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ABSTRACT

Aims. We study the forced rotation of Titan seen as a rigid body at the equilibrium Cassini state, involving the spin-orbit
synchronization.
Methods. We used both the analytical and the numerical ways. We analytically determined the equilibrium positions and the fre-
quencies of the 3 free librations around it, while a numerical integration associated to frequency analysis gave us a more synthetic,
complete theory, where the free solution split from the forced one.
Results. We find a mean obliquity of 2.2 arcmin and the fundamental frequencies of the free librations of about 2.0977, 167.4883, and
306.3360 years. Moreover, we bring out the main role played by Titan’s inclination on its rotation, and we suspect a likely resonance
involving Titan’s wobble.
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1. Introduction

Since the terrestrial observations of Lemmon et al. (1993), the
rotation of Titan, Saturn’s main satellite, has been assumed to
be synchronous or nearly synchronous. This has been confirmed
by Lemmon et al. (1995a) and by Richardson et al. (2004) with
the help of Voyager I images. In this last work, Titan’s rotation
period is estimated at 15.9458± 0.0016 days, whereas its orbital
period is 15.945421 ± 0.000005 days.

The spin-orbit synchronization of a natural satellite is very
common in the solar system (such as for the Moon and the
Galilean satellites of Jupiter) and is known as a Cassini state.
This is an equilibrium state that has probably been reached after
a deceleration of the spin of the involved body under dissipative
effects, like tides.

Recently, Henrard & Schwanen (2004) have given a
3-dimensional elaborated analytical model of the forced rota-
tion of synchronous triaxial bodies, after studying the librations
around the Cassini state. This model has been successfully ap-
plied by Henrard on the Galilean satellites Io (2005a) and Europa
(2005b), seen as rigid bodies. Such studies require knowing
some parameters of the gravitational field of the involved bod-
ies, which cannot be considered as spheres. Another analytical
study has been performed for Mercury by D’Hoedt & Lemaître
(2004), for the case of a 3:2 spin-orbit resonance.

Since the first fly-bys of Titan by the Cassini spacecraft, we
have a first estimation of the useful parameters, more particularly
Titan’s J2 and C22 (Tortora et al. 2006), so a similar study of
Titan’s rotation can be made. In this paper, we propose a study of
Titan’s forced rotation, where Titan is seen as a rigid body. The
originality of this study over Henrard’s previous studies is that
we use both the analytical and the numerical tools and compare
our results.

2. Expressing the problem

Titan is here considered as a triaxial rigid body whose principal
moments of inertia are written respectively as A, B, and C, with
A ≤ B ≤ C.

2.1. The variables

Our variables and equations have already been used in previous
studies; see for instance Henrard & Schwanen (2004) for the
general case of synchronous satellites, Henrard (2005a) for Io,
and Henrard (2005b) for Europa.

We consider 3 reference frames: the first (e1, e2, e3) is cen-
tered on Titan’s mass barycenter and is in translation with the
inertial reference frame used to describe the orbital motion of the
Saturnian satellites in the TASS1.6 theory (see Vienne & Duriez
1995). This is a Cartesian coordinate system whose origin is the
center of Saturn, and it refers to the equatorial plane of Saturn
and the node of this plane with the ecliptic at J2000. The sec-
ond frame (n1, n2, n3) is linked to Titan’s angular momentum,
and the third one ( f1, f2, f3) is rigidly linked to Titan. In this last
frame, Titan’s matrix of inertia is written as

I =

⎛⎜⎜⎜⎜⎜⎜⎝
A 0 0
0 B 0
0 0 C

⎞⎟⎟⎟⎟⎟⎟⎠ . (1)

We first use Andoyer’s variables (see Andoyer 1926; and Deprit
1967), which are based on two linked sets of Euler’s angles. The
first set (h,K, g) locates the position of the angular momentum
in the first frame (e1, e2, e3), while the second (g, J, l) locates the
body frame ( f1, f2, f3) in the second frame tied to the angular
momentum (see Fig. 1).
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Fig. 1. The Andoyer variables (reproduced from Henrard 2005a).

The canonical set of Andoyer’s variables consists of the three
angular variables l, g, h and their conjugated momenta defined by
the norm G of the angular momentum and two of its projections:

l L = G cos J
g G
h H = G cos K.

Unfortunately, these variables present two singularities: when
J = 0 (i.e., the angular momentum is colinear to f3, there is
no wobble), l and g are undefined, and when K = 0 (i.e., when
Titan’s principal axis of inertia is perpendicular to its orbital
plane), h and g are undefined. That is why we use the modified
Andoyer’s variables:

p = l + g + h P = G
nC

r = −h R = G−H
nC = P(1 − cos K)

= 2P sin2 K
2

ξq =

√
2Q
nC sin q ηq =

√
2Q
nC cos q

where n is Titan’s mean orbital motion, q = −l, and Q = G −
L = G(1 − cos J) = 2G sin2 J

2 . With these new variables, the
singularity on l has been dropped.

