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Atmospheric torque on the Earth and comparison 
with atmospheric angular momentum variations 

O. de Viron, • C. Bizouard, 2 D. Salstein, • and V. Dehant • 

Abstract. The purpose of this paper is to compute atmospheric torques on the 
Earth, including the oceans, with an emphasis on the equatorial components. This 
dynamic approach is an alternative method to the classical budget-based angular 
momentum method for viewing atmospheric effects on Earth's orientation in space. 
The expression of the total torque interaction between the atmosphere and the 
Earth is derived from the angular momentum balance equation. Such a torque 
is composed of three parts due to pressure, gravitation, and friction. Each of 
these torque components is evaluated numerically by a semi-analytical approach 
involving spherical harmonic approximations, and their orders of magnitude are 
intercompared. For the equatorial components the pressure and gravitational 
torques have far larger amplitudes than that of the friction torque; these two 
major torques have the same order of magnitude but opposite signs, and the value 
of the sum of the torques is shown to be close to the equatorial components of 
the atmospheric angular momentum time derivative s, as would be expected in 
a consistent model-based analysis system. The correlation between the two time 
series is shown to be very good at low frequency and decrease slowly with increasing 
frequency . The correlation is still significant (•_ 0.7) up to 0.5 cycle per day, but the 
correlation coefficient reduces to 0.5 at the diurnal frequency band, indicating the 
difficulty of calculating rapidly changing model-based torques within an atmospheric 
analysis system. 

1. Introduction 

The atmospheric effects on Earth's rotation are gen- 
erally investigated using the atmospheric angular mo- 
mentum (AAM) approach. It assumes an angular 
momentum balance between the Earth and the atmo- 

sphere: to any change of AAM there corresponds a 
variation, with opposite sign, of the angular momen- 
tum of the solid Earth and hence a perturbation in its 
rotation vector [Munk and MacDonald, 1960; Barnes et 
al., 1983]. These AAM values are derived from meteo- 
rological data according to a procedure introduced by 
Munk and MacDonald [1960] and further described by 
Barnes et al. [1983], for instance. 

However, an alternative method to the momentum 
approach exists, consisting of considering the mechani- 
cal system Earth and the atmospheric effect as an ex- 
ternal torque acting on that system. This torque ap- 
proach has not been investigated as often as has the 
angular momentum method because of the difficulty of 
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calculating all its components comprehensively, owing 
in part to its dependence on atmospheric models. 

In NewtonJan physics the variation of the total angu- 
lar momentum of a physical system is only due to exter- 
nal torques acting on that system. Equivalently, when 
the atmosphere alone is considered, the time derivative 
of AAM is equal to the total torque on the atmosphere. 
This torque results from various interactions with the 
solid Earth, with the ocean, and from other external 
phenomena, such as the lunisolar tides acting on the 
atmosphere. 

To express the torque from the solid Earth on the at- 
mosphere, we develop analytically the angular momen- 
tum conservation equation for a moving fluid in contact 
with a solid body. The pressure torque portion of this 
expression has been evaluated by Dehant et al. [1996] 
(see also Bizouard [1996]), using a spherical harmonic 
development of the topography (which can eventually 
be extended to the bathymetry to account for ocean 
bottom pressure torques) and using diurnal $• pressure 
tide given by Haurwitz and Cowley [1973]. Gegout et 
al. [1998] updated this computation by using new data 
for the $1 pressure. In the present paper we extend 
the semi-analytical approach of Dehant et al. to other 
torques, and we evaluate them numerically from a time 
series of variables from an atmospheric analysis system. 

Carrying out torque computations to obtain atmo- 
spheric effects on the Earth's rotation is of particular 
interest for the following reasons: 

4861 
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1. Unlike the AAM approach, the torque approach 
allows us to understand the Earth-atmosphere interac- 
tion processes that affect the angular momentum ex- 
change between Earth and atmosphere, and it allows 
us to evaluate their relative contributions. 

2. The AAM approach assumes an isolated Earth- 
atmosphere system, while the torque approach does not. 
This may be important because ocean-atmosphere in- 
teraction and the effects of the external tidal forces can 

be important on the time-scales under consideration 
here, such as the diurnal. 

3. The AAM approach implicitly supposes that the 
ocean either behaves fully as an inverted barometer (IB) 
or a non-IB; the IB relation is typically valid at peri- 
ods longer than a few days, but it is not verified for 
shorter periods when ocean dynamics are important. 
The torque approach will be very easily extended to 
account for variable ocean-atmosphere relationships. 

4. It is worthwhile to compare the two approaches in 
order to confirm their reliability and obtain their accu- 
racy, or to understand the limitation of the numerical 
procedures. 

