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A numerical code, which solves the Vlasov-Poisson system of equations for an electron magnetized plasma
with motionless ions, is presented. The numerical integration of the Vlasov equation has been performed using
the “splitting method” and the cylindric geometry in the velocity space is used to describe the motion of the
particles around the external field. The time evolution of an electrostatic wave, propagating perpendicularly to
the background magnetic field, is numerically studied in both the linear and nonlinear regimes, for different
values of the ratiog between the electron oscillation time in a sinusoidal potential well and the electron
cyclotron period. It is shown that the external magnetic field plays very different roles, depending on the values
of the initial wave amplitude. When the initial amplitude is less than some threshold, the magnetic field
prevents the Landau damping of the electrostatic wave(Bernstein-Landau paradox). When the wave amplitude
is above the threshold, for intermediate values ofg the presence of a background magnetic field allows for the
electric energy dissipation at variance with the behavior of electrostatic wave in unmagnetized plasma, while
for high g values once again the magnetic field prevents the damping.
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I. INTRODUCTION

In unmagnetized plasmas, wave particle interactions can
give rise to wave damping, also when collisions are absent.
In the linear Landau theory[1], the damping is produced by
the interaction between the wave and the electrons with ve-
locity v.vf, wherevf is the phase velocity of the wave.
The physical content of the linear interaction is conceptually
quite simple: electrons whose velocity is just below the wave
phase velocity in theirtail-on collision with the wave gain
some energy, while electrons whose velocity is just above
lose it (head-on collisions). So when the former particles are
more numerous than the latter the wave exhibits exponential
damping.

For times longer thanTt=Îsm/eEkd, the so-called trap-
ping time, which represents the characteristic oscillation time
of a particle in a sinusoidal potential well(e and m are,
respectively, the electron charge and mass, whileE is the
electric field amplitude of the wave andk its wave vector),
nonlinear effects start becoming effective, as first studied by
O’Neil [2], who found that in such case the oscillatory-like
motion of the resonant particles must be taken into account.
This oscillatory motion should prevent any further damping,
in that each particle has now time to make bothtail-on and
head-on collisionswith the wave, so that the net energy ex-
change between wave and particle, when averaged on time,
is null.

Recent numerical simulations[3–5] and experimental
analyses[6] support the O’Neil view, in that when starting
with a sufficiently large initial wave amplitude, in the final
asymptotic state wave damping is stopped. Moreover, fol-
lowing the time evolution of a small but finite amplitude
wave, they showed the formation of vortices in the phase

space in the resonant region of the electron distribution func-
tion. The formation of these structures represents a typical
signature of the nonlinear Landau damping.

The results of numerical simulations have also been sub-
stantiated by Lancellotti and Dorning[7], who showed, by
studying Landau damping as a bifurcation problem, that
there exist critical initial states that mark the transition be-
tween the Landau scenario, in which the electric field is de-
finitively damped to zero, and the O’Neil scenario, in which
the Landau damping is stopped. In magnetized collisionless
plasmas, on the contrary, as shown by Bernstein[8], electro-
static waves, propagating perpendicular to an external uni-
form magnetic fieldB0 ski=0d, are totally undamped. Using
the Landau approach, Bernstein studied the dispersion rela-
tion of electrostatic waves in a magnetized plasma and found
a peculiar behavior for the perpendicular propagation. Con-
sidering the limit of vanishing magnetic field and then put-
ting ki=0, one recovers the well-known features of the
Landau-damped oscillations, but if one considers first the
perpendicular propagation and then putsB0=0, the spectrum
is not damped and it is composed of all the harmonics of the
electron cyclotron frequency. The continuity between mag-
netized and unmagnetized case was not respected(Bernstein-
Landau paradox).

