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ABSTRACT
Using the first-order normalized equations describing the heliocentric cometary motion per-

turbed by the Galactic tides, we identify ‘stationary solutions’ with constant values of the

eccentricity, inclination, argument of perihelion and longitude of the ascending node in the

reference frame rotating with the Galaxy. The families found involve circular orbits, orbits in

the Galactic equatorial plane, rectilinear orbits normal to the equatorial plane, elliptic orbits

symmetric with respect to the direction to the Galactic Centre or to its perpendicular, and

asymmetrically oriented elliptic orbits. Linear stability of the stationary solution is studied an-

alytically and confirmed by numerical experiments. Most, but not all, of the unstable solutions

prove chaotic with the Lyapunov times at least 100 Myr.

Key words: methods: analytical – celestial mechanics – comets: general – Oort Cloud.

1 I N T RO D U C T I O N

Galactic tides are one of the essential factors determining the evo-

lution of cometary orbits int the Oort cloud. Many studies were

devoted to the understanding of its short- and long-term effects

(Byl 1983; Heisler & Tremaine 1986; Fouchard et al. 2006). The

Galactic tides are characterized by two components: a dominant one

normal to the the Galactic plane (so called Galactic disc tides), and

a 10 times weaker radial component perpendicular to the former.

Most of the previous studies, describing analytically the influence

of Galactic tides, used the first-order normalized disc tide model.

This simplification leads to an elegant Hamiltonian system having

effectively one degree of freedom; such system becomes integrable

and admits an explicit solution (Matese & Whitman 1989, 1992;

Breiter, Dybczyński & Elipe 1996; Breiter & Ratajczak 2005).

Of course, the validity of the averaged disc tides model is limited

by the two fundamental assumptions: the axial symmetry (i.e. the

absence of radial tide) and the exclusion of resonances between the

orbital period and the frequency of eccentricity or the argument of

perihelion. If any of these assumptions are not justified, the system

may occur to be chaotic as shown in the simulations presented by

Brasser (2001).

The work of Brasser (2001) did not attempt to explain the origin of

chaos for particular orbit types. Such explanation requires a global

study of the phase space focused on locating stable and unstable

periodic orbits. This paper is a first step towards such study. We still

use the first-order averaged system, but we discuss the complete

Galactic tide. This model no longer admits a rotational symme-

try with respect to the Galactic poles and by having 2 d.o.f. it is

�E-mail: breiter@amu.edu.pl (SB); fouchard@imcce.fr (MF); astromek@

amu.edu.pl (RR)

non-integrable. However, we found a family of stationary solutions

with constant mean eccentricity and inclination that have not been

reported earlier.

Section 2 recalls the equations of motion known from earlier

papers (Mikkola & Nurmi 2006; Breiter et al. 2007). The existence

of different families of stationary orbits is investigated in Section 3.

Their stability is discussed in Section 4 and verified by numerical

simulations presented in Section 5.

2 E QUAT I O N S O F M OT I O N

Let us consider the motion of a comet in a rotating, right-handed,

heliocentric reference frame Ox1x2x3. Its fundamental plane Ox1x2 is

parallel to the Galactic disc, the axis Ox3 points towards the North

Galactic Pole and the Ox1 axis is directed towards the Galactic

Centre. The reference frame rotates around the axis Ox3 with a

constant angular rate �0 < 0.

The Hamiltonian function for a comet subjected to the Galactic

tide in the rotating frame is given by

H = H0 + H1, (1)

H0 = 1

2

(
X 2

1 + X 2
2 + X 2

3

) − μ(
x2

1 + x2
2 + x2

3

)1/2
, (2)

H1 = �0 (x2 X1 − x1 X2) + 1

2

3∑
i=1

Gi x
2
i , (3)

where (x1, x2, x3) and (x1, x2, x3) are the positions of the comet in

the rotating frame and its canonically conjugate momentum, respec-

tively. As usually in problems of one mass moving in a given force

field, we use the Hamiltonian divided by the comet’s mass, so the

momentum has the dimension of velocity. Yet, due to the rotation of
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the reference frame, X1 and X2 differ from ẋ1 and ẋ2. This remark is

important, because next we will use the orbital elements that are de-

fined by means of usual two body formulae, but with the velocities

ẋ1 and ẋ2 directly replaced by X1 and X2.

The physical constants appearing in the Hamiltonian involve the

heliocentric gravitational parameter μ = G M� and parameters Gi

related to the Oort constants of our Galaxy. Following Levison,

Dones & Duncan (2001), we adopt

G2 = −G1 = 7.07 × 10−16 yr−2,

G3 = 5.65 × 10−15 yr−2,

�0 = −√
G2. (4)

These numerical values are actually accurate up to few per cent.

Averaging the Hamiltonian H with respect to the mean anomaly

(i.e. normalizing it with respect to H0), we obtain the reduced func-

tion 〈H1〉 describing the motion in terms of mean orbital elements.

