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Magnetic-field effects on nonlinear electrostatic-wave Landau damping
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A numerical code, which solves the Vlasov-Poisson system of equations for an electron magnetized plasma
with motionless ions, is presented. The numerical integration of the Vlasov equation has been performed using
the “splitting method” and the cylindric geometry in the velocity space is used to describe the motion of the
particles around the external field. The time evolution of an electrostatic wave, propagating perpendicularly to
the background magnetic field, is numerically studied in both the linear and nonlinear regimes, for different
values of the ratioy between the electron oscillation time in a sinusoidal potential well and the electron
cyclotron period. It is shown that the external magnetic field plays very different roles, depending on the values
of the initial wave amplitude. When the initial amplitude is less than some threshold, the magnetic field
prevents the Landau damping of the electrostatic w8eznstein-Landau paradpXVhen the wave amplitude
is above the threshold, for intermediate valueg dfie presence of a background magnetic field allows for the
electric energy dissipation at variance with the behavior of electrostatic wave in unmagnetized plasma, while
for high y values once again the magnetic field prevents the damping.
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[. INTRODUCTION space in the resonant region of the electron distribution func-
tion. The formation of these structures represents a typical
In unmagnetized plasmas, wave particle interactions cafignature of the nonlinear Landau damping.
give rise to wave damping, also when collisions are absent. The results of numerical simulations have also been sub-
In the linear Landau theorf], the damping is produced by stantiated by Lancellotti and Dorning], who showed, by

the interaction between the wave and the electrons with vestudying Landau damping as a bifurcation problem, that
locity v=v,, whereu,, is the phase velocity of the wave. there exist critical initial states that mark the transition be-

The physical content of the linear interaction is conceptuallyfWeen the Landau scenario, in which the electric field is de-

quite simple: electrons whose velocity is just below the Wav%wltn(elyddanéped to zgro,tand tgelo Neil scte_naélo, II? Wh'lt:h
phase velocity in theitail-on collision with the wave gain € Landau gamping IS Stoppéd. In magnetized Colisionless

some energy, while electrons whose velocity is just abov lasmas, on the contrary, as shown by Bernsi@jnelectro-

lose it(head-on collisions So when the former particles are ftatlc waves, propagating perpendicular to an external uni-

o . form magnetic fieldB, (k,=0), are totally undamped. Usin
;nore numerous than the latter the wave exhibits exponentig/ Landgau approac% Iﬁ?l;ernstein studi}éd the dipspersion ?ela-
amping. !

. ——— tion of electrostatic waves in a magnetized plasma and found

_ For times longer thaff;=(m/eEK, the so-called trap- 5 necyliar behavior for the perper?dicular peopagation. Con-
ping time, which represents the characteristic oscillation time&jdering the limit of vanishing magnetic field and then put-
of a particle in a sinusoidal potential wele and m are,  ting k=0, one recovers the well-known features of the
respectively, the electron charge and mass, whils the | andau-damped oscillations, but if one considers first the
electric field amplitude of the wave ardits wave vectoy, perpendicular propagation and then pBs-0, the spectrum
nonlinear effects start becoming effective, as first studied bys not damped and it is composed of all the harmonics of the
O'Neil [2], who found that in such case the oscillatory-like electron cyclotron frequency. The continuity between mag-
motion of the resonant particles must be taken into accounhetized and unmagnetized case was not respéBmstein-
This oscillatory motion should prevent any further damping,Landau paradox
in that each particle has now time to make btit-on and The first explanation of this discontinuous behavior has
head-on collisionsvith the wave, so that the net energy ex- been furnished by Baldwin and Rowlan{&], who devel-
change between wave and particle, when averaged on timeped a theory about the damping of the Bernstein waves;
is null. they showed that, when the magnetic field approaches zero,

