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Abstract. We present a new theory of the four Galilean satellites Io, Europa, Ganymede and Callisto. This theory aims to deliver
highly accurate ephemerides able to represent the Galilean satellites’ motion over several centuries. It is based on the numerical
integration of elaborated equations of motion. This first paper describes and tests many usually neglected perturbations. We are
then able to retain some of them in the dynamical model for the Galilean system. A numerical method developed to adjust the
model to the observations is given. We used a general formalism so it can be extended to systems other than the Galilean one.
As an example of this method, we compare our model to the current E5 ephemerides of the four Galileans.
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1. Introduction

The Galilean satellites have been of special interest recently
because of the Galileo spacecraft arrival. Besides the results
involving the internal structure of the satellites, a lot of dynam-
ical parameters are now well known. Hence the ephemerides
of this system can be improved as a better modeling is now
possible.

The ephemerides generally used for the Galilean system are
based on Sampson-Lieske theory. The initial model was devel-
oped at the beginning of the last century by Sampson 1921, and
improved by Lieske for the Voyager spacecraft needs (Lieske
1977). The last adjustment of this theory to the observations
was performed in 1998 and is called E5 (Lieske 1998). Kaas
et al. (1999) mentioned the possibility that E5 would need some
more revision by comparison with the accuracy obtained with
mutual event observations (in particular for Io). Indeed, the ac-
curacy of such observations are estimated to be few tens of
kilometers. Moreover, Mallama et al. (2000) also found im-
portant residuals using the eclipse observations of the Galilean
satellites by Jupiter.

Highly accurate ephemerides are necessary to detect secu-
lar accelerations induced by tidal effects, after comparison with
observations. Such accelerations can then be directly linked
to the dissipation inside the satellites, and so to their internal
structure.

Send offprint requests to: V. Lainey, e-mail: lainey@imcce.fr

In this first paper we give a numerical method able to pro-
vide ephemerides precise enough with respect to mutual event
accuracy. We examine the equations of motion describing the
Galilean system using an accurate modeling. We will introduce
the triaxiality of the satellites, some additional Jovian oblate-
ness forces and some other perturbations. In Sect. 3 we will
test, by use of numerical integration, the perturbations we intro-
duced to determine which perturbation should finally be taken
into account. In Sect. 4 we will give the equations based on
Moulton’s method to perform an adjustment of the numerical
model to the observations. In the final section, we will perform
an adjustment to the E5 ephemerides.

The adjustment of our numerical model directly to the ob-
servations is still ongoing and will be presented in a second
paper.

2. Equations of motion

2.1. Reference frame and notations

We develop the equations of motion in a planetocentric refer-
ence frame with fixed axes (that may be nonequatorial). Even
though in such reference frame the expression of the disturb-
ing potential induced by the central body’s oblateness becomes
rather complex, an equatorial reference frame would generate
additional inertial forces in the system (equatorial precession
and Jupiter rotation). Moreover, other complications arise in
the formulation of the equations related to the oblateness or the
triaxiality of the satellites. It would then be necessary to write
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the disturbing potential of the triaxialily of the satellites in a
fixed reference frame at the first time (for instance J2000), and
then in an equatorial reference frame of the central body, re-
quirinq much more complicated equations.

In the following, the ponctual masses will be de-
noted (Pi,mi). In particular, the index i will be zero in the case
of the central body. The distance between two bodies Pi and P j

will be noted ri j. When r will have only one index (let us say i)
instead of two, it will denote the distance of body Pi to the cen-
tral body P0. We will denote over the indixes 0, i, j, k... a bar or
a hat when bodies P0, Pi, P j, Pk, ... related to each one of these
indices will be respectively modeled as ponctual or oblated (see
for example Eq. (8)).

The symmetry of the equations relative to the Cartesian co-
ordinates Pi = (xi, yi, zi), frequently requires to indicate by the
variable γi, any of the three Cartesian coordinates. In Sect. 4,
we will even need to introduce this notation twice into the same
equation, and we will note this second variable by Γi.

2.2. Equations of the N-body problem with ponctual
masses in a planetocentric frame with fixed axes

Let us start by modeling the Galilean system with an
N + 1-body problem for which only the central body (Jupiter)
is supposed to be oblate (or triaxial in a more general sense).
The number N will refer to various values according to the
number of bodies introduced into the model, in addition to the
four Galilean satellites (Sun, planets, inner satellites...).

2.2.1. Expression of the additional oblateness forces

Let N bodies Pk of mass mk assumed ponctual and a cen-
tral oblated body P0 of mass m0 attracting according to the
Newtonian gravitation laws. We consider an orthonormal refer-
ence frame denoted (P0, x, y, z) centered on P0 with fixed axes.

We denote ri =
−−−→
P0Pi, ri = |ri|, ri j = |r j − ri|. Using the

vectorial equality r̈i =
¨−−→

OPi − ¨−−−→
OP0 where O is the origin of

an arbitrary Galilean frame, we can easily write the equations
of motion in the planetocentric frame (P0, x, y, z). We have the
following classical differential system


r̈1 =
F1

m1
− F0

m0
...

...
...

r̈i =
Fi

mi
− F0

m0
...

...
...

r̈N =
FN
mN
− F0

m0

(1)

where Fk indicates the whole external forces exerted on the
body Pk. Fki is the exerted force on Pk by Pi. Introducing the
gravitationnal potentials, we have Fki = Gmkmi∇kUki, where
Uki = Uk̄ı̄ =

1
rki

.
For the forces induced by the central body, Fk0 = Fk̄0̄+Fk̄0̂

with Fk̄0̄ = Gmkm0∇kUk̄0̄ and Fk̄0̂ = Gmkm0∇kUk̄0̂. This last
potential represents the action of P0’s triaxiality on Pk and is
written, using the equatorial spherical coordinates (rk, φk, λk)

~
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Fig. 1. Equatorial frame of the central body P0 precessing and rotating
denoted (P0, x′, y′, z′).

of Pk in the reference frame (P0, x′, y′, z′) related to planet P0

(see Fig. 1), in the following form

Uk̄0̂ = U (1)
k̄0̂
+ U (2)

k̄0̂
(2)

where

U (1)
k̄0̂
=

∞∑
n=2

− (Er)n

rn+1
k

JnPn(sin φk) (3)

and

U (2)
k̄0̂
=

∞∑
n=2

(Er)n

rn+1
k

n∑
p=1

P(p)
n (sinφk)

[
cnp cos pλk + snp sin pλk

]
(4)

with Er denoting the equatorial radius of P0. Note that only U (1)
k̄0̂

is a function of the latitude φk.
Hence, the differential equation related to the motion of a

body Pi can be rewritten as

r̈i = −G(m0 + mi)ri

r3
i

+

N∑
j=1, j�i

Gm j

 r j − ri

r3
i j

− r j

r3
j



+G(m0 + mi)∇iUı̄0̂ +

N∑
j=1, j�i

Gm j∇ jU ̄0̂. (5)

The last term of Eq. (5) as well as the mass mi in factor before
the last term are generally forgotten in the equations of mo-
tion. Indeed, they represent terms of second order (order of the
product mk J2 at the most). Physically, these terms correspond
to indirect forces resulting from the oblateness of the central
body. We will preserve these terms in the continuation under
the name of additional oblateness forces.

