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Introduction

In the late 1990s Okounkov associated a convex body ∆ Y• (D) to any ample divisor D on a projective variety X depending on the choice of an admissible ag Y • and used its geometric properties to explore the sections H 0 (X, O X (kD)) for large values of k. In 2008, LazarsfeldMustaµ [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF] and KavehKhovanskii [START_REF] Kaveh | Convex bodies and algebraic equations on ane varieties[END_REF] simultaneously extended this contruction to any big divisor and developed the theory of NewtonOkounkov bodies.

This object is a vast generalisation of the Newton polytope of a hypersurface and has come to be known as the 'NewtonOkounkov body' of D. This article is an attempt to generalise the theory dening NewtonOkounkov bodies of curve classes instead of divisor classes and to discover new relations between NewtonOkounkov bodies.

The interest in NewtonOkounkov bodies lies in the fact that they encode information on the asymptotic behaviour of H 0 (X, mD) as m → ∞ and have been proved to be very ecient in providing simple geometric proofs of dicult results such as Fujita's approximation theorem ([LM09] Theorem 3.5) or the log-concavity of the volume of a divisor ([LX19] Theorem 1.6).

The NewtonOkounkov body of a divisor can also reveal information about its Seshadri constants, invariants introduced by Demailly and measuring the positivity of the divisor. In [START_REF] Ito | Okounkov bodies and Seshadri constants[END_REF], Ito furnished a lower bound on Seshadri constants and DumnickiKüronya MacleanSzemberg exhibited in [START_REF] Dumnicki | Rationality of Seshadri constants and the Segre-Harbourne-Gimigliano-Hirschowitz conjecture[END_REF] an unexpected relation between SHGH conjecture and rationality problems for Seshadri constants using NewtonOkounkov bodies.

As highlighted in the survey article [START_REF] Küronya | Geometric aspects of Newton-Okounkov bodies[END_REF], there is a strong relationship between positivity of divisors and the geometry of NewtonOkounkov bodies. This connection persists locally: [START_REF] Küronya | Innitesimal Newton-Okounkov bodies and jet separation[END_REF] and [START_REF] Roé | Local positivity in terms of Newton-Okounkov bodies[END_REF] relate local positivity of line bundles, for instance jet-separation, to NewtonOkounkov bodies attached to innitesimal ags.

Even though NewtonOkounkov theory for divisors turned out to be very fruitful, there has so far been no visible attempt to construct higher-codimensional generalisations.

One of the most remarkable features of NewtonOkounkov bodies is that the volume of a divisor vol(D) = lim sup m→∞ h 0 (X, mD) m n /n! is exactly the euclidean volume of its NewtonOkounov body for any choice of admissible ag. We want to propose a denition for NewtonOkounkov bodies of curve classes which still have this concrete and geometrical property. Lehmann and Xiao ([LX19]) constructed a LegendreFenchel type transform M on curve classes by taking the dual of the volume function :

M(α) = inf

A big and movable divisor class

A • α vol(A) 1 n n n-1 .
Our denition of NewtonOkounkov bodies for curve classes will satisfy vol R n (∆(α)) = M(α) .

If X is a surface then curves are divisors and consequently NewtonOkounkov bodies of curves are already dened. Moreover an explicit description of NewtonOkounkov bodies can be given based on the Zariski decomposition for divisors (see [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF] Theorem 6.4 or [START_REF] Küronya | Convex bodies appearing as Okounkov bodies of divisors[END_REF] Section 2 for more details).

Lehmann and Xiao have dened a Zariski-type decomposition for curve classes which we will call the 'movable Zariski decomposition', based on the volume-type function M (see [START_REF] Lehmann | Positivity functions for curves on algebraic varieties[END_REF] Theorem 3.12). Assume that the curve class α is movable (or equivalently by [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] the dual of E 1 (X)) and M(α) > 0, LehmannXiao's result states that there exists a unique big and movable divisor class L such that

α = L n-1
where is the positive product (see BoucksomFavreJonsson in [START_REF] Boucksom | Dierentiability of volumes of divisors and a problem of Teissier[END_REF]). Moreover the inmum arising in the denition of M is attained by L.

Based on this decomposition, we propose a denition for the NewtonOkounkov body of a curve class α with respect to an admissible ag Y • on X.

Denition (1.6). We dene the NewtonOkounkov body of a movable curve class α such that M(α) > 0 as

∆ Y• (α) = ∆ Y• (L) ,
where α = L n-1 is the movable Zariski decomposition of α.

We present some formal properties, namely the equality between the volume of a curve class and the volume of its NewtonOkounkov body, and the continuity of Newton Okounkov bodies of curve classes.

In the second part of the paper we investigate a potential analogue of the inclusion

∆ Y• (D 1 ) + ∆ Y• (D 2 ) ⊆ ∆ Y• (D 1 + D 2 ) .
No such simple inclusion appears to hold for NewtonOkounkov bodies of curves as dened above. Even in the most simple case, when X = P 3 and the curve classes α 1 = α 2 = D 2 are given by D = O X (1), the movable Zariski decomposition of the sum

α 1 + α 2 is α 1 + α 2 = ( √ 2D) 2 and ∆(α 1 ) + ∆(α 2 ) = 2∆(D) √ 2∆(D) = ∆(α 1 + α 2 ) .
A potential replacement for the Minkowski sum in the context of curve classes is the Blaschke sum # of convex sets (see Denition 2.3). We would like to prove that the inclusion

∆ Y• (α 1 )#∆ Y• (α 2 ) ⊆ ∆ Y• (α 1 + α 2 ) ( * inc )
holds. In this case we would have proved that, for any movable divisor L 1 and L 2 on X, denoting by L 3 the unique movable divisor satisfying L n-1

3 = L n-1 1 + L n-1 2 , ∆ Y• (L 1 )#∆ Y• (L 2 ) ⊆ ∆ Y• (L 3 ) .
Since the denition of the Blaschke sum is entirely based on the area measure of convex sets (see Denition 2.1), this inclusion would be one of the rst result we have on the boundary of NewtonOkounkov bodies.

One motivation for considering Blaschke sums is that the sum of curve classes and the Blaschke sum of convex bodies satisfy the volume formula (see [START_REF] Lehmann | Correspondances entre géométrie convexe et géométrie complexe. Épijournal de Géom. Algébr[END_REF] Section 7.A)

vol(K#L) n-1 n ≥ vol(K) n-1 n + vol(L) n-1 n and M(α 1 + α 2 ) n-1 n ≥ M(α 1 ) n-1 n + M(α 2 ) n-1 n
.

In this paper we prove ( * inc ) in the case of surfaces, of homothetic curve classes and of toric varieties. It turns out that in the two last cases ( * inc ) is an equality. The following result is really powerful but would require the Blaschke sum to be continuous. Proposition (3.1). We assume the continuity of the Blaschke sum and consider Newton Okounkov bodies with respect to any maximal rank valuation (not only ag valuation).