Recent numerical simulationf3-5 and experimental the Bernstein modes behave as usual electrostatic waves in
analyseq6] support the O’Neil view, in that when starting an unmagnetized plasma, because the electron cyclotron fre-
with a sufficiently large initial wave amplitude, in the final quency decreases with the magnetic field and the cyclotron
asymptotic state wave damping is stopped. Moreover, folperiod becomes much larger than the above defined trapping
lowing the time evolution of a small but finite amplitude time of the resonant particles. This causes an overlap of all
wave, they showed the formation of vortices in the phaséiarmonics ofwg (the electron cyclotron frequencand the
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waves are damped according to the usual Landau damping of f of of
rate of electrostatic modes, so the Landau’s solution is a E+Vx(?_X+(Ex+VyBO)&7_VxBOaVZOv (1)
superposition of many Bernstein modes in the limi— 0. X y

In the presence of an external magnetic fi@g, the
Landau-like damping is visible only during a time smaller PEx =f fdv,dv, - 1. 2)
than the electron cyclotron periots=2m/ wg. At each cy- 128

clotron period, the magnetic field reestablishes the phase 9 the above equations(x, V.V, ) is the electron distribu-

. . ) fion function (the ions are considered as a motionless back-
mimuraet al. [10] who used t\{vo-dlmensmnalZD) .and %D . ground of neutralizing positive chargde(x,t) is the electric
dipole expansion codes to simulate electrostatic waves in g N~ . -

ield, and the magnetic fielB, is along thez direction(only

gjﬂ?;tlljzk%(\j/ ggggﬁa;ﬁélﬁ)mﬂ]eomsgﬁse dbi\ir;nte:(raiggeljld ?rllseo l%%ace variations along direction are allowed Moreover,
' y #he time is normalized to the inverse of the electron plasma

dispersion relation of the Bernstein waves and showed thar h loci he el h | veloci
in the magnetized case, the Landau damping is visible in theequen;:z;)pe, tcinvseeozgttlo t Eteoerﬁgon t/;m?a vear?glty
first gyroperiod, for very brief time transients, but the waveslé‘“’ / €q h Y, f th Pﬁ”th qmj. h
are not damped for very long times. o to MwpeC/olq| (o is the sign of the charge ardlis the
From the discussion above, it is then clear that both larg speeq of light Finally, f is normalized to the equilibrium
amplitudes of the wave and large values of the backgroun@er&S'FynO' | dinat - V22 q
magnetic field are able to stop Landau damping. It is then sing - polar - coordinates [v=\V,+V, —an @
worth studying what happens when both effects are—arctarﬁvylvx)] in the vel_omty space, the set of equations
present—i.e., what are the nonlinear effects on electrostatic”) @1d(2) can be recast in the following form:
wave damping in magnetized plasmas. In fact, the presence gy of g 19 19
of a background magnetic field can prevent the nonlinear — +V,— - Boa—+—a—[va(w)f]*'—a—[qu(QD)f]:O,
saturation of the Landau damping, in that electrons turning in ¢ v voe

the magnetic field have not sufficient time to perform 3
head-on collisionsif the electron cyclotron period is much

shorter than the trapping time. When the two times are of the JE,

same order, the particle oscillation in the electrostatic poten- P p(x) = f fodvde -1, 4

tial well and the particle circular motion in the background

magnetic field can interact in a very complicated way. Thewheref=f(x,v,¢,t), E,(¢)=-E,sing andE,(¢)=E, cos¢
parametery=T,/Tg—i.e., the ratio between trapping time are the electric-field components, in polar coordinates.

and electron cyclotron period—plays a key role in the study The initial condition represents a Maxwellian function in
of non linear effects on electrostatic waves in a magnetizethe velocity space, over which a modulation in the physical

plasma. space with amplitudé and wave vectok is superposed:
For this reason, in the present work, performing kinetic

numerical simulations, we discuss the time evolution of an f(x,v,¢,0) = i_ exd-v%/2][1+Acogk¥].  (5)

electrostatic wave, propagating in a magnetized plasma per- N2

pendicularly to the background magnetic field, as function of
its amplitude on the one hand and of th&alue on the other

hand. We will show that, as long as these two parameters B. Numerical method
vary, different regimes are found characterized by different  Using polar coordinates in the velocity space, to perform
time behaviors. numerical integration, represents the main peculiarity of the