2.2.2. Expression of the disturbing potential Uk̄0̂
in a reference frame with fixed axes

For an explicit formulation of Eq. (5), we must write the gra-
dient of the expression (2) relative to the Cartesian coordi-
nates (xk, yk, zk) in the planetocentric reference frame with fixed
axes (P0, x, y, z).
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We have after calculation1 for the first term

∂U (1)
k̄0̂

∂γk
= −

∞∑
n=2

(Er)nJn

rn+2
k

[(
∂z′k
∂γk
− γk sinφk

rk

)
dPn(sinφk)

d sinφk

− (n + 1)γkPn(sinφk)
rk

]
· (6)

And for the second term, we have

∂U (2)
k̄0̂

∂γk
=

∞∑
n=2

n∑
p=1

(Er)n

rn+1
k

{
1
rk

[(
∂z′k
∂γk
− γk sin φk

rk

)

× dP(p)
n (sin φk)
d sinφk

− (n + 1)γkP(p)
n (sinφk)

rk


×

[
cnp cos pλk + snp sin pλk

]

+P(p)
n (sinφk)p

∂y′k
∂γk

x′k − y′k
∂x′k
∂γk

x′2k + y
′2
k

[
−cnp sin pλk

+ snp cos pλk

] }
· (7)

In these two last formulae, x′k, y′k and z′k are the Cartesian
coordinates of Pk in the planetocentric reference frame
(P0, x′, y′, z′) (see Fig. 1). In the case of Jupiter for which only
the coefficients J2, J3, J4, J6, c22 and s22 are known (Campbell
& Synnott 1985), Eq. (6) will be used with n = 2, 3, 4, 6 and
Eq. (7) with n = p = 2.

2.3. Equations of the N triaxial body problem
in a planetocentric reference frame with fixed axes

In this subsection, we will now present the terms to be intro-
duced to take into account the triaxialily of all the bodies.

2.3.1. Equations of motion for the centres of mass

For convenience of notation, we consider the same reference
frame centered on the body P0 with fixed axes (P0, x, y, z), al-
though the results to follow remain valid for a reference frame
centered on any other body. We still have the same differential
system (1) but the force on Pk exerted by Pl is now

Fkl = Fk̄l̄ + Fk̂l̄ + Fk̄l̂ + Fk̂l̂. (8)

More detailed study (see Krivov 1993 or Borderies 1978) of
the term Fk̂l̂ would show that it is a very small term, of the or-
der of the product J(k)

2 J(l)
2 which we will neglect subsequently2.

The terms of the form F0̂l̂ will also be neglected, for the same
reason.

1 The demonstration of Eq. (6) and as well of all formulae not
demonstrated in this paper can be found in Lainey (2003).

2 Notation: we will put an index between paranthesis over the co-
efficients referring to a satellite. For example J(k)

2 indicates the coeffi-
cient J2 of the satellite Pk.
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Fig. 2. Equatorial reference frame of a satellite Pl related to the refer-
ence frame of fixed axes (P0, x, y, z).

Taking into account Eq. (8), three terms should be finally
added to Eq. (5) to take into account the triaxiality of the bod-
ies, which are

A + B + C = (m0 + mi)
Fı̂0̄

mim0
+

N∑
j�i, j�0

Fı̂ ̄ + Fı̄ ̂

mi

−
N∑

j�i, j�0

F0̄ ̂

m0
· (9)

The first term (noted A) is the direct perturbation ponctual
planet-oblate satellite and a component of the indirect part
of the same perturbation (for the mass mi). The second term
(noted B) is the direct mutual perturbations oblate satellite-
ponctual satellite. The third term (noted C) comes from the re-
mainder of the indirect perturbations oblate satellite-ponctual
planet.

The explicit expression of accelerations of Eq. (9) can
be done using the expressions found in the previous section.
Hence, one can rewrite these three terms in the form

A = −(m0 + mi)
F0̄ı̂

mim0
= −G(m0 + mi)∇0U0̄ı̂ (10)

B =
N∑

j�i, j�0

G
(
m j∇iUı̄ ̂ − m j∇ jU ̄ı̂

)
(11)

C = −
N∑

j�i, j�0

Gm j∇0U0̄ ̂ (12)

where the notation Uk̄l̂ indicates the disturbing potential in-
duced on the ponctual body Pk by the triaxiality of body Pl.
However, the equations of Sect. 2.2 provide, more generally,
the expression of ∇kUk̄l̂ in Cartesian coordinates centered on
an unspecified body whose Euler angles (ψl, Il, χl) are reported
to the reference frame with fixed axes of directions (Pl, x, y, z)
(see Fig. 2).

To obtain the expression of ∇kUk̄l̂ in the initial reference
frame centered on body P0, it is enough to substitute formally

in the expressions of
∂U(1)

k̄0̂
∂γk

and
∂U(2)

k̄0̂
∂γk

the coordinates (xk, yk, zk)
by (xk−xl, yk−yl, zk−zl) and the angles (ψ, I, χ) by (ψl, Il, χl). In
the case of A and C the change of coordinates simply amounts
to replacing (xk, yk, zk) by (−xk,−yk,−zk). Moreover, the val-
ues of the equatorial radii and oblateness coefficients should be
replaced by those relating to each satellite.
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Finally, we obtain for the differential equation associated
with a body Pi the expression

r̈i = −G(m0 + mi)

 ri

r3
i

− ∇iUı̄0̂ + ∇0U0̄ı̂



+

N∑
j=1, j�i

Gm j

 r j − ri

r3
i j

− ∇ jU ̄ı̂ + ∇iUı̄ ̂ − r j

r3
j

+ ∇ jU ̄0̂ − ∇0U0̄ ̂

)
. (13)

The explicit writing of Eq. (13) is rather complex; in practice
it should be enough to use the first values of n and p for the
coefficients J(k)

n and c(k)
np representing the triaxiality of the satel-

lites. Furthermore very few of them are still known. Indeed,
only the values of the coefficients J(k)

2 and c(k)
22 (which are the

most significant) of the Galilean satellites were estimated from
the trajectories of the space probes.

