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ABSTRACT

Context. The evection resonance appears to be the outermost region of stability for prograde satellite orbiting a planet, the critical
argument of the resonance indeed being found librating in regions surrounded only by chaotic orbits. The dynamics of the resonance
itself is thus of great interest for the stability of satellites, but its analysis by means of an analytical model is not straightforward
because of the high perturbations acting on the dynamical region of interest.
Aims. It is thus important to show the results and the limits inherent in analytical models. We use numerical methods to test the
validity of the models and analyze the dynamics of the resonance.
Methods. We use an analytical method based on a classical averaged expansion of the disturbing function valid for all eccentricities
as well as numerical integrations of the motion and surfaces of section.
Results. By comparing analytical and numerical methods, we show that aspects of the true resonant dynamic can be represented by
our analytical model in a more accurate way than previous approximations, and with the help of the surfaces of section we present
the exact location and dynamics of the resonance. We also show the additional region of libration of the resonance that can be found
much closer to the planet due to its oblateness.

Key words. celestial mechanics – planets and satellites: general

1. Introduction

The problem of the stability of the orbits for real Solar System
objects is a well-known topic and has been thoroughly studied by
using many different dynamical models. Concerning the satel-
lites of planets, an important problem is to determine the orbital
stability limit below which the motion is bound to the planet,and
above which the escapes of satellites on heliocentric orbits even-
tually occur. In the framework of the restricted circular three-
body problem, the well-known Jacobi constant allows us to de-
rive useful limits to bounded motion (see for example Murray &
Dermott 1999), but for prograde orbits it can be shown that sta-
ble regions subsist outside these limits due to the so-called evec-
tion resonance. A detailed knowledge of the dynamics induced
by this resonance is therefore interesting for objects orbiting far
away from the planet, such as the irregular (outer) satellites of
the giant planets.

In their description of the lunar theory, Brouwer and
Clemence (1961) present the evection term in cos(2λ′ − 2�), �
being the longitude of pericentre of the satellite and λ′ the lon-
gitude of the perturbing body, which appears in the development
of the solar disturbing function as the “largest periodic correc-
tion in the Moon’s longitude” and the resonance have been of
first importance to the dynamic of the moon in the past (Touma
& Wisdom 1998). For distant orbits such those of the irregu-
lar satellites of the giant planets, this correction is crucial, as
shown by recent analytic models (Yokoyama et al. 2003; Ćuk &
Burns 2004; Beaugé & Nesvorný 2007). The dynamics of the
resonance itself was studied for the first time by Hénon in his

numerical study of the restricted three-body problem (Hénon
1969, 1970) where he shows that in the Hill’s approxima-
tion, this resonance appears as a bifurcation of a family of
simple periodic orbits (named “g” in his papers) at a value
of semi-major axis of a = 0.45rh where rh is the Hill’s ra-
dius of the planet. However, this feature was not found in
these studies for retrograde orbits. Hamilton & Krivov (1997)
studied the orbital motions of distant satellites using a gen-
eralized Tisserand constant and found the basic features of
evection: resonant prograde orbits are elongated toward the
perturbing body and their model shows in polar coordinates
(e cosα, e sinα) where α = � − λ′ is the argument of the
resonance, a characteristic eight-shape centered on e = 0.
This specific dynamic appears at a value of semi-major axis
of a = 0.53rh, and exhibits two elliptic points at α = 0 and
α = π.

Retrograde orbits are shown to be elongated perpendicular
to the perturber’s direction, but the eight-shape observed once
again in this direction was thought to be an artefact of the method
by the authors. The importance of the evection resonance on the
stability of satellites was pointed out by Nesvorny et al. (2003),
where it is shown that the effects of the perturber’s tides on a
satellite in the resonance can accumulate at each aphelion pas-
sage and induce a important drift of the orbits, potentially caus-
ing the escape of the body.

The dynamics of the resonance was studied with an analytic
model using an expansion of the disturbing function for the first
time by Yokoyama et al. (2008). The “eight-shape” of the reso-
nance for the planar problem was recovered by the authors, both
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for the prograde and retrograde case, and the apparition of the
resonance was derived as 0.529rh and 0.6933rh for the prograde
and retrograde case respectively.

However, numerically, resonant orbits can be found closer
to the planet than predicted by these analytical models and do
not seem to follow exactly the eight-shape found by previous
authors. The aim of this paper is, first, to show and explain the
limits associated with analytical models of the resonance, and
secondly to resort to numerical methods, with the aim of localiz-
ing and studying the resonance itself. Since we are interested in
the stability of the irregular satellites of Jupiter, the results of this
paper will be applied in this context. We provide also an addi-
tional result concerning the dynamics of the resonance obtained
when one takes into account the oblateness of the parent planet
in the analytical model. Unlike the distant satellite orbits stud-
ied throughout this paper, we show that this modification only
affects orbits very close to the planet.