The first explanation of this discontinuous behavior has
been furnished by Baldwin and Rowlands[9], who devel-
oped a theory about the damping of the Bernstein waves;
they showed that, when the magnetic field approaches zero,
the Bernstein modes behave as usual electrostatic waves in
an unmagnetized plasma, because the electron cyclotron fre-
quency decreases with the magnetic field and the cyclotron
period becomes much larger than the above defined trapping
time of the resonant particles. This causes an overlap of all
harmonics ofvB (the electron cyclotron frequency) and the
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waves are damped according to the usual Landau damping
rate of electrostatic modes, so the Landau’s solution is a
superposition of many Bernstein modes in the limitvB→0.

In the presence of an external magnetic fieldB0, the
Landau-like damping is visible only during a time smaller
than the electron cyclotron periodTB=2p /vB. At each cy-
clotron period, the magnetic field reestablishes the phase co-
herence. These conclusions have been confirmed by Ka-
mimuraet al. [10] who used two-dimensional(2D) and 21

2D
dipole expansion codes to simulate electrostatic waves in a
magnetized plasma. The problem has been treated also by
Sukhorukov and Stubbe[11], who solved numerically the
dispersion relation of the Bernstein waves and showed that,
in the magnetized case, the Landau damping is visible in the
first gyroperiod, for very brief time transients, but the waves
are not damped for very long times.

From the discussion above, it is then clear that both large
amplitudes of the wave and large values of the background
magnetic field are able to stop Landau damping. It is then
worth studying what happens when both effects are
present—i.e., what are the nonlinear effects on electrostatic
wave damping in magnetized plasmas. In fact, the presence
of a background magnetic field can prevent the nonlinear
saturation of the Landau damping, in that electrons turning in
the magnetic field have not sufficient time to perform
head-on collisions, if the electron cyclotron period is much
shorter than the trapping time. When the two times are of the
same order, the particle oscillation in the electrostatic poten-
tial well and the particle circular motion in the background
magnetic field can interact in a very complicated way. The
parameterg=Tt /TB—i.e., the ratio between trapping time
and electron cyclotron period—plays a key role in the study
of non linear effects on electrostatic waves in a magnetized
plasma.

For this reason, in the present work, performing kinetic
numerical simulations, we discuss the time evolution of an
electrostatic wave, propagating in a magnetized plasma per-
pendicularly to the background magnetic field, as function of
its amplitude on the one hand and of theg value on the other
hand. We will show that, as long as these two parameters
vary, different regimes are found characterized by different
time behaviors.

The organization of the paper is as follows. In Sec. II the
cylindric Vlasov-Poisson code is described, with a discussion
about the energy conservation test we have performed on the
code. Section III is devoted to the description of the numeri-
cal results for the electric oscillations and for the evolution
of the electron distribution function in the velocity space, in
both unmagnetized and magnetized cases. A discussion of
the numerical results is presented in Sec. IV.

II. A CYLINDRIC VLASOV-POISSON CODE

A. Mathematical problem

The set of equations describing electrostatic waves propa-
gating perpendicularly with respect to a background mag-
netic fieldB0, in its simpler form, can finally be reduced to a
problem which is 1D in the physical space and 2D in the
velocity space:

]f

]t
+ Vx

]f

]x
+ sEx + VyB0d

]f

]Vx
− VxB0

]f

]Vy
= 0, s1d

]Ex

]x
=E fdVxdVy − 1. s2d

In the above equations,fsx,Vx,Vy,td is the electron distribu-
tion function (the ions are considered as a motionless back-
ground of neutralizing positive charge), Esx,td is the electric
field, and the magnetic fieldB0 is along thez direction(only
space variations alongx direction are allowed). Moreover,
the time is normalized to the inverse of the electron plasma
frequencyvpe, the velocity to the electron thermal velocity
vth, and consequently, E to mvpevth/suqu and
B0 to mvpec/suqu (s is the sign of the charge andc is the
speed of light). Finally, f is normalized to the equilibrium
densityn0.