The torque approach was developed in the past essen- 
tially to compute the atmospheric effect on the rotation 
rate [Swinbank, 1985; Salstein and Rosen, 1994], and 
the impact of atmospheric torque on the long periodic 
polar motion has been studied by Wahr [1982]. More 
recently, Dehant et al. [1996], as already mentioned, 
computed the pressure torque caused by the 24-hour 
barometric tide S1 and its seasonal modulations in or- 
der to determine the corresponding effects on nutations. 

Section 2 gives a report of a procedure used to com- 
pute the atmospheric torque on the Earth more gener- 
ally than it has been done up to now. In section 2.1 
a general analytical expression of the total interaction 
torque as a function of surface variables has been de- 
rived from the angular momentum balance equation and 
the Navier-Stokes equation applied to the atmosphere. 
Then this expression has been carefully analyzed, re- 
duced, and physically interpreted (sections 2.2 - 2.4). 
Section 3 of the paper is devoted to the numerical com- 
putation in the time domain of the atmospheric torque 
from surface pressure and wind data, according to the 
analytical expressions derived. A very important issue 
that we address is whether the time series based on the 

torque approach, partially from an atmospheric model, 
is compatible with the time series based on the AAM 
approach (based on analyses) spanning the same pe- 
riod (and implicitly for an IB-ocean; that is, in this 
case there is no pressure coupling on the bathymetry). 
Therefore we have also reconstructed the atmospheric 
torque from the AAM time series (section 3.3). Finally, 
in section 4 we compare the two sets of results. If a sig- 
nificant agreement would be shown, this would be an 
important confirmation of the reliability of both AAM 
and torque approaches. We discuss this issue in terms 
of correlation and scale factor at different timescales. 

2. Torques Acting on the Atmosphere 
and Relation With the Atmospheric 
Angular Momentum 

2.1. Derivative of the Angular Momentum and 
Torques Acting on a Fluid Moving Around a 
Rigid Body 

The interaction torque between the Earth and the at- 
mosphere is contained in the total torque acting on the 
atmosphere, F A, provided by the angular momentum 
balance 

• DhA 
or' 

where D/Dr is the time derivative in a celestial frame 
and hA is the atmospheric angular momentum given in 
the celestial frame by 

hA -- FA •' dM, (2) 
tm 

where F is the position vector and ff is the speed of 
the mass element dM. Let fir be the velocity of the 
mass element dM in the terrestrial frame, and let f• 
be the Earth's rotation vector; then ff- •'r + f• A F. 
Assuming that the mass of the atmosphere is constant 
(for instance, the budget of the water content is not 
taken into account), we have 

DhA _/A D JD• - tm • [ •*h •] dM; (3) 
that is, 

DhA 
Dt 

FA + 
tm Dt 

+ f•A(f•Ar-') dM. (4) 

Let d/dr be the time derivative in the terrestrial frame. 
Then we have 

D• d•'• • D• d• 
Dt = dt + f• A •"' , Dt = dt ' (5) 

Thus, if p is the density of the atmosphere and dV is 
the volume of the mass dM, we get 

[ DhA _/vA VA d•'r d• Dt - •Z + • A F + 2f] A 

] f• A (a Ar-') pdV, (6) 

where VA is the volume of the atmosphere. 
The atmosphere is accelerated by means of several 

external forces, with its decelerations related to flow, 
which drags the mass: angular momentum is changed 
by local velocity variations or by mass displacement 
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toward a point where the velocity field takes another 
value. These two kinds of variation are summarized by Dt 
the equation 

= + ß (7) dt Ot 

where (Ft. V)ffr is the acceleration induced by advection 
and OF•/Ot is the acceleration relative to the rotating 
frame (V expresses the gradient operator and the center 
dot is the scalar product). Hence 

( DhA _ fvA OF• • • • Dt - p F A •-+2flAF•+flA(flA• 

) 
The first term is due to the relative •cceler•tion; the 
second, third, •nd fourth terms •re due to the iner- 
tial effects (Coriolis, centrifugal, •nd frame •ccelemtion, 
respectively); •nd the fifth term is due to •dvection. 
The volume integral of the •dvection term is zero, •s 
is shown in Appendix A, •nd the •ngul•r speed of the 
frame is supposed to be constant. The corresponding 
terms c•n thus be removed from (8). The •cceler•tion 
•/3t of the fluid p•rticle is given by the N•vier-Stokes 
equation in • rotating reference frame: 

3t • pF-V •V. , 

where • is • viscous p•mmeter, p is the •tmospheric 
p•ssu•, •n• P is t• •t•n•l fo• (5 - •. • •x- 
presses the L•pl•ci•n). As • first •pproxim•tion, the 
m•ss of •ir is conserwtive; then the divergence of the 
flow wnishes: 

v. - 0; 
that is, 

pV.• +•.Vp- 0. (11) 
As the velocity of the flow is essentially horizontal •nd 

the gradient of the density is essentially vertical, the fv• second term in (11) is essentially zero. The velocity 
divergence c•n thus be neglected. Substituting (9) into 
(8) •nd t•king into •ccount the e•rlier remarks, we get 