Then the inclusion ( * inc ) holds for movable curves if and only if it holds for curves of the form

α i = A n-1 i with A i ample.
Finally we prove the inclusion ( * inc ) in the following case. Theorem (5.5). Let X be a projective bundle over a curve. Consider two curves α 1 , α 2 of the form α i = A n-1 i with A i ample. Then we have that

∆(α 1 )#∆(α 2 ) = ∆(α 1 + α 2 ) .
In the 1 st section we propose the denition of the NewtonOkounkov body of a curve class and present some of its properties.

In Section 2, we discuss the Blaschke sum and present various analogies with Newton Okounkov bodies.

In Section 3 we prove Proposition 3.1. Section 4 describes NewtonOkounkov bodies of curve classes when X is a projective bundle over curves, recalls the description of the cones of divisor and curve classes and explains how the NewtonOkounkov body allows to visualize the positivity.

In section 5, we prove Theorem 5.5.

Denition of NewtonOkounkov bodies of curves

We start with some general denitions. The theory of NewtonOkounkov bodies was developed simultaneously by LazarsfeldMustaµ [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF] and KavehKhovanskii [START_REF] Kaveh | Convex bodies and algebraic equations on ane varieties[END_REF].

We propose an extension of this denition to curve classes. Throughout this chapter, X will be a projective variety of dimension n and Y • an admissible ag on X.

NewtonOkounkov bodies of curve classes

Lehmann and Xiao constructed a Zariski-type decomposition for curve classes generalizing the Zariski decomposition of divisors on surfaces. It will allow us to construct an analogous denition of NewtonOkounkov bodies of curve classes.

Let us start with the volume function of curves introduced by Lehmann and Xiao (see [START_REF] Lehmann | Positivity functions for curves on algebraic varieties[END_REF]). Recall that the volume function for divisors is given by vol(D) = lim sup m→∞ h 0 (X, mD) m n /n! .

Denition 1.1. The dual volume function M on curves is dened by

M(α) = inf
A big and movable divisor class

A • α vol(A) 1 n n n-1 .
We now recall the denition of the movable Zariski decomposition from [START_REF] Lehmann | Positivity functions for curves on algebraic varieties[END_REF] Theorem 3.12.

Denition and Theorem 1.2. Any movable curve class α with M(α) > 0 is of the

form α = L n-1
for a unique big and movable divisor class L, where is the positive intersection product (Remark 1.3). Moreover the inmum appearing in the denition of M is achieved by L.

Remark 1.3. The positive intersection product, introduced by BoucksomFavreJonsson (see [START_REF] Boucksom | Dierentiability of volumes of divisors and a problem of Teissier[END_REF]), is dened for classes on the Riemann-Zariski space X of a projective variety X which is the projective limit of all birational models of X. A class in X is a collection of classes in each birational model of X that are compatible under push-forward. We denote the set of such classes by N p (X).

A class L is Cartier if and only if there exists a birational model X π of X such that the incarnations of L on higher blow-ups are obtained by pulling-back the incarnation L π of L on X π . Such a π is called a determination of L.

If L 1 , ..., L p are big Cartier divisor classes, then their positive intersection product L 1 , ..., L p is dened as the least upper bound of the set of classes

(L 1 -D 1 ) • ... • (L p -D p ) ∈ N p (X)
where D i is an eective Cartier Q-divisor on X such that L i -D i is nef.

The most relevant property for us is that if

L 1 , L 2 , ..., L p ∈ N 1 (X) are nef Cartier divisor classes then L 1 , ..., L p = L 1 • ... • L p .
Another essential property is Fujita's theorem (see [START_REF] Fujita | Approximating Zariski decomposition of big line bundles[END_REF]) reformulated in [BFJ09] Theorem 3.1 into ∀L ∈ Big 1 (X), vol(L) = L n .

Remark 1.4. The condition M(α) > 0 is equivalent to having non vanishing intersection with any non-zero movable divisor class (see [START_REF] Lehmann | Positivity functions for curves on algebraic varieties[END_REF] Lemma 3.9).

Remark 1.5. We call the decomposition 'movable Zariski' because of the Zariski decomposition of eective divisors (see [START_REF] Zariski | The theorem of Riemann-Roch for high multiples of an eective divisor on an algebraic surface[END_REF])

D = B + γ
where B is nef, γ is a negative cycle and B •γ = 0 from which it follows that the dimension of the linear system |D| is determined by B alone. So up to a translation (depending on γ), the NewtonOkounkov body of D is the NewtonOkounkov body of B (see Paragraph 6.2 [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF]).

With the 'movable Zariski decomposition' for curve classes, Lehmann and Xiao extended the decomposition of Zariski to movable curve classes positive with respect to M.

This motivates the following denition.

Denition 1.6. Consider a movable curve class α on X that satises M(α) > 0 and hence has a movable Zariski decomposition α = L n-1 . We dene the NewtonOkounkov body of α on X with respect to Y • as

∆ Y• (α) := ∆ Y• (L) .
Remark 1.7. The NewtonOkounkov bodies of curve classes are well dened. Indeed, NewtonOkounkov bodies of big divisors are invariant under numerical equivalence (see Proposition 4.1 [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF]).

Example 1.8. Take any movable curve class α on X = P n with an admissible ag Y • . The intersection ring of X is

A(X) = Z[H]/(H n ) ,
so that α can be written as

α = aH n-1 = a H n-1 ,
where a ∈ R. Indeed the cone of nef divisors on X coincides with the cone of movable divisors and taking the positive intersection product of nef divisors corresponds to taking the intersection of these divisors (see Remark 1.3). The NewtonOkounkov body of α is then

∆ Y• (α) = ∆ Y• (a 1 n-1 H) . ♦

Formal properties

Let us x a movable curve class α with M(α) > 0, we denote its movable Zariski decomposition by α = L n-1 α . All NewtonOkounkov bodies are dened with respect to the xed ag Y • so that we omit Y • in our notation and write ∆(α).

We now summarize some important properties of NewtonOkounkov bodies of curves. The volume of the NewtonOkounkov body of a divisor computes the volume of the divisor. The volume of the NewtonOkounkov body of a curve α turns out to be related to a volume of α (dened by Lehmann and Xiao) as well, and is given by a geometric intersection.

Proposition 1.9. Consider a movable curve α such that M(α) > 0. We have the fol-

lowing equalities n!vol ∆ Y• (α) = M(α) = vol(L α ) = L n α .
Proof. We have that

n!vol(∆(α)) = vol(∆(L α )) = vol(L α )
by [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF] Theorem 2.3. Then Theorem 3.12 of [START_REF] Lehmann | Positivity functions for curves on algebraic varieties[END_REF] states that

M(α) = vol(L α )
and the Fujita's theorem of Remark 1.3 implies that

vol(L α ) = L n α .
Remark 1.10. By [LM09] Proposition 4.1, for any divisor D on X and any integer p > 0, one has ∆(pD) = p∆(D) .

We have an analogous result for any curve class α:

∆(pα) = p 1 n-1 ∆(α) .
Another property is the continuity of NewtonOkounkov bodies of curve classes.

Proposition 1.11. The map f :

Big 1 (X) → {convex bodies in R d } dened by f : α → ∆(α)
is continuous with respect to Hausdor distance d H on the set of convex subsets in R d .