The organization of the paper is as follows. In Sec. Il thecode we have built up. Actually, in these coordinates, the
cylindric Vlasov-Poisson code is described, with a discussiomumerical integration of the Vlasov equation in the velocity
about the energy conservation test we have performed on thgpace is considerably simplified, because the rotation of the
code. Section Il is devoted to the description of the numeri-particles in the\/x-Vy plane is reduced to a translation ¢n
cal results for the electric oscillations and for the evolutionThis allows for an extremely accurate energy conservation,
of the electron distribution function in the velocity space, inas we will show in the next subsection. The Vlasov equation
both unmagnetized and magnetized cases. A discussion @) has then been numerically solved in the phase space,

the numerical results is presented in Sec. IV. using the well-known splitting scheme, in the electrostatic
limit [12], coupled with a finite-difference upwind scheme.
Il. A CYLINDRIC VLASOV-POISSON CODE The approach is similar to what is usually called gemi-

Lagrangiantransport scheme in meteorolo¥3—-18. The

Poisson equation is integrated in the Fourier space by using a
The set of equations describing electrostatic waves propdast Fourier transforngperiodic boundary conditions in the

gating perpendicularly with respect to a background magdirection are assumegd

netic fieldBy, in its simpler form, can finally be reduced to a  The simulation domain in the phase space is giverbby

problem which is 1D in the physical space and 2D in the=[0,L,]X[0,v0mad X [0,27], whereL,=2x/k is the length

velocity space: of the physical simulation box ang,,,,=6. Outside the ve-

A. Mathematical problem
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) ) ) ) FIG. 2. Time evolution of the electric fiel(t)/Eq as a function
FIG. 1. Long-time evolution of the fluctuations of electric en- of normalized time in the unmagnetized cdse=0) A=0.01 and
ergy B (t)=Ee(t)—Eg(0), kinetic energy oE(t)=Ex(t)-Ex(0),  k=0.405.
and total energyE+(t) =E+(t) —E+(0) for By=0.18,A=0.03, andk

=0.405. .
of 1072, the total energy loss (800 —E(0)|=3x 1074,

about two orders of magnitude smaller than kinetic and elec-
tric energy variations. The energy is then conserved all along
the simulations in a very satisfactory way.

locity simulation domain, the distribution function is put
equal to zero. In the simulation domaM, grid points in the
physical space anbl, X N, in the velocity space have been
used. Typically, a simulation is performed usiNg=64, N,
=256, and N,=512 grid points. The time stepAt ll. NUMERICAL SIMULATIONS
=0.01-0.005 has been chosen in order to satisfy the stabil-
ity CFL (Courant-Friedrichs-Levyycondition. For advection
equations in the form

As discussed in the Introduction, both numerical simula-
tions and theoretical studies have shown that, in an unmag-
netized plasma, an electrostatic wave is damped to zero if its

of +A‘7_f =0 initial perturbation amplitude is less then a critical value;
at ox otherwise, after a certain time, the damping is stopped and
the CFL condition isAt= Ax/|A|. the wave amplitude starts oscillating around a more or less
constant value. Fok=0.4, the critical amplitude isA*
C. Numerical dissipation and energy conservation =0.012[4].

Even if our simulations have been performed in presence
of a background magnetic field, we will show that is very
useful to classify the wave behavior according to the value of

1 the initial perturbation amplitudésubcritical or supercriti-
n:f fdv, nV:fvfdv, ne=3 f (v-V)*dv, cal). Each of these two situations has, moreover, been stud-
ied in function of the increasing value of the background
can be derived. In particular, using the fact that periodionagnetic field, whose importance is measured by the previ-
boundary conditions are imposed in the physical space, theusly defined parameter In dimensionless units the expres-
following energy conservation relation in dimensionlesssion of y is reduced toy=Bo/ VA.
units can finally be obtained:

From the Vlasov equatiofl), the evolution equations for
the moments,

Ex + Eq = Ey = const, (6) A. Subcritical simulations

In all subcritical runs we have used a value of the initial
perturbation amplitud&=0.01<A*. In Fig. 2, we show the
time evolution of the electric field, when the external mag-