In the following section, we construct and use an analytical
model of the resonance and show the results that can be obtained.
In Sect. 3, we resort to numerical studies (surfaces of section) to
precisely localize the resonance and compare the results with
those provided by the analytical model. In Sect. 4 we show how
the oblateness of the parent planet affects the dynamics of the
resonance. Finally, we present our conclusions and outline future
work that should be performed in our last section.

2. Analytical model

To determine the limits of the use of an analytical model, we
follow the method outlined by Yokoyama et al. (2008) and con-
struct an analytical model of the resonance based on a develop-
ment of the disturbing function in ( r

r� ). In addition we use an
alternative semi-numerical method to verify the results.

2.1. Development of the disturbing function in Legendre
polynomials

As in Yokoyama et al. (2008), we use a development of the dis-
turbing function using Legendre polynomials. We consider in all
the following calculations in this paper the motion of a satellite
orbiting around a planet and perturbed by the Sun (indicated by
subscript �) in a planetocentric system. The reference plane is
the orbital plane described by the Keplerian motion of the Sun
around the planet. The disturbing function R� related to the Sun
of mass m� acting on the satellite’s motion can be written using
a Legendre polynomials development

R� =
k2m�

r�

∞∑
l=2

(
r
r�

)lPl(cos(S )), (1)

using the Legendre polynomials

P2(u) =
1
2

(3u2 − 1),

P3(u) =
1
2

(5u3 − 3u),

P4(u) =
1
8

(35u4 − 30u2 + 3),

P5(u) =
1
8

(63u5 − 70u3 + 15u),

P6(u) = ...

Here k is the Gaussian gravitational constant and S denotes
the angle between the radius vectors of the satellite and the

Sun in the planetocentric frame. The cos(S ) term in the Eq. (1)
can be expanded using the cartesian coordinates of the bodies
(x, y, z, x�, y�, z�), r and r� being the norm of the radius vectors

cos(S ) =
x
r

x�
r�
+
y

r
y�
r�
+

z
r

z�
r�
· (2)

Using the elliptical elements defined by f the true anomaly, ω
the argument of pericenter, Ω the longitude of node, and I the
inclination, one has

x
r
= cos(Ω) cos(ω + f ) − sin(Ω) sin(ω + f ) cos(I),

y

r
= sin(Ω) cos(ω + f ) + cos(Ω) sin(ω + f ) cos(I),

z
r
= sin(ω + f ) sin(I),

and similar expressions for x�
r�

, y�r� , and z�
r�

.

2.2. Comparison in the order of Legendre polynomials

Since the polynomials appear as powers of ( r
r�

) in the Eq. (1) and
due to the (presumed) high distance in semi-major axis of the
resonance from the planet, we must study the validity of the ap-
proximation’s order before using any analytical result. To make
a clear statement about the approximations made by using differ-
ent orders of the polynomials with respect to the real motion, in
Fig. 1 we represent stability maps for a Jovian satellite in the pla-
nar problem with the initial conditions λ(0) = �(0) = λ�(0) = 0,
the initial semi-major axis and eccentricity being chosen in the
ranges a ∈ [0.1 : 0.2] AU and e ∈ [0 : 1[ respectively. We take
as constants the semi-major axis of the Sun a� = 5.202 AU and
the mass of Jupiter mjup =

1
1047.56 . For each orbit, the total in-

tegration time τ was divided in two consecutive samples τa and
τb of the same length and the maximal eccentricity emax reached
by the satellite for each sample was determined. The grey color

code is given by e
τb
max−eτamax

e
τb
max

, which is a stability criterion allowing
the detection of chaotic and resonant orbits with respect to the
regular ones (see Morbidelli 2002, for a discussion). White re-
gions indicate initial orbits that have escaped the Hill’s sphere
of the planet and the grey scale indicates stable orbits in black
and chaotic ones in grey levels (resonant orbits, despite their sta-
bility, are also highlighted in grey levels in the figures). Since
we are interested in the stability of the outer satellites, these
maps are of great importance and allow the easy location of the
various resonances and chaotic zones. The integration was per-
formed simulating the motion with a 2nd order Legendre poly-
nomial solely (namely the quadrupole term), then adding the 3rd
order Legendre polynomial (the octupole term) and finally the
full equations of motion.

By observing the differences, at the limit of stability, between
the orbits in the three maps, we conclude from Fig. 1 that the 2nd
order Legendre development is unable to correctly reproduce the
dynamics at the limit of stability given by the full equations of
motion. We note that in these maps, the evection resonance is
represented by the stable zone detached from the large one, sur-
rounded by escaping regions and ranging from a = 0.145 AU
to a = 0.17 AU. On the other hand, the 3rd order develop-
ment appears to be sufficient to approximate the real motion. We
note that the 2nd order development can still be used as a start-
ing basis for studying the long-term behaviour of real satellites
(see Ćuk & Burns 2004), since these objects are closer to the
planet.
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Fig. 1. Stability maps for a prograde Jovian satellite for τ = 1000 years
using a 2nd order Legendre development (top), 3rd order Legendre de-
velopment (middle), and the full equations of motion (bottom). See text
for comments.