Other simplifications are also possible such as not con-
sidering the indirect perturbations (satellite-planet) for the co-
efficients J(k)

3 , J(k)
4 , J(k)

6 and even J(k)
2 . These perturbations are

additional oblateness forces, but they are multiplied by the

term (E(k)
r )n

rn+1
kl

with n ≥ 2. These terms are thus even smaller than

the additional oblateness forces related to the oblateness of the
central body. However, we will preserve all these terms since
they are necessary in the conservation of the first integrals of
the system (see the Sect. 2.5).

Assuming that the satellites have their spin axis parallel
with that of the central body (which is the case for most satel-
lites close to their planet), a very simple method exists for tak-
ing into account the polar oblateness of the satellites (coeffi-
cients J(k)

n ), without using the previous equations. Indeed, let
us recall that the disturbing potential related to the polar oblate-
ness of the central body and of its satellites is

Uk̄0̂ + U0̄k̂ = −
∞∑

n=2

(Er)n

rn+1
k

JnPn(sinφk)

−
∞∑

m=2

(Ek
r )m

rm+1
k

J(k)
m Pm

(
sin φk

0

)
. (14)

In the case where the north poles stay parallel, we have the
equality φk = −φk

0. Then we have by oddness of the sinus func-
tion and the properties of Legendre polynomials

Uk̄0̂ + U0̄k̂=−
∞∑

n=2

(Er)n

rn+1
k

Pn(sin φk)

(
Jn + (−1)n

(
Ek

r

Er

)n

J(k)
n

)
. (15)

If the mutual perturbations oblate satellite-oblate satellite re-
main negligible, one can modify the values of the coeffi-
cients Jn of the central body consequently.

In addition, we can deduce that during the adjustment to the
observations, the coefficients Jn will be correlated to the values
of the coefficients J(k)

n , if the polar oblateness of the satellites is
not taken into account. Thus, if one wishes to use the values J(k)

n

given by the space probes, it is necessary to carry out major
corrections.

With the assumption of parallel spin axes, it is very easy
to take into account in a numerical integration the ponc-
tual satellite-oblate planet perturbation induced by a coeffi-
cient J(k)

2 . Indeed, one just needs to replace the value of the J2

coefficient by the new value (J2 + ( Ek
r

Er
)2J(k)

2 ) during the integra-
tion of the satellite considered as oblate. For an analytical the-
ory, it will be enough to modify the values of the coefficient J2

in the expression of the analytical series.

The coefficients c(k)
22 and s(k)

22 characterize the equatorial el-
lipticity of the satellites. Generally the reference frame associ-
ated with them has for the first direction the principal axes of
inertia of the satellite. The equatorial deformation has a sym-
metry (until a certain precision) relative to one of the inertial
axes. Hence, the coefficients s(k)

22 are equal to zero. And so, for

the Galilean satellites, only the coefficients c(k)
22 will have to be

considered.

2.3.2. Precession and rotation of the central body

The system (1) is incomplete if the Euler angles (ψ, I, χ) and
(ψk, Ik, χk)1≤k≤N , are changing with time (precession and rota-
tion of bodies). Deriving the Euler equations that describe the
orientation of the satellites is beyond the perspective of this pa-
per (a non-rigid model should be used and initial conditions
been required).

For Jupiter, it is convenient to take the results presented in
Seidelmann et al. (2002), which explicitly give as a function of
time the Jovian Euler angles.

The evolution of the Jovian rotation pole and the origin
meridian line relative to the J2000 equinox at the time J2000.0
is given by the equalities (expressed in degrees)



α0 = 268.05− 0.009T

δ0 = 64.49 + 0.003T

W = 284.95+ 870.536642d

(16)

where T denotes the time in Julian century of 36 525 days and d
the time in Julian days from the standard epoch J2000.

The system (16) is thus directly usable and remains con-
nected to the variables of our system by the relations I =
90◦ − δ0, ψ = α0 + 90◦ and χ = W +W0 where W0 is the longi-
tude of the central meridian line refered to the (P0, x̃′) axis (see
Fig. 1).

2.4. Post-Newtonian correction

We present the corrections that should be added to intro-
duce relativistic effects. This section is strongly inspired by
the work of Ferraz-Mello (1967). We start from the equa-
tion of the N-body problem (ponctual masses), developed in a
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Galilean reference frame using a relativistic formulation, given
by de Sitter

r̈i = −
∑
j�i

Gm j
ri − r j

r3
i j

+
∑
j�i


G2

c2
mim j

ri − r j

r4
i j

+4
∑
k�i

G2

c2
m jmk

ri − r j

r3
i jrik

+
∑

k� j,k�i

G2

c2
m jmk

ri − r j

r3
i jr jk

+
4G
c2

m j[ṙi · (ri − r j)]
ṙi − ṙ j

r3
i j

+
7G
2c2

m j
r̈ j

ri j

−3G
c2

m j[ṙ j · (ri − r j)]
ṙi − ṙ j

r3
i j

+
G

2c2
m j[2ṙi + 3(ṙ j · ni j)2 − 4(ṙi − ṙ j)

− r̈ j · (r j − ri)]
ri − r j

r3
i j

 (17)

where c is the speed of light, ni j the unit vector of direc-

tion −−−→P jPi, so ni j =
ri−r j

ri j
.

In the case of the Jovian system, we can consider the rel-
ativistic terms depending only on the Jovian mass. In particu-
lar we neglect the relativistic effects induced by the Solar and
satellites masses.