D• ' 

Using (C6) of Appendix C and the formula of the rota- 
tional (equation C3), it can be shown that we have, for 
any scalar function f, 

A 

where h is the outer normal unit vector to the bottom 

surface of the atmosphere, Sn (h is directed toward the 
center of the Earth). Thus (12) is equivalent to 

r^ (-p) 

(14) 

The first volume integral provides the body torque 
due, on the one hand, to the forces external to the at- 
mosphere, among them the Earth gravity, and, on the 
other hand, a term linked to the viscosity. The second 
expression shows one component of the total interac- 
tion torque expressed in terms of a surface integral, that 
is, the pressure torque (with the opposite sign for the 
torque on the Earth). The latter will be identified as 
the friction torque. The viscous term in (14) is 

/vA •/FA A0'• dV. (1,5) 
Working in Cartesian coordinates, it can be shown after 
some algebra that 

FA Affr -- V ß V (FA ff•) - 2V A ff• . (16) 

When (16)is substituted into (15) and the Green- 
Ostrogradski theorem (Appendix C, equation (C1)) is 
applied to the first term, and the rotational formula 
(Appendix C, equation (C3)) is applied to the second 
term, assuming that the viscous parameter r/is uniform, 
one then gets 

r/¾AA•',. dV - r/V(FA•',.).5 dr+ 2r/if,. Aft dS'. 
A A 

(17) 

Developing V (¾A F•) in Cartesian coordinates, we can 
show that 

v(r^ - r^ v)v - ^ (18) 

Hence we have 

(19) 

It turns out, as is shown in Appendix B, that the first 
term is exactly the opposite of the torque exerted by 
a viscous fluid acting on a rigid body. The numerical 
computation of the second term proved that it is negli- 
gible. 

2.2. Torques Related to the Earth-Atmosphere 
Interaction 

In section 2.1 we have deduced the torques from the 
angular momentum budget equation of a fluid around 
a solid body, in the general case. The analytical ex- 
pressions found for these torques are now applied in the 
case of the Earth-atmosphere system. We have three 
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torques: (1) the torque produced by external forces, 
mostly gravitational, 

(2) the normal pressure torque, 

fs [?'A h(-p)] d_q; (21) 
and (3) the tangential friction torque, 

where h is the unit normal to the surface directed to- 

ward the center of the body. 
In the particular case of the rotating Earth in contact 

with the moving atmosphere, for cpmputing the Earth- 
atmosphere coupling, the external l force is reduced to 
the Earth's gravitation. Indeed, the lunisolar gravita- 
tional attraction on the atmosphere as well as the other 
forces acting on it (such as the magnetic coupling with 
solar wind, the ocean-atmosphere interaction, etc.) are 
not due to the solid Earth and are ffot considered here. 
Moreover, they are associated with indirect effects on 
the atmospheric pressure and density. These effects on 
the Earth are thus incorporated in the pressure torque 
and the gravitational torque. The same conclusion can 
be drawn for the solar heating effects on the atmo- 
sphere. 

For studying the effect on the Earth's rotation we 
would have to deal with the torque that the atmosphere 
exerts on the Earth, that is, the opposite of the total 
interaction torque considered here (because of the law 
of the action and reaction). 

2.3. Expressions of the Interaction Torques 
Between Earth and Atmosphere Using 
a Spherical Harmonic Expansion 

In order to be able to obtain numerical evaluation of 

the different torques appearing in the interaction be- 
tween the Earth and the atmosphere, we have decided 
in this paper to use spherical harmonic expansion. This 
allows us to avoid numerical instability due to the time 
derivative of a high-frequency function. 

2.3.1. Pressure torque. In the work of Dehant 
et al. [1996] a numerical computation of the pressure 
torque was based on spherical harmonic expansions 
of the surface pressure and the shape of the Earth's 
surface. The surface pressure is expressed as 

[ p-- P01+ 
n--I 

] E (Pnm cos m/• q- ISnm sin m/•)Pnm (cos O) , 
rn--0 

where P0 is the mean atmospheric pressure, A is the 
longitude, 0 is the colatitude, and P•m(cosO) are the 
associated Legendre polynomials. 

The shape of the Earth is expressed in a similar way 
as 

ro 1+ 

• (u... cos mA + •... sin mA)P,•,• (cos O) , 
m--O 

(24) 

where r0 is the mean radius of the Earth (r0 = 6,371,000 
m). It should be noted that the largest departure from 
the mean sphere is associated with the ellipsoidal shape 
and is given by the coefficient u2o - -2/3f, where 
f • 1/300 is the geometrical flattening of the ellipsoid. 