Proof. It follows from Theorem 3.15 [START_REF] Lehmann | Positivity functions for curves on algebraic varieties[END_REF] that the class L α depends continuously on α, therefore it is enough to show that the map g :

Big 1 (X) → {convex bodies in R d } dened by g : D → ∆(D)
is continuous with respect to the Hausdor distance d H on R d . This notion of continuity for NewtonOkounkov bodies follows from the convexity of the global NewtonOkounkov body (see [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF] Theorem 4.5).

To any point x in the big cone we may associate an arbitrary point φ(x) contained in the NewtonOkounkov body ∆(x). We may therefore dene a map

φ : N S(X) → R d .
Now, consider a big divisor x in and a ball B of radius r around x contained in the big cone. Take a point y in B at distance δ from x and set w

= x -y-x δ r. v 3 v 2 v 1 w w × × × y δ × x r E 1 (X)

B

Let q be any point in ∆(y). By convexity of the global NewtonOkounkov body, we have that

s := r r + δ q + δ r + δ φ(w) ∈ ∆(x) .
Moreover, if v 1 , v 2 and v 3 are big divisor classes forming a triangle containing B, by convexity of the global NewtonOkounkov body, every NewtonOkounkov body in the triangle is bounded by M and

d(s, q) ≤ δ r + δ |q| + δ r + δ |φ(w)| ≤ 2M δ r -→ δ→0 0 where M = sup {bound(∆(v 1 )), bound(∆(v 2 )), bound(∆(v 3 ))}.
On the other hand, take q is a point in ∆(x) and set w = x + ( y-x δ )r. Then the point

s := q (r -δ) r + φ(w )δ r is contained in ∆ Y• (y) and d(s , q ) ≤ δ r |q | + δ r |φ(w )| ≤ 2M δ r -→ δ→0 0 .
In conclusion we proved that

d H ∆(x), ∆(y) = max sup q∈∆(x) d(q, ∆(y)), sup q∈∆(y) d(∆(x), q) ≤ 2M δ r
where M depends only on r so that d H ∆(x), ∆(y) tends to 0 with δ.

Blaschke sum

Our long term goal is to study curve classes on a projective complex variety X by means of NewtonOkounkov theory. In particular, we would like to study the links between the NewtonOkounkov body ∆(α 1 + α 2 ) of a sum of curve classes α 1 , α 2 and the Newton Okounkov bodies ∆(α 1 ), ∆(α 2 ) of α 1 and α 2 . For divisors, multiplication of sections leads to the inclusion

∆(D 1 ) + ∆(D 2 ) ⊆ ∆(D 1 + D 2 ) . ( * incdiv )
We will study the following question: can the operation # (see Denition 2.3) replace the Minkowski sum + in the inclusion ( * incdiv ) to obtain

∆(α 1 )#∆(α 2 ) ⊆ ∆(α 1 + α 2 ) . ( * inc )
The Blaschke sum # constructs from two convex bodies a third one : in the special case where we consider the Blaschke sum of two polytopes P 1 and P 2 , the output P 3 is a polytope such that every face of P 3 has volume equal to the sum of the volumes of the parallel faces in P 1 and P 2 .

In fact, while Minkowski sum adds the volumes of dimensional 1-faces, Blaschke sum adds the volume of codimensional 1-faces. So we can see Blaschke sum as a dual operation to Minkowski sum. (A formal denition can be found in the next subsection 2.1.)

We are motivated to study the Blaschke sum in this context with a view towards relating ∆(α 1 ), ∆(α 2 ) and ∆(α 1 + α 2 ) by the inequalities vol(K)

n-1 n + vol(L) n-1 n ≤ vol(K#L) n-1 n
and vol (∆(α 1 ))

n-1 n + vol (∆(α 2 )) n-1 n ≤ vol (∆(α 1 + α 2 ))
n-1 n satised by both the Blaschke sum of convex bodies K, L and the summation of curve classes α 1 , α 2 (see Section 7.A [LX17]).

Denition of Blaschke sum

The Blaschke sum sum is dened in terms of the area measure of a convex body.

Denition 2.1. The area measure S n-1 (K, •) of a convex body K is the measure on the sphere S n-1 dened by

S n-1 (K, U ) = H n-1 g -1 (K, U )
where g -1 (K, U ) is the set of points in δK at which there is an outer unit normal vector in U and

H k is the k-dimensional Hausdor measure in R n (for k ∈ {1, ..., n}). K g -1 (K, U ) S n-1 g(K, •) U Theorem 2.2 (Minkowski's theorem).
Let ϕ be a nite measure on B(S n-1 ) such that

S n-1 udϕ(u) = 0
and ϕ(s) < ϕ(S n-1 ) for each great subsphere.

Then there exists a convex body K unique (up to translation) such that

S n-1 (K, •) = ϕ .
Proof. See [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF] Section 7 for example.

We can now dene the Blaschke sum of two convex bodies.

Denition 2.3. Consider two convex bodies K and L. The Blaschke sum of K and L is the unique 1 convex body M such that

S n-1 (M, •) = S n-1 (K, •) + S n-1 (L, •) .
Remark 2.4. If K = P, L = Q are polytopes then we denote by u 1 , ..., u N ∈ S n-1 a family of pairwise distinct vectors linearly spanning R n such that the exterior normal vector of any face of P or Q is an element of {u 1 , ..., u N }. Moreover we let f 1 , ..., f N and g 1 , ..., g N (we may have f i = 0 or g i = 0) be the positive real numbers dened by

f i = vol(F (P, u i )) and g i = vol(F (Q, u i ))
1 up to translation where F (P, u) is the face of P with exterior normal vector u.

Then there exists a unique polytope R whose exterior normal vectors are contained in {u 1 , ..., u N } such that the volume of the face normal to

u i is vol(F (R, u i )) = f i + g i .
In particular the Minkowski theorem implies that the Blaschke sum of two polytopes P and Q is a polytope.

Example 2.5. The Blaschke sum of a n dimensional cube of side-length d with itself is

[0, d] n #[0, d] n = [0, n-1 √ 2d] n .
Proposition 2.6. If K and L are 2 dimensional-polytopes then their Blaschke sum and their Minkowski sum coincide, K#L = K + L.

Proof. A point in an edge of the Minkowski sum K + L is a sum of two points respectively in the edge with same exterior normal vector in K and in L. So the edges of K + L are of length the sum of the lengths of the edge with same exterior normal vector in K and in L. This is the property dening uniquely the Blaschke sum K#L.

Motivation

In this subsection we discuss our motivation for studying the Blaschke sum. The rst one was highlighted by Lehmann and Xiao in [LX17] Section 7.A.

Volume in equalities

It is proved in [START_REF] Kneser | Die Volumina in linearen Scharen konvexer Körper[END_REF] that if K and L are any convex bodies then we have

vol(K#L) n-1 n ≥ vol(K) n-1 n + vol(L) n-1 n
with equality if and only if K and L are homothetic. This is called the log concavity of the (Euclidean) volume.

Proposition 2.7. The volume function M on curves is n-1 n -log concave on movable curves with M > 0.