Using polar coordinates [v=ÎVx
2+Vy

2 and w
=arctansVy/Vxd] in the velocity space, the set of equations
(1) and (2) can be recast in the following form:

]f

]t
+ Vx

]f

]x
− B0

]f

]w
+

1

v

]

]v
fvEvswdfg +

1

v

]

]w
fEwswdfg = 0,

s3d

]Ex

]x
= rsxd =E fvdvdw − 1, s4d

where f = fsx,v ,w ,td, Ewswd=−Ex sinw andEvswd=Ex cosw
are the electric-field components, in polar coordinates.

The initial condition represents a Maxwellian function in
the velocity space, over which a modulation in the physical
space with amplitudeA and wave vectork is superposed:

fsx,v,w,0d =
1

Î2p
expf− v2/2gf1 + A cosskxdg. s5d

B. Numerical method

Using polar coordinates in the velocity space, to perform
numerical integration, represents the main peculiarity of the
code we have built up. Actually, in these coordinates, the
numerical integration of the Vlasov equation in the velocity
space is considerably simplified, because the rotation of the
particles in theVx-Vy plane is reduced to a translation inw.
This allows for an extremely accurate energy conservation,
as we will show in the next subsection. The Vlasov equation
(3) has then been numerically solved in the phase space,
using the well-known splitting scheme, in the electrostatic
limit [12], coupled with a finite-difference upwind scheme.
The approach is similar to what is usually called thesemi-
Lagrangian transport scheme in meteorology[13–18]. The
Poisson equation is integrated in the Fourier space by using a
fast Fourier transform(periodic boundary conditions in thex
direction are assumed).

The simulation domain in the phase space is given byD
=f0,Lxg3 f0,vmaxg3 f0,2pg, whereLx=2p /k is the length
of the physical simulation box andvmax=6. Outside the ve-
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locity simulation domain, the distribution function is put
equal to zero. In the simulation domain,Nx grid points in the
physical space andNv3Nw in the velocity space have been
used. Typically, a simulation is performed usingNx=64, Nv
=256, and Nw=512 grid points. The time stepDt
.0.01–0.005 has been chosen in order to satisfy the stabil-
ity CFL (Courant-Friedrichs-Levy) condition. For advection
equations in the form

]f

]t
+ A

]f

]x
= 0,

the CFL condition isDtøDx/uAu.

C. Numerical dissipation and energy conservation

From the Vlasov equation(1), the evolution equations for
the moments,

n =E fdv, nV =E vfdv, ne =
1

2
E sv − Vd2fdv,

can be derived. In particular, using the fact that periodic
boundary conditions are imposed in the physical space, the
following energy conservation relation in dimensionless
units can finally be obtained:

EK + Eel = ET = const, s6d

where EK and Eel are, respectively, the kinetic(direct and
internal) and electric energies,

EK =E S1

2
nV2 + neDdx, Eel =E E2

2
dx.

The time behavior of the energy is shown in Fig. 1 for the
following set of parameters:A=0.03, k=0.405, andB0
=0.18. The evolution is followed up tot=800vpe

−1. In this
figure, the fluctuations of the kinetic energy are represented
at the top, those of the electric energy at the bottom, and
finally those of the total energy in the middle. While the
fluctuations of the kinetic and electric energy are of the order

of 10−2, the total energy loss isuETs800d−ETs0du=3310−4,
about two orders of magnitude smaller than kinetic and elec-
tric energy variations. The energy is then conserved all along
the simulations in a very satisfactory way.

III. NUMERICAL SIMULATIONS

As discussed in the Introduction, both numerical simula-
tions and theoretical studies have shown that, in an unmag-
netized plasma, an electrostatic wave is damped to zero if its
initial perturbation amplitude is less then a critical value;
otherwise, after a certain time, the damping is stopped and
the wave amplitude starts oscillating around a more or less
constant value. Fork.0.4, the critical amplitude isA*
.0.012[4].

Even if our simulations have been performed in presence
of a background magnetic field, we will show that is very
useful to classify the wave behavior according to the value of
the initial perturbation amplitude(subcritical or supercriti-
cal). Each of these two situations has, moreover, been stud-
ied in function of the increasing value of the background
magnetic field, whose importance is measured by the previ-
ously defined parameterg. In dimensionless units the expres-
sion of g is reduced tog=B0/ÎA.