2.3. The planar restricted three-body circular problem

In the planar case, we automatically assume that I = I� = 0 thus
z = z� = 0. The Sun’s orbit is chosen to be circular, thus e� = 0
and ω� = 0, implying that f� = λ�, λ� being the mean longitude
of the Sun. Since an analytical model based solely on the 2nd
order Legendre polynomial is insufficient for our purpose, we
extend the method of Yokoyama et al. (2008) to the third order.

2.3.1. Development and averaging

The reduction to the planar case, with the perturber on a circular
orbit, of Eq. (2) infers that cos(S ) = cos( f − λ� + �) if we
consider a prograde satellite orbit, implying that� = ω + Ω.

Considering first the 2nd order Legendre polynomial, the
disturbing function is

R2 =
k2m�a2

2a3�

( r
a

)2
[(3 cos2(S ) − 1)]. (3)

Since we are interested only in the critical argument of the evec-
tion resonance (� − λ�), we average R2 according to the mean

anomaly M of the satellite : 〈R2〉 = 1
2π

∫ 2π

0
R2dM.

This averaging is performed using the exact closed-form

equations of the two-body problem :

〈( r
a

)2
〉
= 1 +

3
2

e2,〈( r
a

)2
cos (2 f )

〉
=

5
2

e2 and

〈( r
a

)2
sin (2 f )

〉
= 0.

By using these equations, we obtain an averaged expression
of the disturbing function that is valid for all values of the eccen-
tricity of the satellite, resulting in

〈R2〉 = k2m�a2

2a3�

[
1
2

(
1 +

3
2

e2

)
+

15
4

e2 cos(2� − 2λ�)

]
. (4)

This is identical to Eq. (3.4) of Yokoyama et al. 2008.
If we consider a development in Legendre polynomials of up

to order 3, the corresponding expansion is

R3 = R2 +
k2m�a3

2a4�

( r
a

)3
[(5 cos3(S ) − 3 cos(S ))], (5)

where it is necessary to expand and average the expressions
( r

a )3 cos3(S ) and ( r
a )3 cos(S ).

To this effect, we use the following averaging equations cal-
culated with an algebraic manipulator :〈( r

a

)3
cos(3 f )

〉
= −35

8
e3,

〈( r
a

)3
sin(3 f )

〉
= 0,

〈( r
a

)3
cos( f )

〉
= −5

2
e − 15

8
e3,

〈( r
a

)3
sin( f )

〉
= 0.

The final expression for the averaged expression is

〈R3〉 = 〈R2〉 + k2m�a3

2a4�

[
3
4

(
−5

2
e − 15

8
e3

)
cos(� − λ�) (6)

−175
32

e3 cos(3� − 3λ�)

]
. (7)

To study the dynamics of the resonance, we must place the prob-
lem in an integrable form, which can be achieved by choosing
appropriate canonical variables within the Hamiltonian formal-
ism of the problem. This is the aim of the next section.

2.3.2. Canonical transformations of variables

We place the problem in a Hamiltonian form by using the
Delaunay variables (L,G, L�, l, g, l�). The Delaunay variables
are defined in the planar case to be

L =
√
μa , l = M

G =
√
μa(1 − e2) , g = ω ≡ �

L� , l� = M� ≡ λ�.
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Fig. 2. Analytical averaged model. Dynamics of the evection resonance for a prograde satellite using a model up to the 2nd order polynomial for
a = 0.19 AU (top left) and a = 0.2 AU (top Right), and up to the 3rd order polynomial for a = 0.19 AU (bottom left) and a = 0.2 AU (bottom
right).

The Hamiltonian corresponding to a disturbing function of up to
2nd order is

H2 = − μ
2

2L2
+ n�L� − 〈R2〉(L,G, L�, g, l�), (8)

where μ = k2mjup.
Our Hamiltonian in these variables is given by

H2 =− μ
2

2L2
+ n�L� − k2m�L4

2μ2a3�

[
1
2
+

3
4

(
1 −

(G
L

)2)

+
15
4

(
1 −

(G
L

)2)
cos(2g − 2l�)

]
. (9)

The above Hamiltonian has two degrees of freedom
(G, L�, g, l�). Indeed, since it is independant of l the corre-
sponding conjugate momenta L =

√
μa is constant. The additive

term − μ2

2L2 can thus be dropped from Eq. (9).
We then look for a canonical change of variables allowing us

to reduce the Hamiltonian to one dimension, which is:(
G g
L� l�

)
→

(
P1 α1
P2 α2

)

with the generating function S (P1, P2, g, l�) = (g− l�)P1 + l�P2,
which implies that

P1= G , α1 = g − l�
P2= L� +G , α2 = l�.