Proof. Consider two movable curve classes α 1 and α 2 with M(α 1 ), M(α 2 ) > 0 then

M(α 1 + α 2 ) n-1 n = inf
A big and movable divisor class

A • (α 1 + α 2 ) vol(A) 1 n ≥ inf A big and movable divisor class A • α 1 vol(A) 1 n

+ inf

A big and movable divisor class

A • α 2 vol(A) 1 n = M(α 1 ) n-1 n + M(α 2 ) n-1 n .

Surfaces

Proposition 2.8. The inclusion

∆ Y• (α 1 )#∆ Y• (α 2 ) ⊆ ∆ Y• (α 1 + α 2 ) ( * inc )
holds for any projective surface.

Proof. If X is a surface, the NewtonOkounkov bodies for curves and divisors coincide and moreover the Blaschke sum coincides with the Minkowski sum. Indeed [START_REF] Lyusternik | Convex gures and polyhedra[END_REF] gives the equality of the Minkowski sum and the Blaschke sum on polyhedra and Küronya, Lozovanu and Maclean proved that all NewtonOkounkov bodies in dimension 2 are polyhedral (see Theorem B [START_REF] Küronya | Convex bodies appearing as Okounkov bodies of divisors[END_REF]).

As a consequence, the inclusion

∆ Y• (α 1 )#∆ Y• (α 2 ) ⊆ ∆ Y• (α 1 + α 2 ) can be rewritten as ∆ Y• (B 1 ) + ∆ Y• (B 2 ) ⊆ ∆ Y• (B 1 + B 2 ) ,
which holds by the following. If f is a section of O X (lB 1 ) and g is a section of O X (mB 2 ) then f m g l is a section of O X lm(B 1 + B 2 ) , and

v Y• (B 1 + B 2 )(f m g l ) = mv Y• (B 1 )(f ) + lv Y• (B 2 )(g)
where v Y• (D) are the valuations used in the construction of the NewtonOkounkov bodies ∆ Y• (D). We then have that

Γ Y• (B 1 ) + Γ Y• (B 2 ) ⊆ Γ Y• (B 1 + B 2 ) ,
and consequently

∆ Y• (B 1 ) + ∆ Y• (B 2 ) ⊆ ∆ Y• (B 1 + B 2 ) .

Homothetic curve classes

Proposition 2.9. Assume that there exists

A = a r-1 ∈ R * such that α 2 = Aα 1 . Then ∆(α 1 )#∆(α 2 ) = ∆(α 1 + α 2 ) = (1 + A) 1 n-1 ∆(α 1 ) .
Proof. If α 1 = L n-1 and α 2 = (aL) n-1 then ∆(α 2 ) = a∆(α 1 ). Moreover, we have

α 1 + α 2 = (1 + A) 1 n-1 L n-1 and ∆(α 1 + α 2 ) = (1 + A) 1 n-1 ∆(α 1 ).
If u is a normal vector of a face of ∆(α 1 ) then the volume of the face of ∆(α 1 + α 2 ) with normal vector u is exactly the sum of the volume of the faces of ∆(α 1 ) and ∆(α 2 ) with normal vector u

vol ∆(α 1 + α 2 ), u = (1 + A) × vol ∆(α 1 ), u = vol ∆(α 1 ), u + vol ∆(α 2 ), u .
Corollary 2.10. Let X be any projective variety with N 1 (X) R generated by only one element. The inclusion ( * inc ) holds automatically for every movable curve on X positive with respect to M (and is moreover an equality).

Toric varieties

Toric varieties are known to oer computable examples. Consider a normal projective toric variety X with torus T and its associated fan Σ (see [START_REF] Cox | Toric varieties[END_REF] for more information about toric varieties). We consider a compatible ag

Y • : X ⊇ D 1 ⊇ D 1 ∩ D 2 ⊇ ... ⊇ D 1 ∩ ... ∩ D d = {pt}
where D 1 , ..., D d are prime T -invariant divisors.

In [LM09] Proposition 6.1, Lazarsfeld and Mustaµ show that the NewtonOkounkov body of any big T -invariant divisor with respect to the ag Y • can be written as

∆ Y• (L) = Φ Y•,R (∆(L))
where ∆(L) is the Newton polytope of L and Φ Y•,R is the linear map obtained by tensorizing by R the dual isomorphism

Φ Y• : M → Z d ; u → ( u, u i ) 1≤i≤d .
The same way, we dene ∆(α) to be the Newton polytope of L α and we have

∆ Y• (α) = Φ Y•,R (∆(α)) .
Proposition 2.11. A movable curve class α on X satises M(α) > 0 if and only if α is positive along a spanning set of rays of Σ.

Proof. See [LX19] Lemma 4.1 and Theorem 4.2.

Proposition 2.12. If α 1 , α 2 are movable curve classes on the toric variety X such that M(α i ) > 0 for i = 1, 2 then we have

∆ Y• (α 1 )#∆ Y• (α 2 ) = ∆ Y• (α 1 + α 2 ) . Proof. As Φ Y• : M → Z d is an isomorphism, it is enough to prove that ∆(α 1 )#∆(α 2 ) = ∆(α 1 + α 2 ) .
This follows directly from Theorem 4.2 of Lehmann and Xiao [START_REF] Lehmann | Positivity functions for curves on algebraic varieties[END_REF]. Take X to be a projective toric variety with invariant divisors D 1 , ..., D s corresponding to rays ρ 1 , ...ρ s in the fan Σ generated by the vectors u 1 , ..., u s . To a curve α, we may associate by Minkowski's theorem a polytope P α such that the volume of the face F i is

f i = (α • D i )||u i || (n -1)! , (1) 
where F i the face of P α with exterior normal vertor u i . Lehmann and Xiao ([LX19] Theorem 4.2) prove that if α is movable and M(α) > 0 then

P α = ∆(L α )
which is by denition ∆(α). Now consider two movable curve classes α 1 , α 2 with M(α 1 ), M(α 2 ) > 0 .

Let α 3 be their sum and let f 1 i , f 2 i , f 3 i be the volume of the faces of ∆(α 1 ), ∆(α 2 ), ∆(α 3 ) orthogonal to u i respectively. By (1) we have that

f 3 i = f 1 i + f 2 i ∀i ∈ {1, 2, 3} , so that ∆(α 3 ) is exactly ∆(α 1 )#∆(α 2 ).

Potential reduction of ( * inc ) to complete intersection curve classes

To prove ( * inc ) in general it may be enough to prove it only for curve classes of the form

α = A n-1 ,
for A an ample divisor class. We prove that such a reduction is possible assuming the continuity of the Blaschke sum, that is to say the continuity of the maps

f Q : {convex bodies in R d } → {convex bodies in R d } , P → P #Q
for every convex body Q in R d where the topology is the Hausdor distance on R d . This reduction requires us to consider NewtonOkounkov bodies constructed with respect to a general maximal rank valuation and not only valuations coming from a ag (see Denition 3.4 of [73120]). Let us rst state our result. Proposition 3.1. Assume the continuity of the Blaschke sum. If for any projective complex variety X, any maximal rank valuation on C(X) and any curves of the form

α 1 = B n-1 1 , α 2 = B n-1 2 on X with B 1 , B 2 ample, the inclusion ∆ v (α 1 )#∆ v (α 2 ) ⊆ ∆ v (α 1 + α 2 ) ( * inc )
holds, then the inclusion ( * inc ) holds for any projective complex variety X, for any maximal rank valuation and for any movable curve classes.