A. Subcritical simulations

In all subcritical runs we have used a value of the initial
perturbation amplitudeA=0.01,A*. In Fig. 2, we show the
time evolution of the electric field, when the external mag-
netic field is equal to zero and for a wave number valuek
=0.405 (the phase velocity of the wave isvf.3.2). The
damping of the oscillations is very strong and the electric
energy is completely dissipated aftert.100vpe

−1.
In Fig. 3, from the top to the bottom, we have represented,

up to six electron cyclotron periods, the time evolution of the
wave electric field for increasing values of the external mag-
netic field—i.e., increasing values ofg. The typical change
[9,11] in Bernstein wave damping, when increasing the value
of the background magnetic field, is clearly observed. In cor-

FIG. 1. Long-time evolution of the fluctuations of electric en-
ergy dEelstd=Eelstd−Eels0d, kinetic energydEKstd=EKstd−EKs0d,
and total energydETstd=ETstd−ETs0d for B0=0.18,A=0.03, andk
=0.405.

FIG. 2. Time evolution of the electric fieldEstd /E0 as a function
of normalized time in the unmagnetized casesg=0d A=0.01 and
k=0.405.
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respondence to the multiples of the electron cyclotron peri-
ods, the magnetic field raises the amplitude of the electro-
static oscillations. Wheng.1 [panel (c)]—i.e., when the
electron cyclotron period is smaller than the trapping time—
the electric oscillations are asymptotically no more damped;
the final amplitude of the electric field is reduced only to
50% of its initial value. Finally, in panel(d), the strongly
magnetized casesg=3d is shown; the effect of the Landau
damping is considerably weakened, showing that the domi-
nant effect of the magnetic field changes completely the na-
ture of the wave-particle interaction, which is responsible for
the wave damping in the unmagnetized case. Let us note that
the final amplitude of undamped oscillations increases with
the value ofg.

In correspondence to the strongest value of the magnetic
field sg=3d, in Fig. 4, we have reported the evolution of the
electrostatic wave for three different values of the wave

number sk=0.5,0.4,0.3d. When decreasing the value ofk,
the oscillations are less and less damped. Actually, ask de-
creases, according to the Landau’s theory[1], the damping
rate decreases, since the phase velocity increases and a
smaller number of particles interact resonantly with the
wave. For k=0.3 [panel (c)], the maximum value of the
wave amplitude remains almost equal to the initial wave
amplitude.

B. Supercritical simulations

In all our supercritical simulations, the initial perturbation
amplitude has been chosenA=0.03.A*, while the wave
vector is alwaysk=0.405. In the unmagnetized case, dis-
played in Fig. 5(a), as expected, the effect of the Landau
damping is asymptotically stopped and the electric field goes
on oscillating around an approximately constant value. In
panel(b), where the value of the magnetic field is very small
sg=5.77310−5d, the behavior of the electric oscillations is
rather similar to that shown in panel(a). Nevertheless, the
presence of the magnetic field seems to progressively
slightly reduce the amplitude of the electric-field envelope
oscillations.

FIG. 3. Time evolution of the electric fieldEstd /E0 as a function
of time normalized to the electron cyclotron period forg=0.629(a),
g=0.85 (b), g=1.25 (c), andg=3 (d). A=0.01 andk=0.405.

FIG. 4. Time evolution of the electric fieldEstd /E0 as a function
of time normalized to the electron cyclotron period forg=3, A
=0.01 and for three different values of the wave number,k
.0.5sad ,k.0.4sbd ,k.0.3scd.
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This behavior is much more evident in Fig. 6(a), where
the electric-field time evolution forg=5.77310−3 is shown.
The stronger value of the external background magnetic field
does not allow for the electric-field envelope oscillations. As
a consequence, the wave is completely damped, even if we
are in a supercritical situation, from the point of view of the
wave amplitude. In this region of parameters, the role of the
background magnetic field is inverted with respect to sub-
critical situations. The presence of a magnetic field, which
prevents damping in the subcritical runs, now evidently com-
petes with nonlinear effects and allows for a complete wave
damping.