In these variables, the momenta P2 is constant and the term n�P2
can be suppressed from the Hamiltonian. The Hamiltonian in the

resonant variables thus has one degree of freedom (P1, α1) and
can be written by changing its sign to

H2 = n�P1 +
k2m�a2

2a3�

⎡⎢⎢⎢⎢⎣−3
4

P2
1

μa
+

15
4

⎛⎜⎜⎜⎜⎝1 − P2
1

μa

⎞⎟⎟⎟⎟⎠ cos(2α1)

⎤⎥⎥⎥⎥⎦ (10)

(see Yokoyama et al. 2008).
Using the same method, we found the Hamiltonian corre-

sponding to the expansion of the disturbing function up to third
order

H3 =H2 +
k2m�a3

2a4�

⎡⎢⎢⎢⎢⎢⎢⎢⎣−15
8

⎛⎜⎜⎜⎜⎝1 − P2
1

μa

⎞⎟⎟⎟⎟⎠
1
2

− 45
32

⎛⎜⎜⎜⎜⎝1 − P2
1

μa

⎞⎟⎟⎟⎟⎠
3
2

cos(α1)

−175
32

⎛⎜⎜⎜⎜⎝1 − P2
1

μa

⎞⎟⎟⎟⎟⎠
3
2

cos(3α1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (11)

Tests have shown that inclusion of the subsequent orders (4,5,...)
in the expansion of the averaged disturbing function leads to neg-
ligible differences in the study of the resonance, confirming the
results for the comparison of Sect. (2.2) which concerns the non-
averaged case. We note that the Hamiltonian defined in Eq. (11)
can possibly gives values of librating α1 other than those pre-
sented in the following : however their corresponding momenta
P1 are found to be negative, an impossibility for physical values
of a and e (since P1 = G =

√
μa(1 − e2)), so we restrict our

study to P1 � 0. In additional, P1(e) (with constant a) is bijec-
tive only in this case and we can show the dynamics of the model
using the coordinates (e, α1) in spite of the coordinates (P1, α1).
In the following, α1 is denoted by α for simplicity.

In Fig. 2, we show the dynamical portraits of the resonance
obtained with the 2nd and the 3rd order models for the prograde
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Fig. 3. Analytical averaged model. Dynamics of the evection resonance
for a retrograde satellite using a 2nd order polynomial for a = 0.26 AU
(top), a 3rd order polynomial for a = 0.26 AU (bottom).

case in the polar coordinates (e cosα, e sinα) with α = � − λ�.
Despite the presence of two islands at α = 0 and α = π for the
two approximations, we can discern a clear difference between
their sizes and their formations; the 2nd order model predicts
that the two islands appear at a = 0.1878 AU, while in the 3rd
order model, one of the islands (α = π) appears at a = 0 AU and
the other (α = 0) appears at a = 0.1976 AU.

For retrograde orbits, we follow the convention of Saha
& Tremaine (1993) concerning the definition of retrograde el-
ements in the expansion. In Fig. 3, we show the dynamical
portraits of the resonance in the retrograde case. Following
Yokoyama et al. (2008), using a 2nd order Legendre polynomial
the resonance appears at 0.6933rh = 0.245 AU and the libration
islands move to α = π2 and α = 3π

2 . The 3rd order term slightly
modifies the dynamics; the hyperbolic point now has a non-null
eccentricity (e = 0.0121 for the semi-major axis in Fig. 3) with
α = 0 and the libration centers move to increasing values of |α|
with increasing semi-major axis (α = ±93.29◦ in Fig. 3).

The global behaviour of the resonance in terms of semi-
major axis and eccentricity predicted by the analytical model up
to order 3 is shown in Fig. 4. In the upper figure (prograde case),
the location of the stable elliptic points (light curves) and their
corresponding separatrixes (bold curves) for the two islands is
plotted. The island α = π begins at the origin of the semi-major
axis at e = 0 and only its upper separatrix is plotted; the lower
separatrix remains at e = 0. The second island α = 0 start at
a = 0.1976 AU. Its center of libration and upper separatrix have
a similar behavior to that of the previous island, and its lower

Fig. 4. Analytical averaged model. Localisation of the evection reso-
nance for a prograde (top) and retrograde (bottom) satellite using the
model up to the 3rd order polynomial. Top: elliptic points (red curves),
separatrixes and hyperbolic point (blue curves). Bottom: upper separa-
trix (upper curve), elliptic point (middle curve), hyperbolic point (bot-
tom curve).

separatrix, which is the hyperbolic point of the resonance, de-
creases asymptotically to e = 0 with increasing a. For the retro-
grade case (bottom figure), the upper separatrix and the elliptic
point are indicated by the upper and middle curves respectively,
and the hyperbolic point by the curve of very low eccentricity.