2.2. The free rotation

To describe the dynamics of the system, we should consider
the free rotation and the perturbations by other bodies. The
Hamiltonian of the free body rotation is also the kinetic energy
of the rotation T = 1

2 (ω|G) whereω is the instantaneous rotation
vector, G the angular momentum vector with respect to the cen-
ter of mass, and (ω|G) the scalar product of the vector ω and G,
where ω and G are respectively defined as

ω = ω1 f1 + ω2 f2 + ω3 f3 (2)

and

G = Aω1 f1 + Bω2 f2 +Cω3 f3. (3)

We also deduce from the definitions of the angles l and J (the
wobble):

G = G sin J sin l f1 +G sin J cos l f2 +G cos J f3, (4)

from which we can easily deduce

ω =
G
A

sin J sin l f1 +
G
B

sin J cos l f2 +
G
C

cos J f3 (5)

and consequently

1
2

(ω|G) =
G2 − L2

2

⎡⎢⎢⎢⎢⎢⎣ sin2 l
A
+

cos2 l
B

⎤⎥⎥⎥⎥⎥⎦ + L2

2C
· (6)

As a result, the Hamiltonian of the free rotation in the modified
Andoyer’s variables is

T =
nP2

2
+

n
8

[
4P − ξ2

q − η2
q

]⎡⎢⎢⎢⎢⎢⎣ γ1 + γ2

1 − γ1 − γ2
ξ2

q +
γ1 − γ2

1 − γ1 + γ2
η2

q

⎤⎥⎥⎥⎥⎥⎦ (7)

with

γ1 =
2C − A − B

2C
= J2

MR2

C
(8)

and

γ2 =
B − A

2C
= 2C22

MR2

C
· (9)

2.3. Perturbation by Saturn

Considering the parent body Saturn as a point mass M�, the
gravitational potential of the perturbation can be written as

V = −GM�
∫ ∫ ∫

W

ρdW
d′

(10)

where ρ is the density inside the volume W of the body and d′
the distance between the point mass and a volume element inside
the body. Using the usual expansion of the potential in spherical
harmonics (see for instance Bertotti & Farinella 1990), we find

V = −
GM�

d

(
1 +

∑
n≥1

1
dn

n∑
m=0

Pm
n (sin φ)

×
[
Cm

n cos mψ + S m
n sin mψ

])
(11)

where ψ and φ are respectively the longitude and the latitude of
Saturn’s barycenter of mass in Titan’s frame, and d the distance
between this Saturn’s barycenter of mass and the origin of the
frame (Titan’s barycenter of mass). If we limit the expansion of

(11) to the second order terms and drop the term
GM�

d , which
does not produce any effect on the rotation, we have

V = −
3GM�

2d3
MR2

[
J2(x2 + y2) + 2C22(x2 − y2)

]
(12)

where x, y, and z are the coordinates of Saturn’s center of mass in
Titan’s frame ( f1, f2, f3) (so we have d =

√
x2 + y2 + z2). Here,

d depends on the time since Titan’s motion around Saturn is not
circular, but we can introduce d0, the mean value of d, since a0
is Saturn’s mean semimajor axis and e0 its mean eccentricity.
(They correspond respectively to Titan’s mean semimajor axis
and mean eccentricity in a Saturnian frame.)

We use the formula

d0 = a

(
1 +

e2

2

)
(13)

coming from the development of r
a (see Brouwer & Clemence

1961):

r
a
= 1 +

e2

2
+

(
− e +

3
8

e3

)
cosM

−e2

2
cos 2M− 3

8
e3 cos 3M + O(e4) (14)



B. Noyelles et al.: Titan’s rotation 961

from which the mean anomaly M disappears after averaging.
The perturbing potential V now reads

V = −3
2

GM�
d3

0

(
d0

d

)3

MR2
[
J2(x2 + y2) + 2c22(x2 − y2)

]
(15)

and we set n∗2 =
GM�

d3
0

, so that we can write

V
nC
= n

(
d
d0

)3[
δ1(x2 + y2) + δ2(x2 − y2)

]
(16)

with

δ1 = −3
2

(
n∗

n

)2

γ1 (17)

and

δ2 = −3
2

(
n∗

n

)2

γ2 (18)

where M and R are respectively Titan’s mass and radius.
As Henrard (2005b) did for Jupiter, we also take Saturn’s

oblateness into account. The perturbing potential due to Saturn’s
oblateness reads