The pressure torque acting on the atmosphere is given 
by 

rp - r^ (-p)ads, 
A 

(25) 

because FA h - ffA Vr, by the defininton of h. Sub- 
stituting r by this expression in (24) gives the pressure 
torque in spherical coordinates: 

- VA proX7 
• kn=l 

] Z (u•m cos rnA q- 5nrn sin mA)Pnm(cosO) dS. 
rn----O 

This expression has been developed by Dehant et al. 
[1996] as a function of the Earth shape and pressure. 
Here we consider the pressure effect on the atmosphere, 
the opposite of the expressions of Dehant et al.; that is, 

+ (1-6.•o +(•rnl)(Zln,mPn,m-1 + •n,rn•n,rn-1) 

(27) 
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n=l m'-0 

with 

D __ (n + m)! ' 
+ 

GM 1+ Z _ 

] y] P• (cos O)(C•.• cos mA + $,•r• sin mA) , 
rn•O 

(29) 

Values F•, Fp u, and F• are the three components of the 
torque in the classical Tisserand reference frame. Over 
the oceans the pressure torque exerted on the atmo- 
sphere should be computed by taking the geoid as sur- 
face. However, for practical purposes and as is done 
in atmospheric models, the ocean surface has been ap- 
proximated by the reference ellipsoid, which is the 
(2,0) spherical harmonic of the Earth topography. In 
fact, as the differences between the geoidal surface and 
the ellipsoid amount to only several hundreds of me- 
ters, we have shown that this approximation produces 
a maximum error areouting to 0.5% of the ocean pres- 
sure torque. It should be pointed out that the oceanic 
response to the atmospheric forcing is dynamic and de- 
pends on the frequency of the excitation (see Munk 
and MacDonald [1960] and Ponte et al. [1991]). This 
response can not be computed from the atmospheric 
forcing in a simple way. In this paper we will compute 
the torque acting on the atmosphere due to solid Earth 
and the ocean, or the (equivalent) torque acting on the 
solid Earth and the ocean due to the atmosphere in the 
simplified case of the lB ocean. This case corresponds 
to what is done for the AAM computation. If we are 
concerned with the AAM changes, we are concerned 
with the torques acting on the atmosphere. In partic- 
ular, there is the pressure torque on the atmosphere 
boundaries (the pressure torque is the only torque that 
is different in the lB ocean and non-lB ocean cases). 

The lower atmospheric boundary includes the topog- 
raphy of the continent and the surface of the ocean. 
There is no direct action of the atmospheric pressure 
on the bathymetry. So the angular momentum change 
of the atmosphere does not directly take into account 

_ 

the bathymetry because the ocean surface is unrelated 
to the bathymetry, an hypothesis nearly equivalent to 
the lB. The interaction between the solid Earth and 

the ocean as well as the effects on the Earth's rotation 

of the oceanic response to atmospheric forcing will be 
treated later . Similarly, the importance of the ocean 
dynamics will be evaluated. 

2.3.2. Gravitational torque. We shall show that 
the gravitational torque can be reduced to a surface 
integral involving atmospheric surface pressure. The 
gravitational force due to the Earth acting on an ele- 
ment dVa of the atmosphere is given by 

dF - PA V• dVA, (28) 

where pa is the density of dVa and • is the Earth's 
gravitational potential given by the spherical harmonic 
decomposition 

where G is the gravitation constant (G - 6.67259 10 -11 
(m3kg-ls-2)) and M is the Earth's mass (M - 5.9737 
1024(kg)). Thus the gravitational torque on the atmo- 
sphere induced by the geopotential is 

F a - F A PA V (I) dVA . (30) 

Let •/grav be the normal unit vector to any equipoten- 
tial of the geopotential (directed toward the center of 
the Earth)' hgr• - V•/IIV•11. Let us assume that 
the surface pressure p is only due to the weight of the 
atmosphere above the column: 

top of atm. --, pAIIvIId p. (31) 
J bottom of atto. 

Hence it can be shown that (30) is equivalent to 

•G -- fS •' A Phgrav d.if, (32) A 

neglecting the variation of F and figray with the height 
(thin layer approximation). Substituting the expression 
hgr• - 1/g•, with the spherical harmonics of •, one 
gets 

FA proV 
A Ln=2 m=O 

(C,• cos m,X + S• sin re,X) P,• (cos 0)] dS. 
(33) 

This expression is totally analogous to the expression of 
the pressure torque (equation 26), if we substitute the 
topographic coefficients by the geopotential coefficients 
divided by g and take the opposite sign. Substituting 
the expression of p and evaluating the torque as previ- 
ously, one obtains developments similar to (27) where 
the spherical harmonic coefficients of the gravitational 
geopotential C.r• and S.r• replace those of the Earth's 
topography, unto and •nm, respectively. The final ex- 
pression of the gravitational torque in the three direc- 
tions can thus be obtained from the expression of the 
pressure torque (equation 27)' 



4866 DE VIRON ET AL' ATMOSPHERIC TORQUE ON THE EARTH 

37 

(C'n,mISn,m-l-•'n,mpn,m_l) 

F! - ro fo cos ,• - fx cos 0 sin ,• dSA . 
A fx sin 0 

As the shape of the Earth does not appear in (37), one 
needs no spherical harmonic development for the wind 
stress to compute this torque. 