We thus obtain for a satellite Pi the equation

r̈i = −
∑
j�i

Gm j
ri − r j

r3
i j

+ 4
G2

c2
m2

0
ri − r0

r4
i0

+
4G
c2

m0[ṙi · (ri − r0)]
ṙi − ṙ0

r3
i0

+
7G
2c2

m0
r̈0

ri0

−3G
c2

m0 [ṙ0 · (ri − r0)]
ṙi − ṙ0

r3
i0

+
G

2c2
m0

×
[
2ṙi + 3(ṙ0 · ni0)2 − 4(ṙi − ṙ0) − r̈0 · (r0 − ri)

]
× ri − r0

r3
i0

(18)

and for the central body

r̈0 +
∑
j�0

Gm j
r0 − r j

r3
0 j

= 0. (19)

Introducing Eq. (19) into Eq. (18) gives

r̈i = −
∑
j�i

Gm j
ri − r j

r3
i j

+ 4
G2

c2
m2

0
ri − r0

r4
i0

+
Gm0

c2r2
i0

{
[4ṙi · ni0 − 3ṙ0 · ni0]ṙi − ṙ0 +

3
2

(ṙ0 · ni0)2ni0

}

−Gm0

c2r2
i0

[
ṙ2

i + 2ṙ2
0 − 4ṙi · ṙ0

]
ni0. (20)

Hence, taking into account the relativistic effects, in a
Jovicentric reference frame, implies adding the final expression

¨−−→
OPi − ¨−−−→

OP0 − ¨−−→
OPi(Newt) = 4

G2m2
0

c2r3
i

ni +
Gm0

c2r2
i

×
[
4(ṙi · ni) ṙi − ṙ2

i ni

]
(21)

to Eq. (13).

2.5. Integral of energy

We will use the conservation of energy of the system both to
control the efficiency of our numerical integrator and to validate
the computation of the equations of motion. The integral will
not be preserved in a system for which some forces will be
taken in an incomplete way.

Preserving the notations of the preceding sections and de-
noting M the sum of the masses of the system, we have for the
energy E the following expression

E =
N∑

i=1

1
2

mi ṙ2
i −

1
2M


N∑

i=1

mi ṙi


2

− U (22)

where U is the gravitational potential of the system.
To obtain a complete explicit expression, it remains to

express the gravitational potential of the system which will
change with the perturbations included in the modeling. Let us
consider theN + 1-triaxial bodies problem relative to Eq. (13);
we have after neglecting the terms B and C of Eqs. (11)
and (12) the equality

U =
N∑

i=1

Gmim0

(
1
ri
+ Uı̄0̂ + U0̄ı̂

)
+

N−1∑
i=1

N∑
k=i+1

Gmkmi

rik
· (23)

In this last expression we have to express Uı̄0̂, that we can ob-
tain easily expressing the Legendre polynomias. In the same
way one can write the potential U0̄ı̂, using Sect. 2.3.1.

3. Magnitude of the perturbations

We present the method we used to test the influence of each
perturbation, as well as the numerical tools that we have
developed.

3.1. The test method

We consider a first solution used as a reference over one century
obtained by numerical integration of the four Galilean satellites
and an oblated Jupiter using the coefficients J2, J4, J6.

Then with the same initial conditions, we integrate a per-
turbed system by adding one of the perturbations to be tested
to the main system. The differences between these two integra-
tions thus provides the influence, in the sense of differences in
the positions or variation of the elliptical elements of the stud-
ied perturbation. In practice we used a period of one century,
which is very close to the time span of the astrometric observa-
tions. Thus, Fig. 3 to Fig. 5 present these differences (in km) as
a function of time (expressed in years), over one century. The
variations in longitude have been multiplied by the semi-major
axes of reference to obtain differences in kilometers.

We should note that this method is not completely satisfac-
tory as even small variation in mean motion could imply large
differences in positions. We will discuss this at the end of the
section.



1176 V. Lainey et al.: New accurate ephemerides for the Galilean satellites of Jupiter. I.

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80 90 100

’Io’
’Europe’

’Ganymede’
’Callisto’

-60

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

’Io’
’Europe’

’Ganymede’
’Callisto’

Fig. 3. Variations of the mean longitudes multiplied by semi-major
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the semi-major axes (in kilometers on the bottom) for Io, Europa,
Ganymede and Callisto under the effect of the Jovian precession.
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Fig. 4. Variations on positions (in kilometers) under the effect of the
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22 with an exact spin-orbit resonance model for the satel-
lites’ rotation.

The main system could include only the simplified equa-
tions which are generally used, namely

r̈i = −G(m0 + mi)ri

r3
i

+

N∑
j=1, j�i

Gm j

 r j − ri

r3
i j

− r j

r3
0 j


+Gm0∇iUı̄0̂ (24)
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Fig. 5. Variations on positions (kilometers) after substracting a straight
line, under the action of the coefficients c(k)

22 .

but we considered instead (except for the additional oblateness
forces) a more complete expression which preserves the inte-
gral of energy by adding the terms

∑N
k=1

F0̂k̄

m0
, to find the com-

plete Eq. (5).

3.2. The code

To test each perturbation, we programmed the corresponding
equations of motion. The general formulation of the equations
of Sect. 2.2 enabled us to apply our program to an unspecified
dynamical system.

The integration subroutine implemented in the code is RA15
(Everhart’s integrator, see Everhart 1985) based on the method
of the Gauss-Radau polynomias. This routine of fifteenth order
has the advantage of being both accurate and fast.

Finally, the initial conditions were taken from the the-
ory G5 (Arlot 1982), available on the web server3 of the
IMCCE at the epoch of December 25, 1982, 0H00. Those are
expressed in a J2000 reference frame in terrestrial time. The
values of the masses and coefficients of triaxiality of the bodies
were taken from Anderson et al. (1996) and Schubert (1994).

3.2.1. Control of numerical error

We used two complementary methods. The first method is
based on the differences of positions and velocities given by
the integrator after integrating back and forth over one century.
This method enabled us to obtain an optimal step size equal to
0.08 day, giving errors of about a few tens of meters.

The second method consists of studying the variation of the
integral of energy. As we already said, this method is not pos-
sible in all cases. The relative variation of this first integral was
about 10−14 in all the cases we tested. The variation of energy
on a back and forth integration then enables us to get metric
differences (at least to obtain an order of magnitude from it).
The result obtained, which appeared in agreement with the re-
sults of the first method, is a few tens of meters for one century
of integration.

3 At the address http://www.imcce.fr/ephemeride.html
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Table 1. Summary of the influence of each perturbation tested in decreasing order of magnitude. The differences refer to the most important
ones for the four Galilean satellites. The name in parenthesis refers to the satellite the most perturbed.

Perturbation Description Differences

on position

Satellites’ triaxiality Terms c(k)
22 9000 km (Io)

Terms J(k)
2 5000 km (Io)

Additional oblateness forces The Jovian oblateness introduced in the indirect perturbations 4500 km (Ca)

Amalthea The most massiv inner satellite 680 km (Io)

Saturn Direct and undirect influence of Saturn on the satellites 226 km (Ca)

Coefficient J6 Jovian oblateness 150 km (Io)

Precession Jovian equatorial frame not fixed 110 km (Ca)

Terms c22, s22 Asymmetry related to the spin axis of Jupiter 70 km (Io)

Thebe The nearest inner satellite to the Galilean system 70 km (Io)

Relativistic effects Influence of the Jovian mass 2 km (Io)

Term J3 Asymmetry between the two Jovian poles 1.4 km (Io)

Precession for the satellites Equatorial frame not fixed for the satellites <1 km

3.2.2. The Solar and planetary perturbations

The numerical integrations used in this section do not take into
account the Sun, nor the other planets, in particular Saturn.
Indeed, as we did not want to integrate the motion of all planets
of the Solar system, the position of the Sun has been computed
by an external program. Then, the control of the first integral is
not possible anymore.