Similarly to Breiter et al. (2007), we express it in terms of the mean

Laplace vector e and the scaled angular momentum vector h whose

components are related to the Keplerian elements

e ≡
(

e1

e2

e3

)
= e

(
cos ω cos � − c sin ω sin �

cos ω sin � + c sin ω cos �

s sin ω

)
, (5)

h ≡
(

h1

h2

h3

)
= η

(
s sin �

−s cos �

c

)
, (6)

where e is the eccentricity, η = √
1 − e2, s = sin i, c = cos i , where

i stands for the inclination, ω designates the argument of perihelion,

and � is the longitude of the ascending node measured from the

Galactic Centre direction.

Using the ‘vectorial elements’

v = (h1, h2, h3, e1, e2, e3)T, (7)

letting n stand for the mean motion

n =
√

μ

a3
, (8)

a function of the mean semimajor axis a, and changing the indepen-

dent variable from time t to τ , such that

dτ

dt
= G3

n
, (9)

one obtains the averaged Hamiltonian 〈H1〉 in the form

〈H1〉 = na2

[
5

4
e2

3 + 1

4
h2

1 + 1

4
h2

2+

+ ν

(
−5

4
e2

1 + 5

4
e2

2 + 1

4
h2

1 − 1

4
h2

2 − n �−1
0 h3

)]
, (10)

where all the constant terms have been dropped and we introduced

a dimensionless parameter

ν = �2
0

G3

= G2

G3

≈ 0.125. (11)

The modified Hamiltonian

K = −〈H1〉
n a2

(12)

can be used to generate non-canonical equations of motion using

the Lie–Poisson bracket described in Breiter et al. (2007). Finally,

the equations of motion are

h′
1 = −5

2
(1 − ν) e2 e3 + 1 − ν

2
h2 h3 + nν

�0

h2, (13)

h′
2 = 5

2
(1 + ν) e1 e3 − 1 + ν

2
h1 h3 − nν

�0

h1, (14)

h′
3 = ν (h1 h2 − 5 e1 e2), (15)

e′
1 = −4 + ν

2
h2 e3 + 5

2
ν h3 e2 + nν

�0

e2, (16)

e′
2 = 4 − ν

2
h1 e3 + 5

2
ν h3 e1 − nν

�0

e1, (17)

e′
3 = 1 − 4 ν

2
h1 e2 − 1 + 4 ν

2
h2 e1, (18)

where the ‘prime’ designates the derivative with respect to τ . Equa-

tions (13)–(18) admit three integrals of motion: K = constant, and

two geometrical identities

h · e = 0, h2 + e2 = 1. (19)

Equation (19) indicates that we use a redundant set of variables

which is a usual price for non-singularity of the system.

3 L O C AT I O N O F S TAT I O NA RY O R B I T S

Stationary orbits will exist if we can find the values of vectorial

elements v defining the critical point of the system (13)–(18). In

other words, all the right-hand sides of the equations of motion

should be equal to 0.

3.1 Circular orbits

The most obvious kind of stationary solution is circular orbits; in-

deed, setting e = 0, we find e′ = 0 from equations (16)–(18). The

condition h′ = 0 then implies(
1 − ν

2
h3 + nν

�0

)
h2 = 0, (20)

(
1 + ν

2
h3 + nν

�0

)
h1, = 0, (21)

ν h1 h2 = 0. (22)

and it can be satisfied in the following three cases.

(i) Circular orbits C0, parallel to the Galactic disc plane:

h1 = h2 = s = 0, h3 = ±1. (23)

We will distinguish the two families: prograde C0p and retrograde

C0r with h3 = 1 and h3 = −1, respectively.

(ii) Circular orbits with the line of nodes directed towards the

Galactic Centre, to be designated by C1:

h1 = 0, h2 = ±s 
= 0, h3 = c = − 2n

�0

ν

1 − ν
> 0. (24)

In terms of the mean Keplerian elements, the C1 orbits have � = 0

or � = π, when h2 < 0 or h2 > 0, respectively. We do not introduce

a further distinction between these two cases because they prove

dynamically equivalent.

(iii) Circular orbits C2, with the line of nodes directed perpen-

dicular to the Galactic Centre:

h1 = ±s 
= 0, h2 = 0 h3 = c = − 2n

�0

ν

1 + ν
> 0. (25)

The longitude of the ascending node for a C2 orbit is either � = 1
2
π

(when h1 > 0) or � = 3
2
π (when h1 < 0).
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The sign of h3 indicates that C1 and C2 orbits are always prograde,

and an obvious condition c < 1 serves to establish lower bounds on

the semi-axes of orbits belonging to these two families. Using the

third Kepler’s law and equation (24), we find that C1 orbits exist

only when

a > aC1
min =

[
4 μ

�2
0

ν2

(1 − ν)2

]1/3

≈ 166 kau. (26)

C2 orbits exist even closer to the Sun, because they must satisfy

a > aC2
min =

[
4 μ

�2
0

ν2

(1 + ν)2

]1/3

≈ 140 kau. (27)

There are no analogous restrictions for C0 orbits, although we can

suspect that aC1
min and aC2

min, where the families C1/C2 merge with C0,

may have some significance as the bifurcation points.