(•n,rn Pn,rn-1 + Sn,rn ]•n,m-1) 

Z 
T•ma x 

n=2 m=0 

Restricting the topography and the geopotential to 
the degree 2 and order 0, it can be easily seen that the 
pressure and gravitational coefficients are given by 

Fp -- 5 rø• --u20P21 
0 

• r03 --C200 P21 , (35) 

with C20 = -J2 - -1.08 x 10 -a and u20--2/3f, 
where f is the geometrical ellipticity of the Earth. As 
the ratio C2o/u2o • 3/5, we may conclude that were the 
topography and potential restricted to degree 2 and or- 
der 0, the gravitational torque compensates about three 
fifths of the pressure torque. 

2.3.3. Friction torque. The tangential friction 
torque on the atmosphere is from (22)' 

which depends on the density and the wind speed. 
The wind stress -•/fi. Vff is available in the form of two 
vector fields (f o, fx), which give the friction force on the 
ground in the colatitude direction (• is the unit vector 
in this direction) and the longitude direction (• is unit 
vector in this directions). So we have 

(¾A i) f• dSA. (36) 
It can easily be seen here that the topography does not 
play an important role. We shall thus consider a con- 
stant radius vector (r0, is the mean radius of the Earth), 
and finally, 

3. Numerical Computation of 
the Interaction Torques and 
the Atmospheric Angular 
Momentum in the Time Domain 

3.1. Data Used and Their Preparation 

3.1.1. Atmospheric data. The atmospheric val- 
ues are derived from the analysis-forecast system of 
the U.S. National Aeronautics and Space Administra- 
tion NASA Goddard Earth Observing System- version 
1 (GEOS-1) data assimilation system [Schubert et al., 
1993]. This system was designed to assimilate the vari- 
ety of the space-based meteorological observations ex- 
pected from NASA's planned missions, together with 
other data, such as the ground-based radiosonde net- 
work. This analysis system has been run in a retro- 
spective mode for the period March 1980 to November 
1993, and it produced a set of standard meteorologi- 
cal fields, such as winds and pressures, as well as other 
fields, such as stresses, Which are produced with the help 
of an underlying meteorological model. The spatial res- 
olution is on a 20 (in latitude) x 2.50 (in longitude) grid. 
The temporal resolution of the archived upper air fields, 
such as the winds, is every 6 hours, and that of the sur- 
face variables, such as pressure and wind stress, is every 
3 hours. Finally, we perform every 3 hours a spherical 
harmonic decomposition of the surface pressure up to 
degree 70, as required by the expressions (27) and (34) 
of the pressure and gravitational torques, respectively. 

3.1.2. Earth shape. The spherical harmonic de- 
velopment of the topography has been derived from the 
NASA GEOS-1 model, with the same spatial resolution 
as that of the pressure. The grid is that used in the at- 
mospheric model. We assume that the oceanic surface 
follows the ellipsoid of reference (see section 2.3.1). 

3.1.3. Geopotential. The geopotential field has 
been derived from the JGM3 model[Tapley et al., 1996]. 
This model gives spherical harmonic coefficients of the 
potential up to degree 70. 

3.2. Interaction Torques in Time Domain 

The pressure torque, the gravitational torque, and 
the friction torque have been computed numerically 
from the NASA GEOS-1 system yielding a value ev- 
ery 3 hours from 1980 to 1992, according to the ex- 
pressions (27), (34), and (37), respectively. The sum 
of these torques represents the Earth-atmosphere inter- 
action, which in theory may also be obtained from the 
time derivative of the atmospheric angular momentum 
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if no other torque acting on the atmosphere is consid- 
ered and if the atmospheric model and data assimilation 
system are perfectly consistent. 

To obtain AAM, wind and surface pressure values 
from GEOS-1 atmospheric analyses are used; such anal- 
yses are the product of observations assimilated with 
modeled parameters. Note that in the atmospheric 
models the nonspherical terms of the geopotential are 
implicitly taken into account because the atmospheric 
analyses are given on a grid for which the vertical co- 
ordinates have the geopotential height (in meters) as a 
dynamic variable at levels of constant pressure, and the 
Earth's surface intersects various levels of geopotential 
height. Thus the values of the model parameters at con- 
stant pressure or at constant geopotential vary in the 
horizontal direction. 