2.4. Numerical averaging method

To verify and expand the results obtained above using the an-
alytical model, we use a numerical averaging procedure of the
disturbing function. The disturbing function in cartesian coor-
dinates R(X, X�), where X, X� represent the position vectors
of the satellite and the Sun respectively, is expanded in ellip-
tical elements R(a, e, E, �, a�, λ�), where E denotes the eccen-
tric anomaly of the satellite. The dependance on the longitude
of the satellite is numerically averaged following the procedure
of Moons (1994) (where the change of variables comes from the
Kepler equation)

〈R〉 = 1
2π

∫ 2π

0
RdM =

1
2π

∫ 2π

0
(1 − e cos E)RdE. (12)

The remaining angles are fixed to values corresponding to the
evection resonance : � = λ�, � = λ� − π (prograde case), and
� = λ� + π2 , � = λ� +

3π
2 (retrograde case). We have shown that
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Fig. 5. Numerically averaged model. Localisation of the elliptic and hy-
perbolic points of the evection resonance for prograde orbits (top) and
retrograde ones (bottom).

for retrograde orbits, the libration centers move slightly and α is
no longer ± π2 , but the difference in the localisation of the exact
resonance is marginal, for example the error in e is smaller than
0.01 for a = 0.5 AU. This method is applicable to all eccentrici-
ties and is not limited by the ratio a

a�
, in contrast to the classical

analytic Legendre expansion. The frequency �̇ can then be ob-
tained using the corresponding “secular form” of the Lagrange
equation

�̇ =

√
1 − e2

na2e
∂〈R〉
∂e
, (13)

which is calculated with a numerical partial derivative scheme
and compared to the mean motion of Jupiter to obtain the el-
liptic and hyperbolic points of the resonance. The results repre-
sented in Fig. 5 show very good agreement with the stable and
hyperbolic points given by the 3rd order analytical model, and
the curves are merged with the corresponding ones of Fig. 4.

2.5. Discussion

We note several things about these results. The discrepancy be-
tween the dynamics caused by the 2nd order and 3rd order terms
from the expansion of Eq. (1) is that despite being inferior in the
ratio ( r

r�
) by an order of magnitude compared to the 2nd order

term, the 3rd order polynomial therefore plays a major role due
to the effect of strict e in its formulation, comparing to the e2

in the 2nd order one. We note that the “eight-shape” resonant

Fig. 6. Time evolution of the evection resonant angle (top) and eccen-
tricity (bottom) for a satellite with initial elements a = 0.155 AU,
e = 0.5. The initial angles are set to zero.

dynamics was also found by Hamilton & Krivov (1997), but
the construction of their Generalized Tisserand constant was
achieved using solely a 2nd order Legendre polynomial to in-
troduce the mean longitude of the Sun in their model. For the
model used in this paper, we have shown that the following terms
in the expansion (of order >3 in the ratio r

r�
) become negligible

in the interval of semi-major axis studied and do not introduce
noticeable changes, as shown by Fig. 5.

The main consequence of inclusion of the 3rd order term
is the loss of symmetry between the two islands in Fig. 2. The
islands now have distinct evolutions, implying different sizes of
the islands at given values of the semimajor axis. We note that
the island (σ = π) can now be found at all values of semi-major
axis.

However, despite the precision provided by the 3rd order
term, the analytical model still fails to describe the real dynam-
ics, since one can find numerically resonant orbits at semi-major
axis and eccentricity values inferior to those predicted by the
model, as shown for example in Fig. 6. In Fig. 1, we however
show that a non-averaged expansion up to the 3rd order term
seems to be sufficient to correctly describe the true motion.

The discrepancies observed from the numerical experiments
come from the fact that we are using a normal form given by
Eq. (11), but without having explicitly written the correspond-
ing generating function (see for example Ferraz-Mello 2007)
which allows to determine the analytical relations between os-
culating and averaged variables. The initial osculating elements
are thus considered to be equal to the averaged elements used in
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the analytical model. If this simplification works well in many
cases where the perturbation is small, here at the limit of stability
it is non-negligible (see a discussion in Yokoyama et al. 2003).
To consider this problem, one could use a perturbation method
that explicitly permits the calculation of the generating function,
such as Lie series method. However, this applies to use an ex-
plicit development of the disturbing function in Fourier series to
keep things simple, and thus introduces an expansion in eccen-
tricity (as opposed to the averaging method used above that is
valid for all eccentricities), which would limits the applications
of the model for low to moderate excentricities. In the follow-
ing, we use an alternative and more direct way by using surfaces
of section to analyze the resonance. However, if the high pertur-
bation prevents us from correctly use the analytical model, one
can choose to apply this method to a region where it is “safe”
as the one of Sect. 4. In this section, we investigate the evection
resonance in a region much closer to the planet where the solar
perturbation is small, taking into account the oblateness of the
planet, and using the above analytical model.

In addition, as shown in the next section resonant retrograde
orbits cannot be found numerically despite their existence being
expected by the model. Here the problem originates from the fact
that the retrograde resonance is localized in a large chaotic zone
corresponding to escaping orbits.