3.2 Rectilinear orbits

In an analogous manner, we can set h = 0 and obtain stationary

rectilinear orbits R with e = 1, normal to the Galactic disc plane

(i.e. e1 = e2 = 0, e3 = ±1). This solution, however, is purely formal

because the averaging process that led to the discussed Hamiltonian

K is not justified for e = 1 and short-period perturbations should

contain singular terms.

3.3 Equatorial orbits

Another special case that leads to a simple stationary solution oc-

curs when we consider orbits in the equatorial plane parallel to the

Galactic disc. Such orbits have h1 = h2 = e3 = 0, and the vectorial

elements are defined as

h =

⎛
⎝ 0

0

±√
1 − e2

⎞
⎠ , e =

(
e cos �

e sin �

0

)
, (28)

where the longitude of perihelion is � = ω + �.

Three equations of motion become trivially h′
1 = h′

2 = e′
3 = 0,

and the remaining three led to the conditions

5 ν e1 e2 = 0, (29)

ν e2

(
5

2
h3 + n

�0

)
= 0, (30)

ν e1

(
5

2
h3 − n

�0

)
= 0. (31)

Setting e1 = e2 = 0, we are brought back to the circular solution

C0 known from Section 3.1. However, still we have the following

two other possibilities.

(i) If the line of apsides is directed towards the Galactic Centre,

we obtain the family D1 with

e1 = ±e 
= 0, e2 = 0, h3 = 2

5

n

�0

= −
√

1 − e2 < 0. (32)

These retrograde orbits, with � = 0 or � = π, exist for

a > aD
min =

(
4 μ

25 �2
0

)1/3

≈ 207 kau. (33)

(ii) If the line of apsides is perpendicular to the Galactic Centre

(� = 1
2
π or � = 3

2
π), the family D2 is defined by

e1 = 0, e2 = ±e 
= 0, h3 = −2

5

n

�0

=
√

1 − e2 > 0. (34)

Similarly to D1, this prograde solution requires a > aD
min.

3.4 Elliptic solutions

The condition h′
3 = 0 is a convenient departure point for the search of

the remaining stationary orbits. Since ν 
= 0, the condition amounts

to

h1 h2 = 5 e1 e2. (35)

Recalling that trivial cases e1 = e2 = 0 and h1 = h2 = 0 has been

already studied, we will follow two possibilities: h1 h2 = 0 and

h1 h2 
= 0.

3.4.1 Symmetric solutions E1

Assuming h1 = 0 in equation (35), we have an apparent choice

between e1 = 0 and e2 = 0. However, e1 = 0 requires also e3 = 0

in equation (14), bringing us back to the equatorial solution. Thus,

h1 = 0 has to be followed by e2 = 0, because then h′
2 = h′

3 = e′
2 =

e′3 = 0 and we have to satisfy only two additional requests derived

from equations (13) and (16). Substituting

h = η (0, −s, c)T, e = ±e (0, c, s)T, (36)

or

h = η (0, s, c)T, e = ±e (0, −c, s)T, (37)

we obtain

5(1 − ν)(1 − η2)c + (1 − ν)η2 c + 2nν �−1
0 η = 0,

(4 + ν)(1 − c2)η + 5ν η c2 + 2nν �−1
0 c = 0, (38)

for all four combinations of angles � ∈ {0, π} and ω ∈ { 1
2
π, 3

2
π}

that led to h1 = e2 = 0.

Solving system (38) is an elementary task, although it can be

further simplified by noting that the solutions must satisfy

η2 = ν2
1 c2, (39)

where

ν1 =
√

5 (1 − ν)

4 + ν
≈ 1.03. (40)

Equations (38) admit two distinct solutions:

η =
√

5

4
± nν1ν

2�0(1 − ν)
, c = ± η

ν1

, (41)

where we choose plus for prograde, and minus sign for retrograde

orbits. The existence of both solutions is restricted by the reality

conditions of the square roots and by the constrains c2 < 1 and

0 < η < 1. Actually, η < 1 implies that c2 < 1 according to equa-

tion (39); similarly η > 0 is equivalent to the statement that the

expression under the square root is positive. Thus, we will use a

single condition 0 < η < 1. The square root in the retrograde case

of equation (41) is always real (�0 < 0 and 1 − ν > 0), but then

we have η > 1 regardless of n, hence we reject the retrograde E1

solution. The prograde E1 solution, defined by equation (41) with

the plus sign, exists for

aE1
min < a < aE1

max, (42)
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where

aE1
min =

(
4μν2

1ν
2

25�2
0(1 − ν)2

)1/3

≈ 57.8 kau, (43)

aE1
max = 5

2
3 aE1

min ≈ 169kau. (44)

and its final definition is

c = 1

ν1

√
5

4
+ nνν1

2�0(1 − ν)
, (45)

e =
√

1 − ν2
1 c2 =

√
−1

4
− nνν1

2�0(1 − ν)
. (46)

Of course, these equations define four orbits with common lines of

nodes and lines of apsides. When a = aE1
max, the family E1 merges

with circular orbits C1 with an inclination I ≈ 14◦ resulting from

c = ν−1
1 ≈ 0.97; on the other extreme, when a = aE1

min, the family

degenerates into rectilinear orbits normal to the Galactic disc plane.