For presentation clarity we have separated the high- 
frequency components and the low-frequency compo- 
nents. To that aim, we have applied a low-frequency 
band-pass filter (half cutting period of 10 days) and 
sampled these torques with a 10-day step. The resid- 

uals provide the high-frequency part of these torques. 
We have then applied a discrete Fourier transform sepa- 
rately to the high-frequency and the low-frequency time 
series. 

The equatorial components of these torques in the 
terrestrial frame are plotted in Figure I (low-frequency 
part) and Figure 2 (high-frequency part). It can be seen 
that the pressure torque and the gravitational torque 
have the same order of magnitude whereas the frictional 
torque is 2 orders of magnitude smaller. The pressure 
torque is the largest, but it is partly counterbalanced by 
the gravitational torque for about one third of its value, 
as was foreseen in section 2.3.2. These results are not 

true for the axial component because the friction torque 
is larger than the gravitational one. 

The contributions to the pressure and gravitational 
torque of each degree of the spherical harmonic devel- 
opment of the Earth shape and of the geopotential are 
given in Figure 3, plotted on a logarithmic scale, for the 
equatorial components. The large value at the second- 
degree harmonic confirms that the major contribution 
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Figure 1. Low-frequency part of the torques in the time domain (units are 10 2o Nm). 
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Figure 2. High frequency part of the torques in the frequency domain in cycle per day (units 
are 102øNrn). 

is due to the Earth flattening (spherical harmonic of 
degree 2 and order 0). 

The axial component of the interaction torque has 
also been calculated, but the pressure and gravitational 
torques of this component are independent of the Earth 
flattening. The friction as well as the coupling with 
higher topographic features determine the axial torque. 
We can thus expect a large sensitivity of the axial torque 
to the high degrees and orders of the spherical harmon- 
ics of the grid. Because of the relatively low resolution 
of the grid, our results are fairly sensitive, as confirmed 
by the comparison with the AAM derivative in section 
4. 

3.3. Atmospheric Angular Momentum in Time 
Domain 

Atmospheric angular momentum (AAM) has been 
computed according to the methods outlined by Sal- 

stein et al. [1993] from the following expressions given 
by Barnes et al. [1983]: 

- + (38) 

where fz•M is the matter term expressed by 

-- --• psin 20 cos0sinA ß &, (39) 
g • sin 0 

and • is the wind (motion)term expressed by 

(vosn+vcosOcos) h• - • sin 0 vo cos A - vx cos 0 sin A • • &, -vx sin 0 
(40) 

where vo is the zonal wind speed along the colatitude 
direction (colatitude increasing and constant longitude) 
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Figure 3. Contribution to the pressure and gravitational torques of each degree of the spherical 
harmonic decomposition of the Earth's shape. Unit of the torques is 1020 Nm. 

and vx is the wind along the longitude direction (lon- 
gitude increasing and constant colatitude). The ex- 
pression of the matter term is obtained from the atmo- 
spheric pressure assuming that the surface pressure is 
the weight of the air masses integrated over the above 
column. 

4. Comparison of the Total Earth 
Atmosphere Interation Torque 
and AAM 

4.1. Method of Comparison 

The relation between the AAM and the torque ex- 
erted on the atmosphere is given by the angular mo- 

. 

menturn balance equation. From the components h•t of 
the atmospheric angular momentum in the terrestrial 
frame, we can obtain the corresponding torque acting 
on the atmosphere and express it in the celestial refer- 
ence frame according to Munk and MacDonald [1960]' 

= - 
(41) 

/4. 
The equations allow us to validate our computations 

given the approximation that we applied in comput- 
ing the Earth-atmosphere interaction torque. We can 
check that there are no additional torques on the atmo- 
sphere. 

A time series of the torque acting on the atmosphere 
can be obtained from (41) from the AAM time series. 
The comparison is difficult because of the sensitivity of 
forming time derivatives of AAM. Performing such cal- 
culations increases the high- frequency noise. In order 
to avoid such noise, we have used a semi-analytical 
derivative algorithm. First we calculate a Fourier 
series of the AAM time series using 

__• c½ n •t n •t f(t) - + •(A• cos -•- + B. sin -•-), (42) 

and then we take the time derivative on each frequency 
component of the Fourier series analytically: 

dt E n• n•t n•t -•-(-Am sin •- + B• cos -•--). 
n--1 

(43) 

The precision of such computations is estimated to be 
better than 1016Nm. 