3. Surfaces of section

To carefully study the planar problem, we take advantage of the
two-dimensionality of the Hamiltonian of the problem expressed
in the rotating frame evolving with the mean motion of Jupiter,
and we use the Poincaré surface of section method (PSS). The
corresponding Hamiltonian in the rotating frame (see for exam-
ple Valtonen & Karttunen 2006) is given by

H =
1
2

(P2
x + P2

y) + Pxy − Pyx − 1 − μ
r1
− μ

r2
, (14)

where x, y, Px, Py are, respectively, the coordinates and momenta
of the particle in the rotating frame centered on the barycenter of
the system, μ is the mass of the planet, 1 − μ is the mass of the
Sun, and we have the distances

r2
1=(x + μ)2 + y2,

r2
2=(x − (1 − μ))2 + y2.

The PSS is then constructed from the motion of the particle in the
cartesian coordinates (x, y, ẋ, ẏ) by choosing a surface S (for ex-
ample y = 0) and plotting the remaining coordinates (x, ẋ) each
time the particle crosses the surface S with ẏ > 0. The dynamics
of different orbits can then be represented for the same value of
the Jacobi constant C, which is the only integral of motion of the
system,

C = x2 + y2 + 2(
1 − μ

r1
+
μ

r2
) − ẋ2 − ẏ2. (15)

We emphasize that the PSS corresponds to the complete per-
turbed motion of the particle as opposed to an analytical model
constructed from an approximation. In Fig. 7, we show two
stability maps integrated up to 1000 periods of Jupiter, corre-
sponding to prograde orbits with the initial conditions λ(0) =
λ�(0) = �(0) = 0 (pericenter in conjunction with the Sun),
and λ(0) = λ�(0) = 0, �(0) = π (pericenter in opposition with
the Sun). The upper map in Fig. 7 is similar to the last one of
Fig. 1 but here we use the MEGNO as an indicator of chaos

Fig. 7. Stability maps obtained with the MEGNO for a prograde Jovian
satellite and 4 iso-Jacobian curves. Initial conditions: pericenter in con-
junction with the Sun (top), pericenter in opposition to the Sun (bottom).

(Cincotta et al. 2003) as we have observed its qualities (Frouard
et al. 2008). The MEGNO is a fast and reliable chaos indicator
which uses the time evolution of a tangent vector computed from
the variational equations of the motion. Apart from the detection
of chaotic orbits, for ordered motions this indicator is able to
clearly distinguish resonant orbits from non-resonant ones. In
the maps of Fig. 7, the white regions indicate satellites that have
escaped the Hill’s sphere of Jupiter while having a hyperbolic
orbit with respect to an elliptic Keplerian one. We identified the
limit of stability for initial circular orbits at a semi-major axis
of a = 0.17 AU which is consistent with the value a = 0.48rh
found by Alvarellos (1996). Dark blue indicates stable orbits,
while purple to yellow show different levels of chaoticicity for
unstable orbits.

From the studies already cited (and our own numerical ex-
periments), we know that the evection resonance in the prograde
case has two libration islands, situated at α = 0 and α = π.
This explain the choice of the initial conditions for the stability
maps, which are chosen to place the satellite in each island at
the beginning of the integration. In the maps, we indicate four
iso-Jacobian curves that correspond to the PSS showed in Fig. 8;
curves from left to right in the maps have respectively the values
C = 3.041, 3.0395, 3.0392 and 3.0388. We can then explain the
dynamic shown in the stability maps with the surfaces of section.

For the higher value of the Jacobi constant (C = 3.041), we
are able to recognize at the center of the figure the orbit corre-
sponding to the family of simple periodic orbits “g”1 (Hénon
1969,1970) and the libration α = π is still not allowed. We

1 The periodic orbit named g is the resonance with the critical argu-
ment λ − 2λ� +� in the inertial frame.
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Fig. 8. From top to bottom: surfaces of section for C = 3.041, C =
3.0395, C = 3.0392, and C = 3.0388.

determined its appearance at C = 3.0402552. For C = 3.0395
(the second figure), we can see that several low-order resonances
appear along with chaos due to the overlapping between them
and the “spreading” of their separatrixes. The periodic orbit g
(now the evection resonance α = π) has moved to lower x.
We can see a good correspondence with the stability maps of
Fig. 7, where the corresponding Jacobian curves is in the weak
chaotic region. For C = 3.0392, the hyperbolic point of the res-
onance was created and corresponds to the “critical orbit” “g1”
in Hénon (1970), and produced the second island centered on
x = 1.033, which corresponds to the evection argument α = 0
(we found the appearance of the island at C = 3.0392409). In
Hénon (1970), the island corresponding to the original orbit g
was divided at its center by the critical orbit g1, creating two li-
bration islands of similar size whose centers are the elliptic orbits
g′. This is not the case here, where the bifurcation has created an
island of a very small size comparing to the other. This differ-
ence can be caused by the Hill’s approximation not being used
in this paper. For the same value of C we can observe that af-
ter the bifurcation, the chaos related to the hyperbolic point is
still confined, but is about to be mixed with the already present
one, giving a nearly generalized chaos on the surface of section.
Obviously, we observe this phenomenon on the stability maps,
where the iso-Jacobian curve now passes through stable resonant
and strongly chaotic zones. Quasi-periodic orbits survive only at
high eccentricities. The map also shows, in accordance with the
surface of section, that the iso-Jacobian curve passes through the
detached stability zone, which corresponds to the newly created
island. Finally, for C = 3.0388 (last surface of section), a value
slightly higher than the value corresponding to the Lagrangian
point L1 (CL1 = 3.0387559), thus just before the possible escape
of the particle, the chaos is generalized.