When increasing the value of the background magnetic
field sg=0.173d, a peculiar phenomenon occurs. As is shown
in Fig. 6(b) after wave damping, isolated electrostatic wave
packets, separated in time by the electron cyclotron period,
appear. Increasing more and more the background magnetic
field, the isolated structures increase both their duration and
their amplitude and progressively collapse, forming a qua-
sisinusoidal undamped wave structure. This behavior is dis-
played in Fig. 6, panel(c), for g=1.155.

The above results show that, both in the case where the
magnetic field is absent and in the case where it is very
strong, the damping of the wave is asymptotically stopped.
In the first case[Fig. 5, panel(a)] the damping is prevented
by the resonant wave-particle interaction and in the second
one [Fig. 6, panel(c)] by the magnetic-field effect.

Moreover, the transition between the unmagnetized and
magnetized cases is characterized by the competition of the

trapping phenomenon and the magnetic-field effect. In fact,
for intermediate values of the external field, we observe first
damped oscillations[Fig. 6, panel(a)], as if the trapping
phenomenon and the presence of the magnetic field canceled
each other, none of them being able to sustain the electric
oscillations. Then, increasing the value ofB0 [Fig. 6, panel
(b)], isolated electrostatic pulses appear, as if these structures
were the intermediate step between plasma oscillations and
Bernstein waves.

The phenomenology discussed above can be also studied
by looking at the behavior of the resonant region of the elec-
tron distribution function in the velocity space under the ef-
fect of the magnetic field.

Figure 7 shows the contour plot of the distribution forg
=5.77310−3 at six different times[corresponding to the
electric signal displayed in Fig. 6(a)]. For t=100vpe

−1 [panel
(a)], the result of the wave particle interaction is clearly vis-
ible on the contour lines in the regionVx. ±vf. As time
goes on, the presence of the magnetic field gives rise to a
rigid rotation of the distribution function in theVx-Vy plane,
which can be seen in the same figure, in panels(b), (c), (d),
(e), and (f). The effect of this rotation is to bring particles,
which were interacting with the wave, outside the resonant

FIG. 5. Time evolution of the electric fieldEstd /E0 as a function
of normalized time forA=0.03, k=0.405, g=0 (a), and g=5.77
310−5 (b).

FIG. 6. Time evolution of the electric fieldEstd /E0 as a function
of normalized time forA=0.03, k=0.405, and, respectively,g
=5.77310−3 (a), g=0.173(b), andg=1.155(c).
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region, thus reducing the effect of wave trapping. In fact, the
magnetic field, in half a rotation, changes the sign ofVx; as a
consequence, the kinetic energy along thex direction in the
wave reference frame increasesfs1/2dms−Vx−vfd2

. s1/2dmsVx−vfd2g, so resonant particles get enough energy
to overcome the electrostatic potential barrier and to become
detrapped. Obviously, each cyclotron period, particle energy
decreases until trapping condition is effective and particles,
which have been detrapped, once again interact resonantly
with the wave[this is what happens in the case of Fig. 6(b)].
However, if the cyclotron period is very large(very weak
magnetic field) the electric energy is dissipated before par-
ticles can be retrapped[Fig. 6(a)].

On the distribution function, this corresponds to a
smoothing of the distortion, introduced by wave particle in-
teraction, during the rotation. This smoothing represents the
signature of the reduction of wave particle interaction,
which, as a consequence, does not allow the particles to give
back to the wave the energy previously gained, so no damp-
ing saturation occurs. Moreover, in this casesg=5.77
310−3d, the magnetic field is too weak to sustain the electric
oscillations, so the wave is definitively damped.