4.2. Comparison in the Time Domain 

In Figure 4 and Figure 5 we have plotted the equa- 
torial components of the total interaction torque and 
the total torque on the atmosphere derived as the time 
derivative of the AAM time series. These two time se- 

ries appear to be very coherent. Indeed, the correlation 
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Figure 4. Equatorial components of the (a) total interaction torque and (b) atmospheric angular 
momentum (AAM) time derivative in the terrestrial frame for the x component. Unit of the 
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Figure 5. Equatorial components of the (a) total interaction torque and (b) AAM time derivative 
in the terrestrial frame for the y component. Unit of the torques is 102ø Nm. 
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coefficient r is 0.970 for the x component and 0.965 for 
the y component. 

The difference between the AAM derivative and the 

total torque series for the x and y components, plotted 
in Figure 6, appears to contains both a high-frequency 
signal and an annual wave. 

For the axial direction the correlation between the in- 

teraction torque and the AAM derivative (not shown) 
is not significant. This lack of agreement here is likely 
to be due to the inaccuracy of computing the axial in- 
teraction torque with our spherical harmonic approach, 
and it could be improved using a more precise grid sys- 
tem. As was noted in section 3.2, the grid resolution 
may indeed be too low to compute correctly the axial 
components of the pressure and gravitational torques. 

4.3. Comparison in the Spectral Domain 

As is suggested by the comparison in the time do- 
main, it is worthwhile to estimate the correlation coef- 
ficients between the equatorial torque and momentum 
derivative series for each frequency band. To do so, 
each time series is filtered by a band-pass filter, and 
the residual parts of each series are compared. For this 
comparison the bandwidth of the filter is taken rather 

large. For each band we have then computed the corre- 
lation coefficients between the two time series of resid- 

uals, and we fit their regression coefficient a of the total 
interaction torque against the AAM derivative. 

In the context of this comparison we also compute the 
correlation between series as a function of the frequency 
band, related to the coherency function, a method that 
is similar to correlation within frequency bands. 

From the regression and correlation results shown in 
Figure 7, several conclusions can be drawn: 

1. There is a scale factor between the AAM time 

derivative and the Earth-atmosphere interaction torque 
that we computed. This regression coefficient has the 
value of 0.8 for the low-frequency part of the signal (up 
to 0.45 cycle per solar day). A possible explanation for 
the scale factor is the sensitivity of the pressure torque 
to the topography. Using another topographic grid, we 
have indeed obtained a very different pressure torque. 
In particular, we have experienced the fact that by using 
a different topographic grid, the scaling factor can be 
increased up to 5, maybe more. 

2. The correlation coefficients are very close to i at 
low frequency (larger than 0.9 until a frequency of 0.45 
cycle per solar day). 

11.4 
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3.4 
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980.3 198z 3 1984. 3 1 98 $.3 1988. 3 1990.3 1992.3 

b 1o.o 
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-1o.o 
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Figure 6. Differences between the total interaction torque and the AAM time derivative for the 
(a) x component and (b) y component. Unit of the torques is 1020 Nm. 
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3.The correlation and the regression coefficients slowly 
decrease with increasing frequency. 

4. Except for the quasi-diurnal frequency, the x and 
y components have a very similar behavior in both time 
series. 

5. The x components of the torque and the AAM 
time derivative are significantly correlated (correlation 
coefficient of 0.71) at the 1 cycle per day frequency. The 
S components are not. This point is the major difference 
between the two curves. 

5. Conclusion 

Firstly the analytical expression of the total inter- 
action torque between the atmosphere and the Earth 
including the oceans has been deduced from the an- 
gular momentum balance applied to the atmosphere. 
Three torques were examined: the pressure torque, the 
gravitational torque, and the friction torque. The fol- 
lowing approximations have been made: (1) the flow of 
air is conservative; that is,the total atmospheric mass is 
conserved; (2) the viscous parameter r/is uniform; (3) 
the atmosphere height is very small with respect to the 
Earth radius, which is the thin layer approximation; (4) 
the radial wind speed (vertical motion) is much smaller 
than the tangential speed; and (5) the surface pressure 
is the weight of the air mass integrated over the air 
column. All of these approximations are assumed at 
all the timescales considered. 

Secondly, data from the NASA Goddard Earth Ob- 
serving System data assimilation system were used to 
obtain a numerical evaluation of the interaction Earth- 

atmosphere torques as well as for the atmospheric an- 
gular momentum every 3 hours from March 1980 to 
March 1992. We have shown that the equatorial fric- 
tion torque is negligible, that the equatorial pressure 
torque is counterbalanced for about one third by the 
equatorial gravitational torque, and that the remaining 
time series present similar variations. 

Thirdly, we have then compared the time series of 
the total interaction torque with the time series of the 
time derivative of the AAM. On this comparison we 
compared and concluded that the total time derivative 
of the atmospheric angular momentum derived from the 
analysis data can be explained by the Earth-atmosphere 
interaction with no external torque on the atmosphere. 
The equatorial components of these two vectors are 
globally consistent since their correlation coefficient is 
about 96%. However, a disagreement appears at the 
highest frequencies, higher than 0.5 cycle per day, which 
we discuss here. A possible explanation for a discrep- 
ancy at high frequencies is that the time derivative of 
the AAM differs from the total interaction torque, be- 
cause some extraterrestrial torque acts on the atmo- 
sphere. A second explanation is that at high frequen- 
cies the pressure torque on the mountains could not be 
well taken into account because of the low spatial res- 
olution of the grid system used (more than 200 km). 