Remark 3.2. Boucksom constructed from any admissible ag satisfying

Y i | Yi-1 is Cartier in Y i-1 a valuation v Y• : C(X) → Z d called

the ag valuation (see Example 2.17 of [73120]).

In particular, it follows from Proposition 3.1 that

∆ Y• (α 1 )#∆ Y• (α 2 ) ⊆ ∆ Y• (α 1 + α 2 ) ( * inc )
holds for any projective complex variety X, for any ag as above and for any movable curve classes.

Remark 3.3. To prove Proposition 3.1, we consider general movable curves and divisors (α i , L i ) i∈{1,2,3} such that

α i = L i n-1 and α 3 = α 1 + α 2 .
In Denition 3.4 of [73120], Boucksom generalized the notion of NewtonOkounkov bodies associated to a ag, to NewtonOkounkov bodies associated to any valuation on C(X). These NewtonOkounkov bodies are dened up to translation. More precisely, xing a line bundle L, a choice of section of L provides an inclusion H 0 (X, L) ⊂ C(X) and thus a NewtonOkounkov body. A dierent choice of section leads to a translated NewtonOkounkov body. As C(X) is a birational invariant, these NewtonOkounkov bodies, dened up to translation are xed under birational maps.

Consequently, we need to nd some suciently good common Fujita approximations of L 1 , L 2 , L 3 such that the curves α i are also approximated. This is the aim of the following lemma which is the argument of [FL17] Theorem 6.22 and which we resume and adapt to the case of several divisors here for the convenience of the reader. Lemma 3.4. Consider movable Cartier divisors L 1 , L 2 , L 3 on a complex projective variety X. Fix an ample divisor H on X.

Then, for any m ∈ N >0 , there exists a birational map π m : X πm → X and ample divisor classes A 1,m , A 2,m and A 3,m such that the following properties hold.

P1: π * m L i -A i,m is pseudo-eective for all i ∈ {1, 2, 3} ; P2: vol(A i,m ) > vol(L i ) -1
m for all i ∈ {1, 2, 3} ; P3: For any ε > 0, for m large enough and for all i ∈ {1, 2, 3}, we have

π * m ( L n-1 i -εH n-1 ) ≤ A n-1 i,m ≤ π * m (( L n-1 i ) .
Proof. Applying Proposition 3.7 of [START_REF] Lehmann | Comparing numerical dimensions[END_REF] to each L i , there exist eective divisors G i so that for any suciently large m there is a smooth birational model

φ i,m : X φi,m → X
and a big and nef divisor N i,m on X φi,m such that

P σ (φ * i,m L i ) - 1 m φ * i,m G i ≤ N i,m ≤ P σ (φ * i,m L i ) , (A) 
where P σ (.) denotes the positive part of the σ-decomposition of divisors (see [START_REF] Nakayama | Zariski-decomposition and abundance[END_REF]). Because G i does not depend on m in (A), we can further require that G i is eective and ample. Equation (A) implies that (φ i,m , N i,m ) satises Property P2 and P1 respectively.

Consider π m : X πm → X the projection map of a common resolution of φ 1,m , φ 2,m and φ 3,m . Denote by A i,m a small perturbation of the pull back of N i,m to X πm which is ample and still satises Properties P1 and P2.

We now prove that it will also satisfy Property P3. Fix ε > 0. Take m large enough such that L i -1 m G i are pseudo-eective. By Lemma 6.21 of [START_REF] Fulger | Zariski decompositions of numerical cycle classes[END_REF], the positive product satises

π * L n-1 = π * L n-1 ,
for any birational morphism π and big divisor L. Moreover by Proposition 4.13 of [START_REF] Lehmann | Comparing numerical dimensions[END_REF], the positive product is invariant under replacing a divisor by its positive part

L n-1 = P σ L n-1 .
We thus have that

φ * i,m L i - 1 m G i n-1 = P σ φ * i,m L i - 1 m G i n-1 ,
and since φ * i,m G i is big and nef, we have

P σ (φ * i,m L i ) -1 m φ * i,m G i ≥ P σ (φ * i,m (L -1 m G i ))
and consequently

φ * i,m L i - 1 m G i n-1 ≤ P σ (φ * i,m L i ) - 1 m φ * i,m G i n-1 ≤ N n-1 i,m .
Similarly, we obtain

N n-1 i,m ≤ P σ (φ * i,m L i ) n-1 = φ * i,m L n-1 i .
Choosing m suciently large, we may ensure that εH -

(L n-1 i -(L -1 m G) n-1
) is movable by continuity of the positive product. Its pull back by φ i,m is again movable and we have that

φ n-1 i,m (α i -εH) ≤ N n-1 i,m ≤ φ * i,m α i . (B)
To prove that (B) remains true on any higher birational model π, it is enough to verify that (A) still holds under the pull back by π: the left hand side follows from

π * P σ (L i ) ≥ P σ (π * L) ,
and the right hand side comes from Proposition III.1.14 of [START_REF] Nakayama | Zariski-decomposition and abundance[END_REF]. By continuity of the positive product, (B) stays valid under small perturbation. We have thus proved that (π m , A 1,m , A 2,m , A 3,m ) satisfy P3.

Proof of Proposition (3.1). We start with movable curve classes α 1 , α 2 and α 3 = α 1 + α 2 which are non negative with respect to M and which induce by Theorem 1.2 three big and movable divisor classes L 1 , L 2 and L 3 satisfying

α i = L n-1 i .
Fix an ample divisor H on X for which we apply Lemma 3.4.

By Property P1, considering the canonical section s of π * m L i -A i,m , each section of O Xπ m (kA i,m ) multiplied by s gives rise to a section of O Xπ m (kπ * m L i ) and we then have that

∆ v (π * m L i ) ⊇ ∆ v (A i,m ) for i = 1, 2, 3 .
By Boucksom's construction (see Remark 3.3), translation classes of Newton-Okounkov bodies are birational invariants. Thus the NewtonOkounkov bodies of π * m L i coincide for all m, up to translation.

Taking into account Property P2, Proposition 1.11 which indicates the continuity of NewtonOkounkov bodies, we obtain that ∆ v (A i,m ) converge to the convex body

∆ v (π * m L i ) = ∆ v (α i ). Using Property P3, it follows that A n-1 1,m + A n-1 2,m and A n-1 3,m both converge to α 3 when m tends to ∞.
Finally we supposed that the inclusion

∆ v (A n-1 1,m + A n-1 2,m ) ⊇ ∆ v (A 1,m )#∆ v (A 2,m ) holds, this induces the inclusion for the movable classes α 1 , α 2 , α 3 ∆ v (α 3 ) = lim m→∞ ∆ v (A n-1 1,m + A n-1 2,m ) ⊇ lim m→∞ (∆ v (A 1,m )#∆ v (A 2,m )) = ∆ v (α 1 )#∆ v (α 2 ) .