3.4.2 Symmetric solutions E2

If we now assume h2 = 0 in equation (35), the only choice left is

e2 = 0, by the argument similar to that in Section 3.4.1. It means that,

leaving apart degenerate cases, � ∈ { 1
2
π, 3

2
π} and ω ∈ { 1

2
π, 3

2
π},

so we can substitute

h = η (s, 0, c)T, e = ± e (−c, 0, s)T, (47)

or

h = η (−s, 0, c)T, e = ± e (c, 0, s)T, (48)

into the conditions h′
2 = e′

2 = 0 that are not satisfied automatically

by the choice of h2 = e2 = 0. Thus, we obtain

5(1 + ν) (1 − η2) c + (1 + ν) η2 c + 2 nν �−1
0 η = 0,

(4 − ν) (1 − c2) η − 5 ν c2 η + 2 n ν �−1
0 c = 0, (49)

with the property

η2 = ν2
2 c2, (50)

where

ν2 =
√

5(1 + ν)

4 − ν
≈ 1.20. (51)

Two solutions of equation (49) are obtained as

η =
√

5

4
± n ν2 ν

2 �0 (1 + ν)
, c = ± η

ν2

, (52)

with plus and minus signs for prograde and retrograde orbits, re-

spectively. Rejecting retrograde orbits that led to η > 1, we find the

bounds 0 < η < ν−1
2 in terms of the semi-axis a

aE2
min < a < aE2

max, (53)

where

aE2
min =

(
4μν2

2ν
2

25�2
0(1 + ν)2

)1/3

≈ 54.3 kau, (54)

aE2
max = 52/3 aE2

min ≈ 159 kau. (55)

Within these bounds, we have four stationary solutions of the E2

type with

c = 1

ν2

√
5

4
+ nν2ν

2�0(1 + ν)
, (56)

e =
√

1 − ν2
2 c2 =

√
−1

4
− n ν2 ν

2 �0 (1 + ν)
. (57)

If a = aE2
max, the orbits join the circular family C2, having an incli-

nation I ≈ 34◦ (according to the limit value c = ν−1
2 ≈ 0.83). The

lower boundary aE2
min corresponds to rectilinear orbits.

3.4.3 Asymmetric solutions E3

Equation (35) can be also satisfied when neither h1 nor h2 is equal

to zero. The procedure of finding such ‘asymmetric solutions’ can

be outlined as follows. First, we solve equation (35) obtaining h1 =
5e1e2h−1

2 . We then obtain two solutions h2 = ±ν3e2, that satisfy

e′
3 = 0 if

ν3 =
√

5 (1 − 4ν)

(1 + 4ν)
≈ 1.29. (58)

Proceeding to e′
2 = 0, we find h3 as a function of e3 and then

h′
1 = 0 provides e3 as a function of mean motion and Galactic tide

parameters. At this stage, all six equations of motion have right-hand

sides equal to zero regardless of e1 and e2. The two sets of identities

defining stationary solutions are

h1 = ∓5 ν−1
3 e1,

h2 = ∓ν3 e2,

h3 = 2 n

5 �0

± (4 − ν) e3

ν3 ν
> 0,

e3 = ∓n ν3 ν (1 + 4ν)

10 �0 (1 − ν2)
, (59)

where one family is obtained by taking the upper signs in ± or ∓,

and the second one is defined by taking the lower signs. The two

remaining variables can be determined from the constraints (19)

combined with the above formulae for h and e3. Regardless of the

sign taken in equations (59), the two resulting equations are(
1 + 25 ν−2

3

)
e2

1 + (
1 + ν2

3

)
e2

2 = K1, (60)

5 e2
1 + ν2

3 e2
2 = K2, (61)

where

K1 = 1 − n2 ν2
[
225 + ν2

3 (1 + 4ν)2
]

[
10 �0(1 − ν2)

]2
, (62)

K2 = 3n2ν2
3ν

2 (1 + 4ν)

20 �2
0 (1 − ν2)2

. (63)

Their solution consists of four pairs

e1 = ±
√

K2

(
1 + ν2

3

) − K1 ν2
3

4
(
ν2

3 − 5
) , (64)

e2 = ±
√

K2

(
1 + 25 ν−2

3

) − 5K1

4
(

5 − ν2
3

) , (65)

with all combinations of signs allowed, because e1 and e2 are deter-

mined by the intersection of two different ellipses.