While such an explanation appears plausible for the 
axial component of the total interaction torque, it may 
not be valid for the equatorial component, which is al- 
most completely determined by the equatorial flatten- 
ing part. Only a higher spatial resolution data set would 
provide a definite answer to that question. 

Lastly, we address the fact that the angular momen- 
tum is derived from the analyzed fields of the GEOS-1 
data assimilation system (DAS), whereas the torques 
are derived essentially from model forecast of the global 
circulation model within the data assimilation system. 
The two approaches are strongly related but may have 
inconsistency if the model forecasts are not matched by 
atmospheric data that are ingested into the model. 

In our paper we have explained that the AAM ap- 
proach is equivalent to considering the ocean as an in- 
verted barometer. The good correspondence between 
the Earth-atmosphere interaction torque series and the 
AAM time derivative series in the time domain corrob- 

orates this assertion. 

The torque approach will further give us the possi- 
bility of considering a more complex dynamical ocean 
(IB is not verified at periods lower than a few days), 
which is particularly important for the computation of 
the atmospheric effect on nutations. We also plan to 
further consider the ocean response to the atmospheric 
forcing in these computations and the Earth's response 
to atmosphere, ocean tides, and atmospheric forcing on 
the ocean. 

Appendix A' Demonstration That 
Advection Does Not Produce Any 
Torque 

We shall prove that 

pFA (•'r- •ff) dV - 0. 

From (C5) of Appendix C we have 

s^ ß v) - v(s^ 

Hence 

A- pV(FA fir) ß •'r dV. 

(A1) 

As the flow is conservative, its divergence is zero, and 
we thus get 

X7. [(FA 'r)x Pffr] ) X7 [(FA ffr)z Pffr] 

However, from (C4) (see Appendix C), 

XV(FA •'r)i ß P•'r -- X7. [(FA fir)/P•'r]- (FA •'r)i V. (Pffr). 
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Then applying the Green-Ostrogradski theorem (see 
Appendix C, equation (C1)), we get 

- j} (^2) A 

As the surface velocity is parallel to the surface, the 
scalar product with the unit outer normal is equal to 
zero. Hence A is proven to be zero. 

Appendix C' Vectorial Analysis 
Formulae Used in This Paper 

Let V be a volume, $ be the surface enclosing this 
volume,/, be the outer normal unit vector to this sur- 
face, A be a vector field, f be a scalar field, and q be 
an arbitrary vector; we have the following theorems. 
Transformation of Volume Integrals Into Surface Inte- 

grals 

Appendix B' Expression of the Friction 
Torque Exerted by the Atmosphere on 
the Earth 

Let us prove that the expression 

is the expression of the friction torque on the atmo- 
sphere. To this aim, we shall express the tangential 
force that the atmosphere exerts on a surface element 
of the Earth. Let (rl, r2, n') be the local Cartesian co- 
ordinate system of which the axes are directed along 
two orthogonal vectors in the tangential plane to the 
surface element, and the outer is normal to the surface, 
that is, h, •2, and •t' respectively. The stress tensor of 
the atmosphere is expressed in any Cartesian coordinate 
system (x•, x2, x3) by 

iv, 
rrij - -Pdij + q k, Oxj + Oxi ]' (B2) 

where vi are the components of the velocity of the fluid 
Vt. 

The tangential force exerted on the surface element 
is thus 

T- (•,h + (B3) 
with 

•Vr• •Vnt . 
rr•,•, - r/( 3n' + •-;-r• ) (B4) 

OVr2 OVn' 
•r•2•, - r/(•n , + •). (B5) 

However, at the surface the component of the speed 
that is normal to the surface remains constant, equal to 
zero, and thus has derivatives with respect to r• and r2 
coordinates that are equal to zero. One gets finally 

-, Ov• Ov• • 
T - q( On' h + •-•-7n, r2)• - •(•" •'•)dS. (B6) 

The friction torque exerted by the Earth on the atmo- 
sphere comes from the opposite force and finally is equal 
to 

(B7) 

Green-Ostrogradski or divergence theorem 

V.AdV- A.6dS 

Gradient formula 

Rotational formula 

(C1) 

v/v- /ads (c2) 

e ̂  - - fx^ 
Miscellaneous Formulae 

V. (fA) - f V. A+ Vf. A (C4) 

(c5) 

X7^(fA)- fX7^A+X7f ^A (C6) 
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