However the continuation of our work required us to in-
clude the solar perturbation in our numerical program. Thus,
the Solar perturbation and that of Saturn were included us-
ing the numerical ephemerides DE406 of the4 JPL. During
this implementation in our program, we in particular won-
dered about the possible need to take for Jupiter mass the value
resulting from DE406 and not that of Campbell & Synnott
(1985). However the planetary theories represent the barycen-
tre of the planetary systems (except for the Earth-Moon sys-
tem). Admittedly it would be possible to cut off from the value
of the Jupiter mass in DE406, the value of the masses of the
Galilean satellites from the probes but this effect would remain
artificial (it would still miss the mass of the non Galilean satel-
lites). We thus did not use the mass of DE406 in our work.

3.3. Analysing the unusual perturbations

A summary presenting all the perturbations tested with their
differences on positions can be found in Table 1.

The study of some unusual perturbations was partially done
in Lainey et al. (2001). We present here some graphs related
to the perturbations which were not tested (or shown) then. We
will also try to understand the real importance of the differences
in positions obtained in Sect. 5.

4 Available at http://ssd.jpl.nasa.gov/eph info.html

3.3.1. Study of the Jovian precession

The Jovian equatorial reference frame is not fixed in space. In
particular, the angles ψ and I for which the coefficients Jn are
linked change with time. As this effect is partly a geometri-
cal one and introduces only rotations, we can expect that it is
the angular variables of the satellites that will change the most.
An integration over one century has been done. Variations in
mean longitudes and inclinations are shown in Fig. 3. One can
see that Ganymede and Callisto are the most influenced by
this perturbation. As the Jovian precession is basically a kine-
matic effect, the most influenced satellites are also the most
distant. To opposite most perturbations that we tested, the mean
longitude does not absorb the main effect of the perturbation,
which reach5 110 kilometers. Hence the variation of the incli-
nations multiplied by the semi-major axes reaches 80 kilome-
ters for Callisto. An analysis of the other elements reveals that
the variations in semi-majors axes and eccentricity are negligi-
ble.

3.3.2. Effect of the satellites’ triaxiality

A, B and C in the equations of motion (see the page 1173).
In Lainey et al. (2001), the study of J(k)

2 perturbation was es-
timated to 5000 kilometers over one century. We will here
present the contribution of c(k)

22 coefficients. A good estimate
of these coefficients for the Galilean satellites is known today
(Schubert et al. 1994). They are estimated at approximately
three tenths of the value of the respective J(k)

2 coefficients. To
study their influence, it is necessary to introduce the rotation of
the satellites. We modeled here only the exact spin-orbit res-
onance case (λ(k)

0 = 0), the treatment of the satellites’ rotation
being deferred to a future work. The results for this perturbation
are given in the Fig. 4. This perturbation is the most significant
that we tested (approximately 9000 kilometers for Io), and af-
fects essentially the longitudes. The oscillations on the straight

5 An underestimation was done in Lainey et al. (2001) and delivered
just 80 km instead of 110 km in this work.
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lines are induced mainly by the differences of amplitude and
frequency on the Laplacian libration. Indeed, we recall that Io,
Europa and Ganymede are involved in a resonance of argument
l1 − 3l2 + 2l3 	 π, where l denotes the mean longitude.

3.3.3. Variations on the amplitude and the frequency
of Laplacian libration

The variations in amplitude and frequency of the Laplacian li-
bration can be seen directly as oscillations in Fig. 4 for the three
resonant satellites. Figure 5 shows these variations after sub-
traction of the secular drifts. To determine the modifications in
amplitude and frequency, we carried out a Fourier analysis on
the two integrations concerned. The differences obtained over
the amplitude and the period of the Laplacian libration are re-
spectively only 0.01 degree and 0.003 day.

3.4. Summary of the perturbations

The majority of the perturbations induce mainly a linear term
in time which is added to the mean longitudes. Taking into ac-
count such perturbations will rather poorly improve the devel-
opment of the ephemerides, as it can be transfered in the deter-
mination of the initial conditions, and in particular that of the
mean motion. However that does not remain completly without
consequences since internal coherence of the theory is some-
what affected (see Sect. 5).

Moreover, if the ephemerides are only slightly improved,
the physical model is considerably more complex. The rotation
of Jupiter and spin-orbit resonances can be reserved for later
work.

3.4.1. Classification of the perturbations

Table 1 presents the highest amplitude found for each perturba-
tion we tested. We recall that to test the conservation of energy,
the integrations reported in Table 1 did not take into account
the Sun.

3.4.2. The perturbations selected

During the adjustment method, we will have to introduce the
equations of variations, which are much more complex than
the equations of motion. Thus we tried to limit modification to
the most significant perturbations.

From Table 1, we decided to preserve in our dynamical
model the additional oblateness forces and the triaxiality of the
satellites using the coefficients J(k)

2 and c(k)
22 . These perturbations

are the most significant by more than an order of magnitude
than the others.

The perturbation by Amalthea was not retained, because we
did not get a valid solution for this satellite over one century
(period covered by the observations for the Galilean satellites).
For the same reason, we did not included the Jovian precession.

4. Partial derivatives

In this section we will distinguish the physical parameters (such
as the masses, the coefficients of oblateness, etc.) which we
will denote by the vector p = (p1, · · · , pM), and the initial con-
dition (which are the 6N position-velocities of the N bodies
at an instant of reference t0) of a theory. We denote these con-
stant c = (r1(t0), · · · , rN (t0); ṙ1(t0), · · · , ṙN (t0); p), or in short
c = (r(0), ṙ(0), p). We have to solve the following problem:
How to determine optimal values for the parameters and ini-
tial conditions, so that the differences between the positions of
the satellites delivered by our model and those resulting from
the observations (O–C) are minimal in a least-squares sense.