3.1. Discussion

We mention that the two islands are very sensitive to the ini-
tial conditions that we choose for the PSS; the motion will be
resonant in one of the islands if the resonant angle α at the be-
ginning of the integration is very close to one of the exact values
of the resonance (e.g., α = 0 or α = π). In fact we can see in
Figs. 7 and 8 that the islands are surrounded only by chaotic
regions.

Can we draw conclusions about the analytical model with
the help of the surfaces of section presented above? Figs. 2 and 8
cannot be rigorously compared because each of the four PSS cor-
respond to a single value of the Jacobi constant, which implies
that the orbits integrated in one PSS have different initial ele-
ments a and e with � = 0 or� = π (the particle always starts in
the Sun-Jupiter line, with a perpendicular velocity, thus the ini-
tial λ and λ� are the same for all orbits). Despite this and the fact
that different coordinates are used in Figs. 2 and 8, the similarity
between the PSS and the dynamic given by the analytical model
up to the 3rd order is striking. On the other hand, the surfaces of
section obtained with the Hill’s approximation (see Hénon 1970)
are similar to the dynamics predicted by the analytical model up
to the 2nd order. The main difference caused by the PSS is that
the island α = π is created at a specific value of C; the central
periodic orbit for C � 3.0402552 (see the upper graph in Fig. 8)
corresponds to the periodic orbit g.

The evection for retrograde orbits cannot be found by means
of surfaces of section. The family of simple periodic orbits “ f ”
in Hénon (1970) indeed experiences no bifurcation. If orbits can
numerically be found librating around the centers α = π

2 and
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Fig. 9. Location of the evection resonance with the PSS in initial oscu-
lating elements. Top: λ�(0) = 0, λ(0) = π. Left curve: libration α = π
with �(0) = π, right curve: libration α = 0 with �(0) = 0. Bottom:
λ�(0) = 0, λ(0) = 0. Left curve: libration α = 0 with �(0) = 0, right
curve: libration α = π with�(0) = π.

α = 3π
2 , it is always temporarily, and they alternate between cir-

culation and/or libration around the other elliptic point after a
certain amount of time.

Figure 9 indicates the centers of libration given by the PSS
for several initial osculating variables. Since we analyze the
complete problem, the centers of the resonance are found to de-
pend of the initial osculating variables and the use of a more
sophisticated perturbation method than in Sect. 2 would have
brought a similar phase dependency with respect to the initial
variables. In the two figures, the left and right curves correspond
to the librations α = π and α = 0 respectively. In Fig. 10, we
present the location of the two islands of the resonance as given
by the PSS in averaged elements, along with their counterparts
found by the numerically averaged model (Sect. 2.4). The aver-
aged elements were obtained by averaging the semimajor axis
and the eccentricity of the orbits found by the PSS in Fig. 9 over
10 000 years. In this figure, the two left curves correspond to the
orbits found with the PSS, superimposed on those of Fig. 5. We
can appreciate the interval between the curves found by the two
methods, which illustrates the lack of precision of the analytical
model and emphasizes that the high solar perturbation prevent
us from using it. In the next section, we show that the analytical
model can still be used if the solar perturbation is sufficiently
weak, that is very close to the planet.

Fig. 10. Location of the evection resonance for prograde satellites with
the PSS (in averaged elements) (the two left curves) and by the nu-
merically averaged model (the two right curves). The island α = π is
indicated by the dot line, the island α = 0 by the solid one.

4. Evection resonance taking into account
the oblateness of the planet

To study the effect of the resonance very close to the planet, we
start from the analytical model described in Sect. 2, and take into
account the correction due to the second harmonic in the devel-
opment of the potential of the planet. Indeed, close to the planet,
the frequency of the pericenter of the satellite is insufficiently
high to be comparable to the mean motion of the Sun, and does
not allows the appearance of the evection resonance. The oblate-
ness of the planet has the well-known effect of increasing the
frequency of pericenter of a satellite. One can note that this ef-
fect is only local, and we have checked that no apparent change
is present for the outer region discussed in the previous sections.
We have also verified how the description of the solar pertur-
bation could be improved by using different orders of approxi-
mation as in Sect. 2.2 and conclude that due to the small ratio
( a

a�
), the 2nd order polynomial alone is sufficient. To obtain the

additional term that depends on the oblateness of the planet, we
proceed in the following with a method similar to that used at
the beginning of this paper.