NewtonOkounkov bodies for curve classes on projective bundles over curves

In this section, we plan to give a complete description of NewtonOkounkov bodies of curve classes on a projective bundle over a curve. First we will recall some generalities on projective bundles over curves and the cones of divisor and curve classes.

In [START_REF] Montero | Newton-Okounkov bodies on projective bundles over curves[END_REF] Montero calculates the precise form of NewtonOkounkov bodies of divisors on projective vector bundles over curves. We summarise the relevant facts and explain how to see the positivity of a divisor by means of its NewtonOkounkov body.

Generalities on projective bundles over curves

Denition 4.1 (See [START_REF] Hartshorne | Algebraic geometry[END_REF] Page 160). Given a vector bundle E on a curve C, the projectivisation of E is X = Proj(Sym • E) where the symmetric algebra Sym • E is the graded O C -algebra given by

Sym • E(U ) = m∈N H 0 (U, E ⊗m ) .
The power of this denition is in the following proposition. Proposition 4.2. Denote the natural bundle map by π : X → C. The variety X carries a natural line bundle O X (1) of quotients by hyperplanes in

F = π -1 (p) ⊆ X, satisfying π * (O X (k)) = Sym k E for all k ∈ N .
Let us recall the intersection ring of a projective bundle over a curve. Proposition 4.3. Set χ = O X (1) and let f = π -1 (q) be the ber of a point. Every divisor on X can be written in the form D = a(χ -tf ) for some real a and t. More precisely, the intersection ring of

X A(X) = r i=0 A i (X)
is a graded R-algebra with multiplication induced by the intersection form and generated in degree 1 by χ and f with relations

f 2 = 0, χ r = d • [pt] and χ r-1 • f = [pt] ,
where [pt] denotes the class of a point and d is the degree of rst Chern class c 1 (E).

Remark 4.4. If X is a projectivized splitting vector bundle

P(O P1 (a 1 ) ⊕ ... ⊕ O P1 (a r ))
over P 1 then X is a toric variety and we can recover its intersection ring using toric theory (see Example 7.3.5 and Theorem 12.5.3 of [START_REF] Cox | Toric varieties[END_REF]).

A way to make the study of vector bundles easier is to only look at semistable vector bundles. This requires the denition of slope. Denition 4.5. Consider a curve C, a vector bundle (E, π) on C of rank r and degree

d = deg(c 1 (E)) and consider X = Proj(Sym • E) its projectivisation.
We denote by µ(E) the slope µ(E) = d/r of E (See [Har77] Page 52).

Denition 4.6. A semistable vector bundle is a vector bundle E such that for every

subbundle Y ⊆ E we have µ(Y ) ≤ µ(E) .
The HarderNarasimhan ltration enables us to decompose E into semistable vector bundles.

Denition 4.7. The HarderNarasimhan ltration of E is the unique increasing ltration of E by sub-bundles

HN • (E) : 0 = E l ⊆ E l-1 ⊆ ... ⊆ E 1 ⊆ E 0 = E
such that each of the quotients E i-1 /E i satises the following conditions:

1. Each quotient E i-1 /E i is a semistable vector bundle ; 2. µ(E i-1 /E i ) < µ(E i /E i+1 ) for all i ∈ {1, ..., l -1} .
Notation 4.8. We will denote by µ i the slope and r i the rank of the quotient E i-1 /E i . We dene numbers σ 1 ≥ σ 2 ≥ ... ≥ σ r by (σ 1 , ..., σ r ) = (µ l , ..., µ l r l times , µ l-1 , ..., µ l-1 r l-1 times , ..., µ 1 , ..., µ 1 r1 times ) .

Cones of divisor and curve classes on projective bundles over curves

A precise description of the cones of cycle classes was given by Fulger in [START_REF] Fulger | The cones of eective cycles on projective bundles over curves[END_REF] and FulgerLehmann in [START_REF] Fulger | Zariski decompositions of numerical cycle classes[END_REF]. We will concentrate on the cones of divisor and curve classes

Nef k (X) ⊂ Mov k (X) ⊂ E k (X)
with k ∈ {1, n -1}.

The description of the nef cones is due to Fulger ([Ful11] Lemma 2.1). The pseudoeective cone of divisors was computed by Nakayama ([Nak04] Corollary IV.3.8.). Fulger generalised it in [START_REF] Fulger | The cones of eective cycles on projective bundles over curves[END_REF] Theorem 1.1 computing the pseudo-eective cone for any codimension. In [START_REF] Fulger | Zariski decompositions of numerical cycle classes[END_REF] Proposition 7.1, Fulger and Lehmann gave a similar description of the movable cone of cycle classes of X.

Proposition 4.9. The eective, movable and nef cones of divisor and curve classes on a projective bundle P(E) over a curve C as above are given by

                 E 1 (X) = f , χ -σ 1 f , Mov 1 (X) = f , χ -σ 2 f , Nef 1 (X) = f , χ -σ r f , E 1 (X) = χ r-2 • f , χ r-1 -(d -σ r )χ r-2 • f , Mov 1 (X) = χ r-2 • f , χ r-1 -(d -σ 1 )χ r-2 • f , Nef 1 (X) = χ r-2 • f , χ r-1 -(r -1)σ r χ r-2 • f .
These data are summarized in the coming pictures. Let us rst introduce a last cone of positivity: C(X).

Denition 4.10. We dene C(X) to be the cone generated by complete intersections of a unique nef divisor C(X) = Cone( B r-1 | B big and nef ) .

In the case of projective bundles over curves, this cone can be described explicitly.

Proposition 4.11. The cone C(X) is the set of curves of the form χ r-1 -sχ r-2 • f with s < (r -1)σ r . Moreover C(X) coincides with the complete intersection cone.

C(X) = χ r-1 -(r -1)σ r χ r-2 • f, χ r-2 • f = Cone( B 1 • ... • B r-1 | B i big and nef for all i ) E 1 (X) Mov 1 (X) Nef 1 (X) f χ -σ r f χ -σ 2 f χ -σ 1 f N S 1 (X) : E 1 (X) Mov 1 (X) = Nef 1 (X) C(X) χ r-2 • f χ r-1 -(r -1)σ r χ r-2 • f χ r-1 -(d -σ 1 )χ r-2 • f χ r-1 -(d -σ r )χ r-2 • f N S 1 (X) :
Proof. Any nef divisor B has the form B = a(χ -tf ) where t ≤ σ r . It follows that

B r-1 = a r-1 χ r-1 -(r -1)tχ r-2 • f and (r -1)t ≤ (r -1)σ r . Conversely if s < (r -1)σ r then we can write χ r-1 -sχ r-2 • f = B r-1 ,
where B = χ -s r-1 f is a big and nef divisor. For the second part of the proposition, each B i can be written in the form

B i = a i (χ -t i f )
with t i < σ r and we have that

B 1 • ... • B r-1 = r-1 i=1 a i χ r-1 - r-1 i=1 t i χ r-2 • f where r-1 i=1 t i < (r -1)σ r .
Remark 4.12. By [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] Theorem 0.2, the movable and the nef cone of curve classes coincide Mov 1 (X) = Nef 1 (X) .