When the magnetic field is absent or very weak(for ex-
ample,g=5.77310−5, as in Fig. 5) the rotation of the distri-
bution function is also absent or very slow; thus, the pertur-
bation of the distribution function contour lines, due to wave

particle interaction, is not affected by the external field(see
Fig. 8, top). This means that the particles continue to ex-
change energy with the wave, as in the unmagnetized case,
and the damping is stopped. On the other hand, for very
strong magnetic fields[for example,B=0.18, as in Fig. 6(c)],
the rotation is very fast and the perturbation of the distribu-
tion function disappears very quickly in the resonant region.
In this case, the damping is stopped by the strong magnetic
effect and no wave particle interaction is visible, as shown in
Fig. 8 (bottom).

IV. CONCLUSIONS

The study of collective plasma effects, like Landau damp-
ing in the nonlinear regime, requires numerically solving the
Vlasov equation[19]. In this paper, using a numerical code,
we have studied the nonlinear regime of the wave-particle
interaction in a magnetized plasma. The cylindric geometry,
used in the velocity space for the numerical integration of the
Vlasov equation, is particularly effective in describing the
dynamics of charged particles moving in an uniform mag-
netic field, because it is the natural way to describe circular
motions. The cylindric Vlasov-Poisson code has then been
used to numerically investigate the propagation of electro-
static waves and the wave particle interaction in the fully
nonlinear regime and in both the unmagnetized and magne-

FIG. 7. Contour plot of the electron distribution function in the velocity space forB=0.001 and fort=100vpe
−1 (a), t=150vpe

−1 (b), t
=200vpe

−1 (c), t=400vpe
−1 (d), t=600vpe

−1 (e), andt=800vpe
−1 (f).
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tized cases(perpendicular propagation,ki=0). We have
shown as the time behavior of electrostatic oscillations
changes drastically as the parameterg varies,g being the
ratio between the trapping time and electron cyclotron pe-
riod. When the initial amplitude of the electrostatic perturba-
tion is less than some threshold(subcritical situation), the
effect of the background magnetic field is to sustain the elec-
tric time oscillations and to prevent the Landau damping of
the wave. Our numerical results are in good agreement with
results previously obtained solving linearized equations
[9,11].

On the other hand, in supercritical simulations, we have
found that the role of the background magnetic field totally
changes, with respect to the subcritical situation. Even if in
the unmagnetized case the nonlinear wave particle interac-
tion was able to stop the wave damping, in presence of a
magnetic field, we find peculiar time behaviors, as a result of
the competition between nonlinear effects and the magnetic
field. In both the weakly and strongly magnetized cases(g
!1 and g.1), we observe undamped signals and the
electric-field time evolution is dominated in the first case by
the nonlinear effects and in the second one by the magnetic
field. On the contrary, for intermediate values ofg, first to-
tally damped oscillations and then isolated electrostatic
pulses appear, as if these structures were the link between
plasma oscillations and Bernstein modes.

Looking at the contour plot of the electron distribution
function in the velocity space allowed us to give a physical
interpretation to the damped oscillations, observed in super-
critical runs, for intermediate values ofg sg=5.77310−3d.
As we have shown, the background magnetic field produces
a rigid rotation of the distribution function in theVx-Vy
plane, so it brings particles, which were trapped in the wave
potential well, outside the resonant region and makes the
nonlinear effects no more efficient in stopping the wave
damping. Moreover, the magnetic field is really too weak to
sustain the oscillations by itself, as in the caseg.1, and the
electric energy is totally dissipated. Finally, the isolated elec-
tric pulses, which we observe increasing the value of the
background field, are the result of a complicated particle dy-
namics, produced by the nonlinear coupling of two frequen-
cies (trapping oscillations and circular motion in the mag-
netic field). The peculiarity of these structures deserves
further investigation, which is, however, beyond the objec-
tives of the present work.
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FIG. 8. Electron distribution function velocity space contour plot and its semilogarithmic plot atVy=0 as a function ofVx for g=0 (at
the top) andg=1.155(at the bottom). Both figures are represented att=200vpe

−1.
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