4.1. Development and averaging

The gravitational potential of a planet formulated in spherical
coordinates (r, λ, φ), where the axis of revolution of the body
coincides with its rotation axis, is written, following Duriez
(2002), as

U(r,−, φ) =k2m
r

(
1 − J2

a2
e

r2
P2(sin(φ)) − J4

a4
e

r4
P4(sin(φ)) − ...

−J2n
a2n

e

r2n
P2n(sin(φ)) − ...

)
, (16)

where m is the mass of the planet, ae is its equatorial radius, and
the Jn are the zonal harmonics. The Pn are the Legendre poly-
nomials defined in Sect. 2.1. This simplification limits the ap-
plication of the model to planets with a sufficiently low value of
obliquity ε to be considered negligible; this is the case for Jupiter
(ε = 3.12◦), Mercury (ε ∼ 0.1◦), and Venus (retrograde rota-
tion: ε = 177.3◦). However, for the last two planets all values of

Page 9 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913048&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913048&pdf_id=10


A&A 515, A54 (2010)

Fig. 11. Dynamical portrait of the evection resonance for a Jovian satel-
lite with semi-major axis a = 0.00515 AU, taking into account the
Jupiter’s J2.

eccentricity of the orbits affected by the resonance lead to peri-
centers that are inside the physical radius of the planet. For
Jupiter, only the high-eccentricity part of the resonance in-
duces this effect. The physical coefficients of Jupiter are ae =
71398 km and J2 = 0.01475. We note that the resonance for
the cases of Mars and Earth was studied analytically by Breiter
(2000). The perturbation caused exclusively by the 2nd order
Legendre polynomial, and involving only the J2 coefficient is
given by

UJ2 = −k2mJ2
a2

e

r3
(
3
2

sin2(φ) − 1
2

). (17)

Following classical calculations and using the averaging relation
〈( a

r )3〉 = (1 − e2)
−3
2 in a similar way to that in Sect. 2.3.1, we

obtain the expression for UJ2 averaged over the mean anomaly
of the satellite :

〈
UJ2

〉
= k2mJ2

a2
e

a3
(
1
2
− 3

4
sin2(i))(1 − e2)−

3
2 . (18)

4.2. The planar case

When i = 0, Eq. (18) expressed in resonant variables becomes

〈
UJ2

〉
=

1
2

k2mJ2
a2

e

a3
(
P2

1

μa
)
−3
2 . (19)

The phase portrait of the resonance in polar coordinates for pro-
grade orbits of semi-major axis a = 0.00515 AU can be seen in
Fig. 11 (retrograde resonant orbits were not found). The effect of
the oblateness is to change the libration centers of the resonance
by π2 . The resonance also appears to be narrower.

A numerical example of a resonant orbit integrated with the
full equations of motion is shown in Fig. 12.

In Fig. 13, the exact resonance and its width are shown. The
location of the averaged semi-major axis of the four main Jovian
massive satellites (Io, Europe, Ganymede and Callisto)2 are also
indicated by vertical lines. We note that the pericenter of the
satellite’s orbit is found to be inside the physical radius of Jupiter
when the upper separatrix of the resonance exceed a = 0.01176
AU for e = 0.959. For the exact resonance, the critical values are
a = 0.01628 AU with e = 0.971.
2 taken from http://ssd.jpl.nasa.gov/?sat_elem

Fig. 12. Time evolution of the resonant angle (top) and eccentricity (bot-
tom) of an orbit integrated with the full equations of motion with initial
elements a = 0.00515 AU, e = 0.75, λ = 0, � = π2 and λ� = 0.

Fig. 13. Location of the evection resonance and its width for Jupiter.
The locations in semi-major axis of the Jovian main massive satellites
are indicated by vertical lines.

5. Conclusions

We have studied the evection resonance using an analytical
model extending the computations of Yokoyama et al. (2008).
The extended model has different dynamics compared to the
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previous one, mainly in terms of creation of the islands of li-
bration. We have show with an independent method that addi-
tional extensions of the model do not alter the predicted dynam-
ics. However, since this analytical model still appears to have
limited precision compared to direct numerical integrations due
to the chosen averaging method, we resort to surfaces of sec-
tion to compare them with the model, precisely localize the res-
onance and study its features. The comparison shows that the
extended analytical model, while remaining inaccurate in the lo-
calisation of the resonance, reproduces the main features of its
dynamics. We determined the appearance of the resonance at
the averaged values a = 0.42rh and a = 0.435rh for the libra-
tions α = π and α = 0 respectively. In addition, we showed that
the resonance can be found much closer to the planet due to its
oblateness and we indicated its location in terms of semi-major
axis and eccentricity. However, important questions about the
resonance remain unanswered, for example the dependencies of
the resonance on the inclination of orbits and the eccentricity of
the perturbing body are of particular interest for escape/capture
problems and dynamical studies of outer satellites, and are cur-
rently explored. For the same reason, the persistence of the reso-
nance when the motion is subjected to other perturbations, such
as massive satellites, planets, or non-gravitational forces, is also
investigated and will be presented in a forthcoming paper.
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