficiency of the overall method. Another key extension concerns the case
where the absorption tends to 0. This extension, which will be presented in a subsequent
paper, involves replacing the DtN method by a Robin-to-Robin method as explained in
Section 5.5.1, and finding a way to characterize the propagation operator which is no longer
uniquely defined.

Finally, an approach which is similar to the one presented in this paper can be used to study
the propagation of waves in presence of a 2D periodic half-space when the interface does
not lie in any direction of periodicity, or in presence of two 2D periodic half-spaces with
non-commensurable periods.
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