The existence of these asymmetric stationary solutions E3 de-

pends on the reality conditions of e1 and e2 that led to the bounds

aE3
min < a < aE3

max, (66)

where aE3
min ≈ 138 kau refers to the case of e2 = 0, whereas for

aE3
max ≈ 147 kau we have e1 = 0.
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4 L I N E A R S TA B I L I T Y A N D B I F U R C AT I O N S
O F E QU I L I B R I A

Having identified stationary solutions, we have to determine their

stability. Using elementary tools, we first investigate the linear sta-

bility of equilibria using the variational equations

δ′ = M δ, (67)

derived from equations (13)–(18). The constant matrix M

M =
(

P1 Q1

Q2 P2

)
, (68)

is composed of four blocks

P1 =

⎛
⎜⎝

0 1−ν

2
h3 + n ν

�0

1−ν

2
h2

− 1+ν

2
h3 − n ν

�0
0 − 1+ν

2
h1

ν h2 ν h1 0

⎞
⎟⎠ , (69)

Q1 =

⎛
⎝ 0 − 5 (1−ν)

2
e3 − 5 (1−ν)

2
e2

5 (1+ν)
2

e3 0 5 (1+ν)
2

e1

−5 ν e2 −5 ν e1 0

⎞
⎠ , (70)

P2 =

⎛
⎜⎝

0 5
2
ν h3 + n ν

�0
− 4+ν

2
h2

5
2
ν h3 − n ν

�0
0 4−ν

2
h1

− 1+4ν

2
h2

1−4ν

2
h1 0

⎞
⎟⎠ , (71)

Q2 =

⎛
⎝ 0 − 4+ν

2
e3

5
2
ν e2

4−ν

2
e3 0 5

2
ν e1

1−4ν

2
e2 − 1+4ν

2
e1 0

⎞
⎠ , (72)

which should be evaluated using the values of v at a particular equi-

librium.

The Jacobian matrix M always has six eigenvalues, but two of

them are always zero. This results from the constraints (19); differ-

entiating them, we obtain two identities

F1 = δ · v = 0,

F2 = δ1 e1 + δ2 e2 + δ3 e3 + δ4 h1 + δ5 h2 + δ6 h3 = 0, (73)

which imply that the tangent space is a four-dimensional manifold.

Due to the Hamiltonian nature of the problem, there exist a local

canonical set of four variables in the neighbourhood of an equilib-

rium. Thus, the remaining four eigenvalues of M will either form a

symplectic quadruplet

λ2 = −λ1, λ3 = λ∗
1, λ4 = −λ∗

1, (74)

if λ1 is a general complex number (an asterisk marks the complex

conjugate), or they will come out in two pairs

λ2 = −λ1, λ4 = −λ3, (75)

if the eigenvalues are real or pure imaginary numbers. Thus, if any

of the four distinct eigenvalues of M have a non-zero real part, the

equilibrium is unstable. Otherwise, we claim the linear stability of

the equilibrium.

4.1 Degenerate solutions

In this section, we study the stability of circular, rectilinear and

equatorial stationary orbits. All eigenvaluesλi of the Jacobian matrix

M for these orbits share the same property: they are square roots of

some real numbers. Hence, we can simply discuss the squares λ2
i,i+1,

knowing that such a quantity generates a pair

λi = −
√

λ2
i,i+1, λi+1 =

√
λ2

i,i+1,

and if any of λ2
i,i+1 are positive, the equilibrium is unstable.

4.1.1 Circular orbits C0

Substituting the definition of a prograde circular equatorial orbit

C0p (e = 0, h1 = h2 = 0, h3 = 1) into equation (68), we obtain the

squared eigenvalues

λ2
1,2 = ν2

(
25

4
− n2

�2
0

)
, (76)

λ2
3,4 = − 1 − ν2

4
− n ν

�0

(
1 + n ν

�0

)
. (77)

Inspecting λ2
1,2, we find it negative when a < aC2

min or a > aC1
min.

However, λ2
3,4 is negative only for a < aD

min. Thus, the C0p orbits are

linearly stable for

a � aC2
min or aC1

min � a � aD
min. (78)

The change in stability corresponds to bifurcations presented in

Fig. 1. First, two circular inclined orbits C2 emerge from C0p, then

two circular inclined orbits C1 occur, and finally two prograde el-

liptic equatorial orbits D2 destroy the stability of C0p.
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Figure 1. Location of the stationary solutions on the (a, e) plane (top plane)

and (a, I) plane (bottom panel – retrograde orbits are not included). The

continuous lines refer to linearly stable orbits, and the dashed lines refer

to unstable orbits. The circles mark bifurcation points. Different kinds of

circular orbits in the (a, e) plot and two equatorial orbits in the (a, I) plot are

artificially separated.
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Retrograde orbits C0r, with h3 = −1, have the same λ2
1,2 as in

equation (76) and

λ2
3,4 = − 1 − ν2

4
+ n ν

�0

(
1 − n ν

�0

)
. (79)

Regardless of a, the value of λ2
3,4 is never positive. Thus, the linear

stability condition for C0r is simply

a � aC2
min, or aC1

min � a. (80)

The change in stability is related to the bifurcation generating two

retrograde elliptic equatorial orbits D1 with � = 0 and � = π.