1 E? netic field is equal to zero and for a wave number vatue
Esz (—nV2+ne>dx, EeI:J de- =0.405 (the phase velocity of the wave is,=3.2). The
damping of the oscillations is very strong and the electric

The time behavior of the energy is shown in Fig. 1 for theenergy is completely dissipated aftet 100w;(13.
following set of parametersA=0.03, k=0.405, andB, In Fig. 3, from the top to the bottom, we have represented,
=0.18. The evolution is followed up to=800w,;é. In this  up to six electron cyclotron periods, the time evolution of the
figure, the fluctuations of the kinetic energy are representediave electric field for increasing values of the external mag-
at the top, those of the electric energy at the bottom, andetic field—i.e., increasing values gf The typical change
finally those of the total energy in the middle. While the [9,1]] in Bernstein wave damping, when increasing the value
fluctuations of the kinetic and electric energy are of the ordeof the background magnetic field, is clearly observed. In cor-

where Ex and E, are, respectively, the kineti@irect and
interna) and electric energies,
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0.5 e =0.5a),k=0.4(b),k=0.3(c).
_|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||_
@ 0 1 2 wffzn 4 5 6 number(k=0.5,0.4,0.3. When decreasing the value kf

the oscillations are less and less damped. Actuallk de-
creases, according to the Landau’s thefit}; the damping
rate decreases, since the phase velocity increases and
smaller number of particles interact resonantly with the
wave. Fork=0.3 [panel (c)], the maximum value of the

respondence to the multiples of the electron cyclotron perivave amplitude remains almost equal to the initial wave
ods, the magnetic field raises the amplitude of the electro@mplitude.
static oscillations. Wheny=1 [panel (c)]—i.e., when the
electron cyclotron period is smaller than the trapping time—
the electric oscillations are asymptotically no more damped,;
the final amplitude of the electric field is reduced only to  In all our supercritical simulations, the initial perturbation
50% of its initial value. Finally, in pane{d), the strongly —amplitude has been chosék=0.03>A*, while the wave
magnetized caséy=3) is shown; the effect of the Landau vector is alwaysk=0.405. In the unmagnetized case, dis-
damping is considerably weakened, showing that the domiplayed in Fig. %a), as expected, the effect of the Landau
nant effect of the magnetic field changes completely the nadamping is asymptotically stopped and the electric field goes
ture of the wave-particle interaction, which is responsible foron oscillating around an approximately constant value. In
the wave damping in the unmagnetized case. Let us note thpanel(b), where the value of the magnetic field is very small
the final amplitude of undamped oscillations increases witfy=5.77x107°), the behavior of the electric oscillations is
the value ofy. rather similar to that shown in panéh). Nevertheless, the

In correspondence to the strongest value of the magnetipresence of the magnetic field seems to progressively
field (y=3), in Fig. 4, we have reported the evolution of the slightly reduce the amplitude of the electric-field envelope
electrostatic wave for three different values of the waveoscillations.

FIG. 3. Time evolution of the electric fiel(t)/Ey as a function
of time normalized to the electron cyclotron period §6¢£0.629(a),
y=0.85(b), y=1.25(c), and y=3 (d). A=0.01 andk=0.405.

B. Supercritical simulations

016402-4



MAGNETIC-FIELD EFFECTS ON NONLINEAR.. PHYSICAL REVIEW E 71, 016402(2005

1.0 Lot b bt b by i b by ta i i Laa i 1.0 -
0.5 }
05 gf E
g M 00 £
= =
0.0 E
-0.5 E
| (@)
-0.5 10 -
(a) 2
1.0 E
: 05 27T/ wy ;_
3 g E
0.5 5] 00 , 0\ A N -
= 0.5 =
00 (b)
1.0 E
0.5 E
RN RN N N R R R N R R R R 045 :_
0 100 200 300 400 500 600 o E
(b) Wil 2 c
B 0.0 5
FIG. 5. Time evolution of the electric fiel(t)/Ey as a function E
of normalized time forA=0.03, k=0.405, y=0 (a), and y=5.77 05 =
Xlo_s(b) |||||||||||||I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|IIIIIII|IIIIIIIII|IIIIIII|I-