Remark 4.13. Recalling that the intersection ring of X is

A(X) = Z[χ, f ]/(f 2 , χ r+1 , χ r -dχ r-1 • f ) ,
the form of the cones of curve classes follows from the form of the cones of divisor classes.

Indeed by [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] Theorem 0.2, the dual cone to the pseudo-eective cone of divisors E 1 (X) = f, χ -σ 1 f is the movable cone of curves and

f • (χ r-1 -tχ r-2 • f ) = χ r-1 • f (χ -σ 1 f ) • (χ r-1 -tχ r-2 • f ) = (d -t + σ 1 )χ r-2 • f .
In the same way we may deduce from the duality between the eective cone of curves and the cone of nef divisors the form of the latter.

NewtonOkounkov bodies of divisor classes

In [START_REF] Montero | Newton-Okounkov bodies on projective bundles over curves[END_REF], Montero give the form of the NewtonOkounkov body of any divisor associated to a linear ag on a projective bundle over a curve. We recall everything here.

Denition 4.14. A complete ag of subvarieties Y • on the projective vector bundle P(E)

is called a linear ag if for some point q ∈ C and p ∈ P(E) 

Y 0 = P(E) , Y 1 = π -1 (q) P r-1 , Y i P r-i is a linear subspace of Y i-1 ∀i ∈ {1, ...,
• (E) : 0 = E l ⊆ E l-1 ⊆ ... ⊆ E 1 ⊆ E 0 = E .
There is a (possibly partial) ag of linear subvarieties

P((E/E 1 )| q ) ⊆ P((E/E 2 )| q ) ⊆ ... ⊆ P((E/E l-1 )| q ) ⊆ P(E| q ) = π -1 (q) ⊆ P(E) .
We will consider linear ags that are compatible with the HarderNarasimhan ltration of E in the sense that they complete the previous ag. Denition 4.15. A linear ag Y • on P(E) over q ∈ C is said to be compatible with the

HarderNarasimhan ltration of E if

Y rkEi +1 = P((E/E i )| q ) P r-rkEi-1 ⊆ P(E) for every i ∈ {1, ..., l} .

We may decompose the full ag variety parameterising all complete linear ags into Schubert cells. The form of a NewtonOkounkov body associated to a complete linear ag will depend on the Schubert cell of the ag. Denition 4.16. If we denote by F r the full ag variety parameterising all complete linear ags on π -1 (q) f P r-1 , then there is a decomposition of F r into Schubert cells Consider homogeneous coordinates [x 1 : ..., :

x r ] on P r-1 and let Y ω • be the complete linear ag dened by

Y ω i = f * {x 1 = ... = x i = 0} ⊂ Y 1 = π -1 (q) .
There is an action of P GL r (C) on F r via the natural action on the standard basis points e 1 , ..., e r ∈ P r-1 . The Schubert cell Ω ω is dened to be the orbit

Ω ω = B • Y ω • , ν 1 ν 2 ν 3 ν 1 = σ 1 -t ν 1 = σ 2 -t ν 1 = σ 3 -t ω = (1 3 2) ν 1 ν 2 ν 3 ν 1 = σ 1 -t ν 1 = σ 2 -t ν 1 = σ 3 -t ω = (1 2 3) ν 1 ν 2 ν 3 ν 1 = σ 1 -t ν 1 = σ 2 -t ν 1 = σ 3 -t ω = (1 3)
From now on we will assume that our ag is in the Schubert cell corresponding to the permutation ω = (1 2 ... r).

Remark 4.20. Since ∆(aD) = a∆(D), the above enables us to calculate the form of any NewtonOkounkov body.

It will be useful to think of NewtonOkounkov bodies as a succession of slices.

Denition 4.21. The i th slice of the NewtonOkounkov body

∆(D) = ∆ a(χ -tf ) is the intersection S i ∆(D) = R n-1 + × a[σ i+1 -t, σ i -t] ∩ ∆(D) .
The nal slice will be denoted fs(∆(D)).

Example 4.22. Here are two examples in dimension 4.

ν 1 ν 2 ν 3 ν 4 ν 1 = 0 ν 1 = σ 4 -t ν 1 = σ 3 -t ν 1 = σ 2 -t ν 1 = σ 1 -t nal slice third slice second slice rst slice ν 1 = σ 2 -t ν 1 = σ 1 -t ν 1 = σ 3 -t = 0 ν 1 ν 2 ν 3 ν 4 second slice rst slice g As D is not nef, we have fs(∆(D))=∅ D = χ -tf with σ 4 > t D = χ -tf with t = σ 3
Remark 4.23. The intersection of ∆(D) with the hyperplane ν 1 = σ j -t is the intersection of two simplexes

(ν 2 , ..., ν r ) ∈ ∆ r-1 r i=2 ν i σ 1 -σ i σ 1 -σ j ≤ 1 .
Remark 4.24. We can translate the characterisations of the positivity (Proposition 4.9) of a divisor in terms of its NewtonOkounkov body.

A divisor is nef if all the slices of its NewtonOkounkov body are non-empty.

A divisor is eective if its NewtonOkounkov body possesses a slice (i.e. is nonempty).

A divisor is movable if its NewtonOkounkov body contains at least the entire rst slice. In particular, if σ 1 = σ 2 and D = χ -tf is an eective divisor then we have σ 1 = σ 2 ≥ t, the rst slice is then both empty and full and consequently D is movable.

ν 1 ν 2 ν 3 ν 1 = σ 1 -t ν 1 = σ 2 -t ν 1 = σ 3 -t ∆(D) D is nef ν 1 ν 2 ν 3 ν 1 = σ 1 -t ν 1 = σ 2 -t ∆(D) D is movable ν 1 ν 2 ν 3 ∆(D) D is big

NewtonOkounkov bodies of movable curve classes

In this subsection we describe NewtonOkounkov bodies of movable M-positive curve classes. By Theorem 1.2 every movable curve class α = χ r-1 -sχ r-2 • f with M(α) > 0 can be uniquely written in the form α = L r-1 , where L is movable .

Proposition 4.25. The movable Zariski decomposition of a movable curve class α =

χ r-1 -sχ r-2 • f is α = (χ -tf ) r-1 .
where for some t ≤ σ 2 . Moreover, if α belongs to C(X) then t = s r-1 . The NewtonOkounkov body of α is then ∆(α) = ∆(L) = ∆ (χ -tf ) .

5 The inclusion ∆(α 1 )#∆(α 2 ) ⊆ ∆(α 1 + α 2 ) on projective bundles over curves Consider a projective bundle X over a curve. In this section we would like to nd conditions on curve classes α 1 , α 2 under which the inclusion ∆(α 1 )#∆(α 2 ) ⊆ ∆(α 1 + α 2 ) holds using the movable Zariski decomposition. We start by computing the Blaschke sum of the Okounkov bodies of two nef divisors.