4.1.2 Circular orbits C1, C2

Considering inclined circular orbits C1 with h1 = 0, we find the

squared eigenvalues of M equal to

λ2
1,2 = ν

2

(
1 − ν − 4 n2 ν2

�2
0 (1 − ν)

)
, (81)

λ2
3,4 = (1 + 4 ν)

(
4 + ν

4
− 5 n2 ν2

�2
0 (1 − ν)

)
. (82)

In the domain of the existence of solutions C1, that is, for a >

aC1
min, we have λ2

1,2 > 0; hence, we conclude that circular orbits with

the line of nodes directed towards the Galactic Centre are always

unstable.

Repeating the procedure for C2, with h2 = 0, we obtain λ2
1,2 and

λ2
3,4 that are formally similar to the C1 case: they can be obtained

from equations (81) and (82) by a simple substitution ν → (−ν).

This time, however, λ2
1,2 < 0 for all a greater than the lower boundary

of the C2 family aC2
min. Thus, the loss of stability occurs when λ2

3,4

> 0, it is for the semi-axes greater than aE2
max. Thus, the circular

orbits with the lines of nodes perpendicular to the Galactic Centre

direction are linearly stable for

aC2
min < a < aE2

max, (83)

and the loss of stability coincides with the merging of E2 and C2

families.

4.1.3 Rectilinear orbits

Rectilinear orbits R are linearly stable except in a small interval

whose ends correspond to the occurrence of orbits E1 and E2. The

squared eigenvalues of M for these orbits (both prograde and retro-

grade) are

λ2
1,2 = −5 (4 + ν2)

4
− n2ν2

�2
0

+ ν

4

√
625 + 320 n2

�2
0

, (84)

λ2
3,4 = −5 (4 + ν2)

4
− n2ν2

�2
0

− ν

4

√
625 + 320 n2

�2
0

, (85)

with obviously negative λ2
3,4 and with positive λ2

1,2 between aE2
min and

aE1
min. Thus, the linear stability domain of R is

a < aE2
min or a > aE1

min. (86)

4.1.4 Equatorial orbits

Finally, the elliptic equatorial orbits D1 and D2 are always linearly

stable, because their eigenvalues are imaginary for all semimajor

axes greater than aD
min. Indeed, for D1 we obtain

λ2
1,2 = ν2

(
−25

2
+ 2n2

�2
0

)
, (87)

λ2
3,4 = (1 + 4ν)

[
− 5 (1 + ν)

4
+ n2 (4 − ν)

25 �2
0

]
, (88)

both being negative for a > aD
min. The same is true for D2, having

the same λ2
1,2 as in equation (87), and λ2

3,4 similar to equation (88)

but with ν replaced by (−ν).

4.2 Elliptic orbits

While all eigenvalues discussed in Section 4.1 were the square roots

of some real numbers, elliptic stationary solutions E have more

complicated expressions for the eigenvalues, involving the square

roots of possibly complex numbers. The computations involved are

tedious but elementary, so we skip the details, providing only the

essential steps.

For the family E1, the eigenvalues of M with equation (36) or

equation (37) substituted together with equations (45) and (46),

form a quadruplet

λ1 =
√

P1 + √
Q1, λ2 = −λ1,

λ3 =
√

P1 − √
Q1, λ4 = −λ3, (89)

where P1 is a quadratic trinomial of n, and Q1 is a fourth-degree

polynomial of n.

If all λi are to be purely imaginary, we have to impose the condi-

tions⎧⎨
⎩

Q1 � 0,

P1 + √
Q1 < 0,

P1 − √
Q1 < 0.

(90)

Within the interval of existence given by equation (42), the first of

these conditions is satisfied for

aE1
min � a � a1 ≈ 149 kau, (91)

where a1 is the smallest real root of Q1 = 0. The second of conditions

(90), requiring a negative P1, will automatically satisfy the third, and

it is fulfilled if

aE3
min < a < a1, (92)

with the root of P1 = Q1 = 0 as the upper limit. The lower limit

aE3
min refers to the case P1 + √

Q1 = 0 with P1 < 0, and we see

that it reflects a bifurcation related to the creation of asymmetric

solutions E3, when we have λ1 = λ2 = 0 and purely imaginary

λ3 = −λ4 
= 0. The bifurcation at a = a1 is more exotic, because then

all eigenvalues are non-zero and imaginary, but they are two double

roots λ1 = λ3 = −λ2 = −λ4; it is known as the Krein collision and

it is not related to the creation of a new stationary solution. Finally,

we conclude that stationary elliptic orbits E1 with the lines of nodes

directed to the Galactic Centre are linearly stable for the semi-axes

given in equation (92).