0 100 200 300 400 500 600 700 800

This behavior is much more evident in Fig.ag where ©) ot

the electric-field time evolution foy=5.77x 103 is shown.
The stronger value of the external background magnetic field ] ) o _
does not allow for the electric-field envelope oscillations. As  FIG- 6. Time evolution of the electric fielE(t)/E, as a function
a consequence, the wave is completely damped, even if normallzsed time forA=0.03, k=0.405, and, respectivelyy
are in a supercritical situation, from the point of view of the = 277107 (@, y=0.173(b), and y=1.155(c).

wave amplitude. In this region of parameters, the role of th@trapping phenomenon and the magnetic-field effect. In fact,
background magnetic field is inverted with respect to subfor intermediate values of the external field, we observe first
critical situations. The presence of a magnetic field, whichdamped oscillationgFig. 6, panel(a)], as if the trapping
prevents damping in the subcritical runs, now evidently comphenomenon and the presence of the magnetic field canceled
petes with nonlinear effects and allows for a complete wavesach other, none of them being able to sustain the electric
damping. oscillations. Then, increasing the value Bf [Fig. 6, panel
When increasing the value of the background magnetigb)], isolated electrostatic pulses appear, as if these structures
field (y=0.173, a peculiar phenomenon occurs. As is shownwere the intermediate step between plasma oscillations and
in Fig. 6b) after wave damping, isolated electrostatic waveBernstein waves.
packets, separated in time by the electron cyclotron period, The phenomenology discussed above can be also studied
appear. Increasing more and more the background magnetiy looking at the behavior of the resonant region of the elec-
field, the isolated structures increase both their duration antfon distribution function in the velocity space under the ef-
their amplitude and progressively collapse, forming a quafect of the magnetic field.
sisinusoidal undamped wave structure. This behavior is dis- Figure 7 shows the contour plot of the distribution far
played in Fig. 6, pane(c), for y=1.155. =5.77x 1072 at six different times[corresponding to the
The above results show that, both in the case where thelectric signal displayed in Fig.(&)]. Fortzloowgé [panel
magnetic field is absent and in the case where it is verya)], the result of the wave particle interaction is clearly vis-
strong, the damping of the wave is asymptotically stoppedible on the contour lines in the regiok=+v,. As time
In the first casdFig. 5, paneka)] the damping is prevented goes on, the presence of the magnetic field gives rise to a
by the resonant wave-particle interaction and in the secontgid rotation of the distribution function in the,-V, plane,
one[Fig. 6, panelc)] by the magnetic-field effect. which can be seen in the same figure, in paiiels(c), (d),
Moreover, the transition between the unmagnetized ande), and(f). The effect of this rotation is to bring particles,
magnetized cases is characterized by the competition of thehich were interacting with the wave, outside the resonant
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FIG. 7. Contour plot of the electron distribution function in the velocity spaceBfe0.001 and fort= lOOw o (@), t= 150w o (b, t
—ZOpre (o), t= 400w S (), t= 600w 2 (8), andt= 800wIDe ().

region, thus reducing the effect of wave trapping. In fact, theparticle interaction, is not affected by the external fiedde
magnetic field, in half a rotation, changes the sigivgfas a  Fig. 8, top. This means that the particles continue to ex-
consequence, the kinetic energy along xhdirection in the  change energy with the wave, as in the unmagnetized case,
wave reference frame increase:{(l/2)m(—VX—v,,,)2 and the damping is stopped. On the other hand, for very
> (1/2)m(V,—v4)?], so resonant particles get enough energystrong magnetic fieldgor example B=0.18, as in Fig. &)],

to overcome the electrostatic potential barrier and to becomthe rotation is very fast and the perturbation of the distribu-
detrapped. Obviously, each cyclotron period, particle energjion function disappears very quickly in the resonant region.
decreases until trapping condition is effective and particlesln this case, the damping is stopped by the strong magnetic
which have been detrapped, once again interact resonant@ffect and no wave particle interaction is visible, as shown in
with the wave[this is what happens in the case of Figo).  Fig. 8 (bottom).
However, if the cyclotron period is very largeery weak

magnetic fielgl the electric energy is dissipated before par-

ticles can be retrapp€dFig. 6a)].