4.1. Equations of variations

Let us consider a set of observations (tk, r′(k)
i )1≤k≤K providing

for discrete values of time tk the observed positions r′(k)
i =

r′i(tk). The theory (here the numerical integration), gives for
these same values of time the computed positions (tk, r(k)

i ), as
solution of a differential system. Denoting ϕt(r(0), ṙ(0), p) the
dynamic flow of this system and ϕ̃i

t the projection in R3 of ϕ
such that ϕ̃i

t = ri, one has the equality

∆r(k)
i =

(
r′(k)

i − r(k)
i

)

=

(
ϕ̃i

tk

(
r′(0), ṙ′(0), p′

)
− ϕ̃i

tk

(
r(0), ṙ(0), p

) )
(25)

where r′(0), ṙ′(0), and p′ correspond to the constants of the true
system.

From the Taylor formula, we have

(
r′(k)

i − r(k)
i

)
=

6N+M∑
l=1

∂ϕ̃i
tk

∂cl
(c) · ∆cl + O

(
(∆cl)2

)
(26)

where δcl = c′l − cl. Considering the δcl sufficiently small, we
thus have

∆r(k)
i ≈

6N+M∑
l=1

∂ϕ̃i
tk

∂cl
(c) · ∆cl (27)

which is a system of three equations with 6N + M unknown
for each observation. This system will be solved by the least-
squares method. However let us notice that the last expression

requires us to know for the times tk the values of
∂ϕ̃i

tk
∂cl

(c), or

more explicitly
∂ϕ̃tk

∂r(0) ,
∂ϕ̃tk

∂ṙ(0) and
∂ϕ̃tk
∂p . The calculation of these

quantities can be done solving a differential system thanks to
Moulton’s method. We have

d2ri

dt2
=

Fi

mi
(r, ṙ, p). (28)

Denoting cl an unspecified constant of the theory (r(0), ṙ(0),
or p), we obtain

∂

∂cl

(
d2ri

dt2

)
=

∂

∂cl

Fi

mi
(r, ṙ, p)

=
1
mi

(
∂Fi

∂r
∂r
∂cl
+
∂Fi

∂ṙ
∂ṙ
∂cl
+
∂Fi

∂p
∂p
∂cl

)
(29)
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Fi is generally independent of ṙ, so that denoting γ j any of the
coordinates of a body P j, we have

∂

∂cl

(
d2ri

dt2

)
=

1
mi


3N∑
j=1

∂Fi

∂γ j

∂γ j

∂cl
+

M∑
m=1

∂Fi

∂pm

∂pm

∂cl

 · (30)

As cl is independent of time, we have the equality

d2

dt2

(
∂ri

∂cl

)
=

∂

∂cl

(
d2ri

dt2

)
=

1
mi

∂Fi

∂cl
· (31)

That leads to the following differential system

d2

dt2

(
∂ϕ̃i

t

∂cl

)
=

1
mi


N∑
j=1

∂Fi

∂r j

∂ϕ̃
j
t

∂cl
+

M∑
m=1

∂Fi

∂pm

∂pm

∂cl

 (32)

of the form d2 Xi

dt2 =
∑N

j=1 g
j
i (t)X j + hi(t) with initial conditions

(0, · · ·0, 1, 0, · · ·0) (the 1 being located at the row l) for each
component of Xi. We finally need to solve 6N + M differ-
ential systems (for each constant of the theory), of 3N equa-
tions each.

4.2. Form of the equations of variation

The differential system (32) requires us to write the vectors ∂Fi
∂r

and ∂Fi
∂p as functions of the variables (r, ṙ, p). First, we take for

the expression of Fi the one given in Eq. (5) when modeling
the satellites as ponctual

Fi

mi
= −G(m0 + mi)ri

r3
i

+

N∑
j=1, j�i

Gm j

 r j − ri

r3
i j

− r j

r3
j



+G(m0 + mi)∇iUı̄0̂ +

N∑
j=1, j�i

Gm j∇ jU ̄0̂.

Let us write now ∂Fi
∂r . Denoting γn any of the Cartesian coordi-

nates of body Pn, after calculations

1
mi

∂Fi

∂γn
=

G(m0 + mi)

r3
i

3γnri

r2
i

− ζ
 δin

+
Gmn

r3
n

(
3γnrn

r2
n
− ζ

)
(1 − δni)

+
Gmn

r3
in

ζ − 3(γn − γi)(rn − ri)

r2
in

 (1 − δni)

−
N∑

j=1, j�i

Gm j

r3
i j

ζ + 3(γi − γ j)(r j − ri)

r2
i j

 δin

+

(
G(m0 + mi)

∂

∂γn
∇iUı̄0̂

)
δin

+

(
Gmn

∂

∂γn
∇nUn̄0̂

)
(1 − δin) (33)

where δin is the Kronecker symbol, and ζ = 1 if γn is of the
type of Fi, ζ = 0 if not6.

6 We will say that two coordinates are of the same type if they refer
to the same axis of the reference frame (e.g. xi and xj are of the same
type, xi and y j are not).

Equation (32) can thus be rewritten, denoting f il =
∂ϕ̃i

t
∂cl

, in
the form

d2 f il

dt2
=

1
mi

N∑
n=1

(
∂Fi

∂xn
f (1)
nl +

∂Fi

∂yn
f (2)
nl +

∂Fi

∂zn
f (3)
nl +

∂Fi

∂cl

)
(34)

which is under an explicit form

d2 f il

dt2
=

G(m0 + mi)

r3
i

3(ri · f il) ri

r2
i

− f il



+G(m0 + mi) J il +

N∑
n=1,n�i

Gmn Jnl

+

N∑
n=1,n�i


Gmn

r3
n

(
3(rn · f nl)rn

r2
n

− f nl

)

+
Gmn

r3
in

[
( f nl − f il)

+
3(rn − ri) · ( f il − f nl)

r2
in

(rn − ri)




+
1
mi

∂Fi

∂cl
(35)

where

Jkl =

(
∂

∂xk
∇kUk̄0̂

)
f (1)
kl +

(
∂

∂yk
∇kUk̄0̂

)
f (2)
kl

+

(
∂

∂zk
∇kUk̄0̂

)
f (3)
kl . (36)

It is clear that the term ∂Fi
∂cl

is equal to zero when the adjusted
constant is an initial condition. In the opposite case, its expres-
sion results easily from the developments written in Sect. 2.2.
Moreover, the explicit calculation of the terms in Jkl has the
form

∂

∂Γk

(
∂Uk̄0̂

∂γk

)
=

∞∑
n=2

(Er)nJn

rn+2
k


(

(n + 1)Pn(sinφk)
rk

+
sinφk

dPn(sin φk)
d sinφk

rk

)
·
ζ − (n + 3)Γkγk

r2
k



+
∂ sinφk

∂Γk

( (n + 2)γk
dPn(sinφk)

d sinφk

rk

+
γk sin φk

d2Pn(sin φk)
d sin2 φk

rk

− ∂z′k
∂γk

d2Pn(sinφk)

d sin2 φk

)

+

(n + 2)Γk

(
∂z′k
∂γk

dPn(sin φk)
d sin φk

)

r2
k

· (37)

Now we introduce the triaxiality of the satellites into the equa-
tions of variation, after neglecting the terms of the form U ̂ı̄

(term B of Eq. (9)). We replace in Eq. (35) the expression of Jkl

by the following one

Jkl =

 ∂

∂xk
∇kUk̄0̂ +

∂

∂xk
0

∇0U0̄k̂

 f (1)
kl
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Table 2. Initial conditions found after fitting our numerical model to the E5 ephemerides. The positions are given in UA and the velocities
in UA.j−1.