The eigenvalues of E2 family have a similar structure

λ1 =
√

P2 + √
Q2, λ2 = −λ1,

λ3 =
√

P2 − √
Q2, λ4 = −λ3, (93)
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Table 1. Summary of the bifurcations (see Section 4.3).

semi-axis (kau) C0p C0r C1 C2 R D E1 E2 E3

aE2
min ≈ 54.3 S S 0 0 S → U 0 0 0 → S 0

aE1
min ≈ 57.8 S S 0 0 U → S 0 0 → U S 0

aE3
min ≈ 138 S S 0 0 S 0 U → S S 0 → U

aC2
min ≈ 140 S → U S 0 0 → S S 0 S S U

aE3
max ≈ 147 U S 0 S S 0 S S → U U → 0

a1 ≈ 149 U S 0 S S 0 S → U U 0

aE2
max ≈ 159 U S 0 S → U S 0 U U → 0 0

aC1
min ≈ 166 U → S S 0 → U U S 0 U 0 0

aE1
max ≈ 169 S S U U S 0 U → 0 0 0

aD
min ≈ 207 S → U S → U U U S 0 → S 0 0 0

with P2 quadratic and Q2 quartic in n. However, this time we have

only one bifurcation, caused by merging with E3. Thus, the orbits

of the family E2 are linearly stable for

aE2
min < a < aE3

max. (94)

In spite of complicated expressions that we do not provide here,

the family E3 behaves simply: these orbits are always unstable, hav-

ing two real and two imaginary eigenvalues of the Jacobian matrix

M.

4.3 Summary

For an easier reference, we summarize the results in Table 1, where

each particular value of the mean semi-major axis is associated with

the events concerning the existence and stability of various solutions.

The symbols used are: S for ‘stable’, U for ‘unstable’ and 0 for not

existing. Any change that occurs at some value of a is marked with

an arrow.

5 N U M E R I C A L A NA LY S I S O F S TAT I O NA RY
O R B I T S

5.1 Tools

The linear stability criteria presented in the previous section are only

necessary, but not sufficient conditions for the Lyapunov stability of

the stationary orbits. Moreover, an interesting question arises wether

unstable stationary solutions are surrounded by chaotic orbits. In

order to verify the linear stability assessments, we performed nu-

merical simulations of trajectories close to the stationary solutions,

testing the maximum deviation from the equilibrium and evaluat-

ing the chaos indicator Mean Exponential Growth of Nearby Orbits

(MEGNO) invented by Cincotta & Simó (2000). The deviation from

equilibrium is a primary source of information about the stability,

whereas MEGNO allows us to distinguish ordered and chaotic mo-

tion originating in the vicinity of an unstable equilibrium.

Equations of motion (13)–(18) were integrated by means of the

Lie–Poisson integrator described in (Breiter et al. 2007), over the

interval of 10 Gyr. The second-order map from (Breiter et al. 2007)

was used as a building block for a fourth-order composition method

of Yoshida (1993). We used the integration step equal to 0.01 of the

fictitious time τ – the choice that resulted in various time-steps in

years, depending on the semi-axis. Initial conditions v were chosen

by adding a small displacement of 0.◦001 to angles ω, �, I, and 10−5

to the initial eccentricity. Thus, we followed orbits that initially

were fairly close to the stationary solutions found in Section 3. The

tangent vector δ was propagated during the integration using the

algorithm presented by Breiter et al. (2007). An important property

of this algorithm, not mentioned explicitly in the quoted paper, is

that the tangent maps conserve the forms (73), so if we use the initial

variation set-up that respects F1 = F2 = 0, the tangent vector δ will

remain on the manifold F1 = F2 = 0 up to round-off errors. We set

the initial tangent vector δ orthogonal to v′ by means of the formula

given in (Breiter et al. 2007); this choice does satisfy equation (73).

The discrete time-variant of the MEGNO method, best suited for

the combination with a fixed-step Lie–Poisson integrator, is defined

as (Cincotta, Giordano & Simó 2003):

YN = 1

N

N∑
k=1

yk, (95)

where

yk = 1

k

k∑
j=1

j ln
||δ j ||

||δ j−1|| , (96)

is evaluated from the ratio of the tangent vector lengths computed

before and after the jth step of the integrator. However, it is more

practical to reformulate definitions (95) and (96) as a running aver-

age:

yN = N − 1

N
yN−1 + 2 ln

( ||δN ||
||δN−1||

)
, (97)

YN = 1

N
[(N − 1) YN−1 + yN ] , (98)

like that in Breiter et al. (2005).

The properties of MEGNO make it one of the best variational

methods. If �t is the integration step converted to the physical time,

Y asymptotically tends to

Y = AN�t + B. (99)

The values of Y provide the ‘absolute’ information because for a

chaotic orbit A = λ/2, allowing an accurate determination of the

maximum Lyapunov characteristic exponent (MLCE) λ. Ordered

motion results asymptotically in A = 0 and B = 2, with the exception

of harmonic oscillations where A = B = 0 (in the vicinity of a stable

equilibrium, one typically obtains Y ≈ 0).
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Figure 2. Maximum eccentricity e and the value of MEGNO Y attained

after 10 Gyr for initial conditions close to the circular solutions C0p.