Blaschke sum of NewtonOkounkov bodies of nef divisors

Proposition 5.1. Consider some NewtonOkounkov bodies P = ∆ Y• χ -t 1 f and Q = ∆ Y• a(χ -t 2 f ) associated to big and nef divisors (i.e. with σ r ≥ t 1 , t 2 ). The Blaschke sum R of P and Q is then given by

R = P #Q = ∆ Y• b(χ -t 3 f ) ,
where t 3 = t1+a r-1 t2 1+a r-1 and b = (1 + a r-1 ) 1 r-1 .

Before starting the proof we dene the common component and the nal slice of a NewtonOkounkov body associated to a big and nef divisor.

Notation 5.2. The volume of the face of P with exterior normal vector u will be denoted by vol(P, u). We denote by

v =         -1 σ 1 -σ 2 σ 1 -σ 3 . . . σ 1 -σ r        
the normal vector of the hyperplane

H : ν 1 + r i=2
ν i (σ ω(r) -σ ω(i-1) ) = σ ω(r) -t (see Remark 4.18). We denote by P i the i th slice of P .

Denition 5.3. Let P = ∆ Y• a(χ -tf ) be the NewtonOkounkov body associated to a big and nef divisor. We dene the common component and the nal slice of P as cc(P ) = P ∩ ([σ 1 -t, σ r -t] × R r-1 ) and fs(P ) = P ∩ ([σ r -t, 0] × R r-1 ) .

With these denitions in mind, we may write P as P = glueing F (cc(P ),-ν1),F (fs(P ),ν1) cc(P ); fs(P ) .

In other words, the polytope P is the union of cc(P ) and τ (fs(P )) where τ is the unique translation identifying F (cc(P ), -ν 1 ) and F (fs(P ), ν 1 ). Proof of Proposition (5.1). We claim that it is possible to decompose P #Q into the following gluing P #Q = glueing cc(P )#cc(Q); fs(P )#fs(Q) .

The main task is to prove that it is well-dened. As P = ∆(χ -t 1 f ) and Q = ∆ a(χ -t 2 f ) are nef, their common components are multiple of each other cc(Q) = a × cc(P ). Furthermore, by Proposition 2.9 cc(P )#cc(Q) = b × cc(P ) with b = (1 + a r-1 ) 1 r-1 .

  r} and Y r = {p} . We need the notion of complete linear ag Y HN • compatible with the ltrations of HarderNarasimhan. Consider the HarderNarasimhan ltration of E HN

ν 1

 1 = σ 4 -t ν 1 = σ 3 -t ν 1 = σ 2 -t ν 1 = σ 1 -t nalslice of P common component of P P Remark 5.4. Two nef divisors have the same common component up to homothety.
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where B is the subgroup of P GL r (C) that xes a reference ag Y HN • . We say that a complete linear ag Y • on P(E) over q ∈ C belongs to a Schubert cell Ω ω if the induced complete linear ag Y • | Y1 belongs to Ω ω .

To be able to dene the decomposition into Schubert cells we needed a reference ag Y HN • . The following theorem of Montero tells us that as long as the reference ag is compatible with the HarderNarasimhan ltration, NewtonOkounkov bodies do not depend on the choice of reference ag.

Theorem 4.17. Let X be the projectivisation of a vector bundle E on a curve C and Y • be any linear ag. Consider also a reference ag compatible with the HarderNarasimhan ltration of E and the decomposition of the full ag variety on Y 1 into Schubert cells

Then the NewtonOkounkov body of

where ∆ r-1 is the unitary simplex of dimension r -1 and for some permutation ω corresponding to the Schubert cell of the ag Y • .

Proof. See Theorem 5.8 and Corollary 5.9 [START_REF] Montero | Newton-Okounkov bodies on projective bundles over curves[END_REF].

Remark 4.18. The hyperplane

splits R r into two half spaces and the NewtonOkounkov body P is [0, +∞[×∆ r-1 intersected with one of them.

Moreover, in Proposition B of [START_REF] Montero | Newton-Okounkov bodies on projective bundles over curves[END_REF], Montero notes that the vector bundle E is semistable if and only if the σ i 's are equal and H is 'straight' and has equation ν 1 = σ ω(r) -t. In particular, the NewtonOkounkov body associated to any eective divisor

Example 4.19. Here are representations of all NewtonOkounkov bodies for E of low rank. rk(E) = 2 :

The nal slices are given by fs

where ∆ r-1 is the r -1-dimensional simplex of vertices (0, 0, ..., 0) , (1, 0, ..., 0) , (0, 1, 0, ..., 0) , . . . , (0, ..., 0, 1) .

By Minkowski's theorem the Blaschke product fs(P )#fs(Q) is the unique polytope R whose faces have volume

Note that vol F R, u = vol F fs(P ), u + vol F fs(Q), u for u = r i=2 ν i follows from the previous equations: any polytope S satises u∈S 1 F (S, u)u = 0.

Consequently the Blaschke product fs(P )#fs(Q) is given by

The faces F (cc(P )#cc(Q), -ν 1 ) and F (fs(P )#fs(Q), ν 1 ) coincide so that the polytopes cc(P )#cc(Q) and fs(P )#fs(Q) can be glued and G := glueing cc(P )#cc(Q); fs(P )#fs(Q) is well dened. It is also convex.

It remains to prove that G = P #Q. If S is any polytope we denote by S j the j th slice of S. Let F be a face of G and let u be the exterior normal vector of F . Then u is either equal to 1. ν 1 and in that case

It follows that G = P #Q. Now since we have that cc(P )#cc(Q) = b × cc(P ) and fs(P

the gluing G is also equal to ∆ b(χ -t 3 f ) . This completes the proof.

Proof of the inclusion ( * inc ) in the case

Every curve class α = c 1 χ r-1 + c 2 χ r-2 • f can be written in the form

Let A 1 = χ -t 1 f and A 2 = a(χ -t 2 f ) be two ample divisors and let α 1 = A n-1 1 and α 2 = A n-1 2 be their associated curve classes. The ample divisor A 3 satisfying α 3 = A n-1 3 where α 3 = α 1 + α 2 is equal to

We can now prove Theorem 5.5.

Theorem 5.5. Let X be a projective bundle over a curve. Consider two curves α 1 , α 2 in C(X) ie of the form α i = A n-1 i with A i ample divisor on X. Then the inclusion ( * inc ) holds and is an equality

Proof. We may write α 1 = a 1 (χ -t 1 f ) and α 2 = a 2 (χ -t 2 f ). Set a = a2 a1 and apply Proposition 5.1 to P = ∆( 1 a1 α 1 ) = ∆(χ -t 1 f ) and Q = ∆( 1 a1 α 2 ) = ∆ a(χ -t 2 f ) . We obtain

where t 3 = t1+a r-1 t2 1+a r-1 and b = (1+a r-1 ) 1 r-1 . As α 1 +α 2 = a 1 ( 1 a1 α 1 + 1 a1 α 2 ) = ba 1 (χ-t 3 f ) we have ∆(α 1 )#∆(α 2 ) = ∆(α 1 + α 2 ) .