Satellite x y z

Position of satellite 1 –1.71579955646127D-003 2.03344103631654D-003 9.39867923385619D-004

Velocity of satellite 1 –7.91640392929840D-003 –5.46846360020875D-003 –2.74191189391783D-003

Position of satellite 2 4.45793723306936D-003 –1.42392528833085D-004 2.86102038046521D-006

Velocity of satellite 2 1.69249336512619D-004 7.23138246768969D-003 3.37499860526491D-003

Position of satellite 3 6.49972441831771D-003 2.68993164162589D-003 1.35705962813048D-003

Velocity of satellite 3 –2.63896562460428D-003 5.16008273478556D-003 2.40926600425395D-003

Position of satellite 4 –7.52286235007071D-003 –9.08898313410688D-003 –4.41742759797359D-003

Velocity of satellite 4 3.81642610074802D-003 –2.54725146541170D-003 –1.15905670074826D-003

Table 3. Parameters found after fitting our numerical model to
the E5 ephemerides. The masses are given in Solar mass and the
angles are in degrees.

Parameter
Mass of Jupiter 9.54620310378796D-04
Mass of Io 0.437494713891136463D-07
Mass of Europa 0.238964248102158071D-07
Mass of Ganymede 0.751719604365370577D-07
Mass of Callisto 0.529187298712993777D-07
J2 1.47816729239112D-02
J4 –4.58687572521509D-04
ψ 358.053930210281D0
I 25.5066026284398D0

+

 ∂

∂yk
∇kUk̄0̂ +

∂

∂yk
0

∇0U0̄k̂

 f (2)
kl

+

 ∂

∂zk
∇kUk̄0̂ +

∂

∂zk
0

∇0U0̄k̂

 f (3)
kl (38)

where (xk
0, y

k
0, z

k
0) are the coordinates of body P0 in the refer-

ence frame centered on body Pk. Then one can refer to Eq. (37)
for an explicit writing.

In practice, Eq. (35) have been integrated simultaneously
with the equations of motion.

5. Adjustment to E5 ephemerides

We have adjusted our model to the Sampson-Lieske theory
using the method presented in the preceding section.

5.1. Solution E5

The theory that we used to adjust our model is the last adjust-
ment of Lieske’s theory to the observations, called the E5 the-
ory (Lieske 1998). To reduce the modeling differences, we did
not include the additional oblateness forces and the satellites’
triaxiality. Using one version of the theory instead of another
(G5 for instance) does not change the results, as the theory re-
mains the same and only the parameters (εk, βk) change (Lieske
1977). Hence, just the internal differences with the two models
will appear.

The adjustment was carried out in Cartesian equatorial co-
ordinates J2000 using a sample of 3654 points per coordinate

and with a step size of 10 days. The period covered by the
adjustment is then approximately a century. This time span is
close to the one we plan to use in the fit to the observations. To
reduce the numerical errors, we integrated over fifty years back
and forth starting at the epoch 01/01/1950 at 0H00.

The constants adjusted in our model were as follows:

- the 6N initial conditions (positions and velocities)
denoted (rk, ṙk) of the four satellites;

- the masses mk of the four satellites;
- the mass m0 of Jupiter;
- the Jovian oblateness coefficients J2 and J4;
- the angles (ψ, I) relating to the orientation of the Jovian pole.

Four iterations using the least-squares method were carried
out to optimize our adjustment. To interpret the differences
obtained, we choose to represent them in a Jovian equatorial
frame with cylindrical coordinates (ρ, ν, z) and thus very close
to the variables of Sampson (1921).

5.1.1. Results

The results are shown in Fig. 6 using the variables (ρi, νi, zi).
We note that the discrepancies are about several hundred kilo-
meters for each satellite, and of almost 800 kilometers for
Europa. The root-mean-square (rms) position differences be-
tween our model and E5 are of 53.96 km, 127.50 km, 81.14 km
and 91.19 km for Io, Europa, Ganymede and Callisto. These
differences appear especially in the presence of long periods
on the variable νi and in a less significant way the variable zi.
To understand such long period differences, we examine the
variables used by Sampson.

5.1.2. The problem induced by cylindrical coordinates

Generally, the solution of a theory in celestial mechanics is
given as a Fourier series with a polynomial amplitude (Poisson
series), in which one can separate the short period terms and the
long period terms. The long period terms are generally those
having the strongest amplitudes (because of small dividers af-
ter integration), while the short period terms have small vari-
able amplitudes, as a function of the long periods. This general
characteristic with the theory expressed in elliptical elements is
slightly different using the variables of Sampson because of the
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Fig. 6. Residuals after an adjustment over 100 years of our model to E5 ephemeride, for Io, Europa, Ganymede and Callisto (from top to bottom)
on the variables (ρ, ν, z) (from left to right). The differences (in kilometers) are a function of time (in years) over one century.

use of the coordinate ζi, or equally to the coordinates zi. Indeed,
the nature of this coordinate (rather inappropriate to describe a
disturbed Keplerian motion) leads to high oscillations in the
amplitudes of zi for the frequencies higher than the period of
revolution of the satellite. In Lieske (1977), there are no long-
period terms in the final development of the variables zi at all.

One can wonder why the variations we found are more
significant for the variable νi than the variable zi. During our
adjustment we had previously kept constant the values of the
angles (ψ, I). The corresponding results then gave a stronger
variation on zi than that on νi. However, we ended up also

adjusting the angles (ψ, I). The variations in zi were then re-
flected on νi by a geometrical effect, thus giving the graphs of
Fig. 6.

Another reason contributing to give these broad variations
can be the use of different solar theories. To a lesser extent the
influence of the Jovian precession (not taken into account in
our model) could also slightly contribute to the residuals.