Figure 3. Maximum eccentricity e and the value of MEGNO attained after

10 Gyr for initial conditions close to the circular solutions C1.

Figure 4. Maximum eccentricity e and the value of MEGNO attained after

10 Gyr for initial conditions close to the circular solutions C2.

5.2 Results

The results for circular orbits are presented in Figs 2–4. The fig-

ures confirm the results of the linear stability analysis and reflect

all bifurcations described earlier. It is remarkable that most of the

unstable circular orbits may lead to the considerable increase in the

eccentricity, even capable of throwing a comet into the inner So-

lar system. Interestingly, not all unstable solutions are obviously

Figure 5. Maximum deviation of eccentricity from the initial value � e and

the value of MEGNO attained after 10 Gyr for initial conditions close to the

elliptic solutions E1.

Figure 6. Maximum deviation of eccentricity from the initial value �e and

the value of MEGNO attained after 10 Gyr for initial conditions close to the

elliptic solutions E2.

chaotic in the time-interval considered. For example, in Fig. 3, at

a = 190 kau the eccentricity grows up to 0.7, but the value of

MEGNO is below 2 (the dotted line in all MEGNO plots marks

Y = 2) suggesting a regular motion. On the other hand, close to

a = 140 kau in Fig. 2 we do not yet see a considerable growth of ec-

centricity (the motion, albeit unstable, is trapped close to the stable

C2 solution) but the small jump of MEGNO indicates a bifurcation.

One can note that the information from Y and max e is somehow

complementary, but unstable solutions are not necessarily chaotic –

at least on the 10 Gyr scale.

Elliptic solutions in the equatorial planes D1 and D2 proved to

be stable and regular. Similarly, the rectilinear solutions have been

confirmed to behave regularly and not to have a significant change in

the eccentricity, except for the the small instability interval defined

in equation (86).

Figs 5 and 6 very well match the stability conclusions concerning

the families E1 and E2. Note that this time the upper panels of both

figures show the deviation of eccentricity from the initial values

that were different from zero. Investigating asymmetric solutions

E3, we have produced two plots shown in Figs 7 and 8. Fig. 7 refers

to the initial conditions taken from equation (59) with the upper

signs, whereas Fig. 8 has been obtained with the lower signs in

equation (59). The curves look different but they mean the same
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Figure 7. Maximum deviation of eccentricity from the initial value �e and

the value of MEGNO attained after 10 Gyr for initial conditions close to the

elliptic solutions E3 with h1 < 0.

Figure 8. Maximum deviation of eccentricity from the initial value �e and

the value of MEGNO attained after 10 Gyr for initial conditions close to the

elliptic solutions E3 with h1 > 0.

thing: E3 solutions are unstable, as predicted by the linear stability

analysis.

6 C O N C L U S I O N S

Inspecting the first-order normalized system of equations describing

the heliocentric motion of a comet perturbed by the Galactic tidal

field, we found 11 different families of equilibria. We call them

stationary solutions, although this name is fully justified only in the

reduced system without the mean anomaly. Actually, each stationary

solution found in this paper refers to a periodic orbit in the reference

frame co-rotating with the Galactic Centre when we return to the

complete set of Keplerian elements. Most of the solutions are related

to some intuitively simple spatial orientations like the lines towards

the Galactic Centre and its perpendicular or the Galactic disc plane,

with the exception of C1, C2 circular orbits and of the two E3

solutions.

From the point of view of the Solar system studies, unstable

orbits can be most interesting, because they result in high eccen-

tricity variations driving the comets towards the planetary region.

For many of such orbits, the motion is chaotic, but the chaos does

not seem to be the necessary condition for a large amplitude of the

eccentricity variations. Moreover, the chaos is not strong: using the

values of MEGNO shown in the figures, we can roughly estimate the

Lyapunov times λ−1; their values are not lower than 100 Myr.

The work described in this paper will be continued in two direc-

tions. We plan to locate other resonances between the nodes, per-

ihelia and the Galactic rotation in the averaged system. However,

we also plan to investigate if the presented stationary solutions are

still visible in the original system (1). This is important for higher

values of a, where the resonances between the Galactic rotation and

the mean motion may become the leading factor.

Of course, the Galactic tides are not the unique factor shaping the

Oort cloud. The encounters of the Solar system with Giant Molec-

ular Clouds (GMCs) or passing stars also come into play, but these

two factors introduce a random bias into the deterministic chaos

described in terms of the Lyapunov time. As far as the GMCs are

concerned, it has been shown that such events could disrupt dras-

tically the Oort cloud, but they are very rare and lead to a half-life

of 3 × 109 yr for a comet with a semimajor axis a = 25 kau (Hut

& Tremaine 1986). As regards passing stars, using the results of

Garcı́a-Sánchez et al. (2001) based on the Hipparcos data to com-

pute encounter frequency of the Sun with different kinds of stars,

Rickman et al. (2006) have shown that, on average, their is one

star passing at less than 400 kau from the Sun every 25 000 yr. Such

frequency of stellar encounters will obviously generate a strong ran-

dom bias, more important than the deterministic chaos due to the

radial component of the tide. However, for most of the encounters

the minimal distance will be large, thus they may be unable to cancel

out the eccentricity jump observed for unstable stationary orbits.
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