On the distribution function, this corresponds to a The study of collective plasma effects, like Landau damp-
smoothing of the distortion, introduced by wave particle in-ing in the nonlinear regime, requires numerically solving the
teraction, during the rotation. This smoothing represents th&lasov equatiorf19]. In this paper, using a numerical code,
signature of the reduction of wave particle interaction,we have studied the nonlinear regime of the wave-particle
which, as a consequence, does not allow the particles to giviateraction in a magnetized plasma. The cylindric geometry,
back to the wave the energy previously gained, so no dampised in the velocity space for the numerical integration of the
ing saturation occurs. Moreover, in this ca$e=5.77 Vlasov equation, is particularly effective in describing the
% 107%), the magnetic field is too weak to sustain the electricdynamics of charged particles moving in an uniform mag-
oscillations, so the wave is definitively damped. netic field, because it is the natural way to describe circular

When the magnetic field is absent or very wegtk ex-  motions. The cylindric Vlasov-Poisson code has then been
ample,y=5.77x 10°°, as in Fig. 5 the rotation of the distri- used to numerically investigate the propagation of electro-
bution function is also absent or very slow; thus, the perturstatic waves and the wave particle interaction in the fully
bation of the distribution function contour lines, due to wavenonlinear regime and in both the unmagnetized and magne-

IV. CONCLUSIONS
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the top and y=1.155(at the bottorm Both figures are representedtatZOOw,;é.

tized cases(perpendicular propagatiork,=0). We have Looking at the contour plot of the electron distribution
shown as the time behavior of electrostatic oscillationsfunction in the velocity space allowed us to give a physical
changes drastically as the paramejevaries, y being the interpretation to the damped oscillations, observed in super-
ratio between the trapping time and electron cyclotron pecritical runs, for intermediate values of (y=5.77x 1073).

riod. When the initial amplitude of the electrostatic perturba-as we have shown, the background magnetic field produces
tion is less than some threshofgubcritical situation the g rigid rotation of the distribution function in thie,-V,
effect of the background magnetic field is to sustain the elecpiane so it brings particles, which were trapped in the wave
tric time oscillations and to prevent the Landau damping Ofootential well, outside the resonant region and makes the
the wave. Our numerical results are in good agreement wit onlinear effécts no more efficient in stopping the wave

results previously obtained solving linearized equationsdamping_ Moreover, the magnetic field is really too weak to

[9,17. . o ) .
On the other hand, in supercritical simulations, we haveSUStam the oscillations by itself, as in the casel, and the

found that the role of the background magnetic field totallyelectric energy is totally dissipated. Finally, the isolated elec-

changes, with respect to the subcritical situation. Even if irg'c pulses, which we observe increasing the value of the

the unmagnetized case the nonlinear wave particle intera2ckground field, are the result of a complicated particle dy-

tion was able to stop the wave damping, in presence of amics, produced by the nonlinear coupling of two frequen-
magnetic field, we find peculiar time behaviors, as a result ofi€S (trapping oscillations and circular motion in the mag-
the competition between nonlinear effects and the magnetigetic field. The peculiarity of these structures deserves
field. In both the weakly and strongly magnetized cages further investigation, which is, however, beyond the objec-
<1 and y>1), we observe undamped signals and thetives of the present work.

electric-field time evolution is dominated in the first case by

the nonlinear effects and in the second one by the magnetic ACKNOWLEDGMENTS

field. On the contrary, for intermediate valuesypffirst to-

tally damped oscillations and then isolated electrostatic The authors wish to acknowledge F. Califano, M. Lon-
pulses appear, as if these structures were the link betwedano, and C. Marchetto for numerous and useful discussions
plasma oscillations and Bernstein modes. and suggestions.
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