5.2. Comparison with the observation accuracy

If the residuals shown in Fig. 6 represent the internal error
of the Samspon-Lieske theory, one should expect to see such
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Table 4. Variations introduced in the initial conditions of the satellites to minimize the influence of the additional oblateness forces and the
triaxiality of the satellites. The values are given in kilometers for the positions and in kilometers per day for the velocities.

Initial condition xk yk zk

Position of satellite 1 0.1864 0.2372 0.9461 × 10−1

Velocity of satellite 1 0.4590 × 10−1 0.6076 –0.7496 × 10−1

Position of satellite 2 –0.2534 –0.2250 –0.7398 × 10−1

Velocity of satellite 2 0.9756 × 10−1 0.1181 0.2271

Position of satellite 3 –0.1542 –0.6376 –0.2347

Velocity of satellite 3 –0.5535 × 10−1 0.2873 0.1830

Position of satellite 4 0.4086 –0.3074 –0.9948 × 10−1

Velocity of satellite 4 –0.1202 –0.9965 × 10−2 –0.1083 × 10−1

Table 5. Variations introduced in the parameters to minimize the in-
fluence of the additional oblateness forces and the triaxiality of the
satellites.

Parameter Correction ∆cl In %

Mass of central body –0.1058 × 10−9 –0.1108 × 10−4

J2 of central body –0.6145×10−5 –0.04159

J4 of central body –0.3582×10−4 5.7732

Mass of satellite 1 0.1055 × 10−9 0.2415

Mass of satellite 2 0.3047 × 10−11 0.1276 × 10−1

Mass of satellite 3 0.2231 × 10−11 0.2971 × 10−2

Mass of satellite 4 0.6587 × 10−11 0.1246 × 10−1

Angle ψ –0.2020 × 10−4 –0.5643 × 10−5

Angle I 0.9060 × 10−5 0.3552 × 10−4

differences in the comparison to observations. Hence, in the
paper of Mallama et al. 2000, some rms differences in distance
of 62 km, 267 km, 142 km and 146 km for respectivly Io,
Europa, Ganymede and Callisto were found. These residuals
appear proportional to ours, but are higher. This is not surpris-
ing as the observations induce experimental errors, and as our
residuals were obtained over one century instead of ten years
for the observations used in Mallama et al. (2000).

On the other hand, the discrepancies for Io are the lowest
ones. That differs from the interpretation by Kaas et al. (1999)
that some fairly large (O–C)s in the relative positions of Io and
Europa from mutual event observations in 1991 are likely due
mainly to errors in Io’s rather than in Europa’s E5 positions,
as found by us. Of course, our residuals are based on a spatial
representation of E5. Hence some (O–C)s on right ascention
and declination will be smaller, but that should not change the
relative discrepancies. Nevertheless mutual events cover just
one year and some local scattering in our graphs (see Fig. 6)
could explain the residuals of the 1999 PHEMU campaign.

5.3. Contribution of the small perturbations

In Sect. 3, we had decided to preserve any small perturbations
in our model without being able to define precisely the real in-
fluence of these latter. Indeed, although the difference between

taking into account these perturbations or not was estimated,
we noted that a small change in the constants of the theory
would be enough to make these differences disappear (at least
in a part).

Here, we determine precisely which constants are modified
and how so as to minimize the lack of these perturbations in a
model.

5.3.1. Adjustment of the main system to our final
model

To complete this work, we consider again the adjustment
method already used in the preceding section. We adjusted the
main system (see Eq. (24)) with our final model (which takes
into account the additional oblateness forces, and the triaxiality
of the satellites).

The adjusted constants were the same as in the last sub-
section. Moreover, four iterations by the least-squares method
were still carried out to optimize our adjustment. The differ-
ences obtained are ploted using the same variables (ρi, νi, zi), to
understand the possible influence of the perturbations that we
took into account and are neglected in the model of Sampson-
Lieske.

We also chose a sample of 3654 points per coordinate with
a step size of 10 days. Once again, to limit the numerical errors,
we integrated over fifty years back and forth.

5.3.2. Results

The differences that one cannot correct reach only a few kilo-
meters (graphs not shown here, for more details see Lainey
2003). However the absorption of a perturbation is carried out
at the price of a shift between the real physical quantities of
the system and those of the model. Table 4 gives the variations
induced to the initial conditions of the model to obtain our ad-
justment, and Table 5 gives the variations for the physical pa-
rameters.

It appears that if the variations in the initial conditions re-
main very weak, those in the parameters and especially the
oblateness coefficients J2 and J4 are clearly greater than the
error bars. As an indication, the error bars for these two coeffi-
cients (Campbell & Synnott 1985) are respectively of only 10−6
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and 5 × 10−6 whereas we obtain variations of 6, 14 × 10−6 and
3, 58 × 10−5. This result is coherent with what was stated in
Sect. 2.2. First of all the additional oblateness forces are di-
rectly related to the Jovian oblateness. Moreover, we had men-
tioned the possibility of absorbing the coefficients J(k)

2 of the
satellites in the oblateness of the central body.

Finally, it may be surprising that the variations are more
significant for J4 than for J2. This effect comes directly from
the correlation between these two coefficients. Actually, to
minimize the variations in J4, we have constrained this coef-
ficient to remain constant during the first two adjustments with
the least-squares procedure, and left it free in the two last.

6. Conclusion

We have determined which perturbations should be included
to have an accurate modeling of the Galilean system. Hence,
the additional oblateness forces and the satellites’ triaxiality
appeared non negligible. We gave explicitly the equations
which should be used to adjust the numercial solution to the
observations. We used this method to adjuste our model on
the E5 ephemerides. The maximum residuals reached 250 km,
700 km, 500 km and 550 km for respectively Io, Europa,
Ganymede and Callisto over one century. These residuals may
be explained by the variables used in the Sampson-Lieske
theory. Moreover they appear consistent with the results found
by Mallama et al. (2000) as the authors had only a time span
of comparison of ten years. As also discussed in Mallama
et al. (2000) we did not find high residuals for Io as was
hypothesized in Kaas et al. (1999) to explain mutual event
(O–C)s, even if some local discrepancy induced by the internal
error of E5 ephemerides could eventually explain their result.

We will present an adjustment to the observations in a future
paper. In particular the new ephemerides could be used to re-
duce the mutual phenomena, and should be accurate enough to
detect the secular acceleration induced by tidal effects.

Finally, it is important to note that our formulation was
done in a general way and can be applied to other satellite
(planetary) systems.
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