Complete depletion in prestellar cores. Multiply-deuterated species in prestellar cores (Corrigendum)

D. R. Flower ${ }^{1}$, G. Pineau des Forêts ${ }^{2,3}$, and C. M. Walmsley ${ }^{4}$
${ }^{1}$ Physics Department, The University, Durham DH1 3LE, UK e-mail: david.flower@durham.ac.uk
${ }^{2}$ IAS (UMR 8617), Université de Paris-Sud, 91405 Orsay, France
${ }^{3}$ LERMA (UMR 8112), Observatoire de Paris, 61 avenue de l'Observatoire, 75014 Paris, France
${ }^{4}$ INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy

A\&A, 418, 1035-1043 (2004), DOI: 10.1051/0004-6361:20035718
A\&A, 427, 887-893 (2004), DOI: 10.1051/0004-6361:20041464

Key words. astrochemistry - ISM: clouds - stars: formation - errata, addenda

In our papers, Walmsley et al. (2004) and Flower et al. (2004), the captions to the tables in the Appendices A were inexact with respect to the reactions involving grains. We stated (i) that the parameters α, β, and γ defined the rate coefficients $k\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$ at temperature $T(\mathrm{~K})$ through the relation $k=\tilde{\mathrm{J}}\left(a_{g}, T\right) \gamma(T / 300)^{\alpha} \exp (-\beta / T)$, where $\tilde{\mathbf{J}}$ allowed for Coulomb focusing in reactions of positive ions and negatively charged grains (Draine \& Sutin 1987, Eq. (3.4)); and (ii) that a grain radius $a_{g}=0.1 \mu \mathrm{~m}$ was adopted in the table. In fact, the tabulated values of γ were determined for a size distribution following the Mathis et al. (1977) power law, with limits $0.01 \leq a_{g} \leq 0.3 \mu \mathrm{~m}$. The tabulated value of γ was multiplied by $\left(a_{g} / 0.02\right)^{2}$ within our program, to obtain the grain cross section corresponding to the
adopted value of $a_{g}=0.1 \mu \mathrm{~m}$. (The mean radius for the size distribution of Mathis et al. (1977) is $0.02 \mu \mathrm{~m}$.) Thus, the tabulated values of γ for reactions between ions and grains should be increased by a factor of 25 to correspond to the numbers actually used in our models, for a grain size $a_{g}=0.1 \mu \mathrm{~m}$.

References

Draine, B. T., \& Sutin, B. 1987, ApJ, 320, 803
Flower, D. R., Pineau des Forêts, G., \& Walmsley, C. M. 2004, A\&A, 427, 887 Mathis, J. S., Rumpl, W., \& Nordsieck, K. H. 1977, ApJ, 217, 425
Walmsley, C. M., Flower, D. R., \& Pineau des Forêts, G. 2004, A\&A, 418, 1035