Vo = δsCn2

(
d0

d

)5[
δ1(x2 + y2) + δ2(x2 − y2)

]
(19)

with

δs =
5
2

J2�
⎛⎜⎜⎜⎜⎜⎝

R�
d0

⎞⎟⎟⎟⎟⎟⎠
2

(20)

where R� is Saturn’s radius, and J2� its J2.
Finally, the Hamiltonian of the problem reads

H = nP2

2
+

n
8

[
4P − ξ2

q − η2
q

][
γ1 + γ2

1 − γ1 − γ2
ξ2

q +
γ1 − γ2

1 − γ1 + γ2
η2

q

]

+n

(
d0

d

)3⎛⎜⎜⎜⎜⎜⎝1 + δs

(
d0

d

)2⎞⎟⎟⎟⎟⎟⎠[δ1(x2 + y2) + δ2(x2 − y2)
]
. (21)

3. Analytical study

We intend to use the Hamiltonian (21) to analytically determine
the equilibrium position of Titan in the Cassini state related to
the spin-orbit synchronization and the 3 frequencies of the free
librations around this equilibrium, using the method explained in
(Henrard & Schwanen 2004). For this analytical study, we con-
sider that Titan has a circular orbit around Saturn, whose incli-
nation on Saturn’s equatorial plane is given by only one periodic
term extracted from TASS1.6 ephemerides (Vienne & Duriez
1995). This implies that the ascending node of Titan oscillates
around a fixed value, so it cannot disappear after averaging the
equations. That is why the analytical solutions of (Henrard &
Schwanen 2004) cannot be used directly, and we first must check
that they become unchanged without averaging the ascending
node. The true orbital eccentricity of Titan is about 0.0289, but
the opportunity to neglect it will be discussed later, after com-
parison with the numerical study.

This way, the vector locating Saturn’s barycenter is colin-
ear to

xie1 + yie2 + zie3 (22)

with

xi = −
(

cos �6 cos(λ6 −�6) − cos I6 sin �6 sin(λ6 −�6)
)

(23)

yi = −
(

sin �6 cos(λ6 −�6) + cos I6 cos �6 sin(λ6 −�6)
)

(24)

and

zi = − sin I6 sin
(
λ6 −�6

)
(25)

where I6, �6 and λ6 are respectively Titan’s mean inclination,
argument of the node and mean longitude in the inertial frame of
the ephemerides. (The subscript 6 refers to the fact that Titan is
Saturn’s sixth satellite.)

To obtain the coordinates x, y, and z of Saturn is the reference
frame bound to Titan ( f1, f2, f3), 5 rotations are to be performed:
⎛⎜⎜⎜⎜⎜⎜⎝

x
y
z

⎞⎟⎟⎟⎟⎟⎟⎠ = R3(−l)R1(−J)R3(−g)R1(−K)R3(−h)

⎛⎜⎜⎜⎜⎜⎜⎝
xi
yi

zi

⎞⎟⎟⎟⎟⎟⎟⎠ (26)

with

R3(φ) =

⎛⎜⎜⎜⎜⎜⎜⎝
cosφ − sin φ 0
sin φ cosφ 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (27)

and

R1(φ) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 cosφ − sinφ
0 sin φ cosφ

⎞⎟⎟⎟⎟⎟⎟⎠ . (28)

Table 1 gives the values of the physical and dynamical parame-
ter that we use, and Table 2 gathers the computed values of the
corresponding parameters used in the Hamiltonian (21).

3.1. Equilibrium

We consider here that the system is exactly at the Cassini state.
This implies that:

– The axis of least inertia, f1, points to the center of mass of
Saturn, so we have p − λ� = 0, λ� as the mean longitude of
Saturn in the frame ( f1, f2, f3).

– The ascending node of the frame (n1, n2, n3) (associated to
the angular momentum) in the inertial frame has the same
precession rate as the ascending node of Saturn in the same
inertial frame, i.e. r + �� = 0, �� is the argument of the
ascending node of Saturn.

– There is no wobble, so the angular momentum is colinear
with Titan’s axis of highest inertia f3. This implies J = 0, so
ξq = 0 and ηq = 0.

We have

λ� = λ6 − π (29)

and

�� = �6, (30)

so it is convenient to introduce this new set of canonical
variables:

σ = p − λ6 + π P
ρ = r +�6 R
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Table 1. Physical and dynamical parameters.

Parameters Values References

n 143.9240478491399 rad y−1 TASS1.6 1995
e 0.0289 TASS1.6 1995
γ = sin I6

2 5.6024 × 10−3 TASS1.6 1995
R� 58232 km IAU 2000 2002
J2� 1.6298 × 10−2 Pioneer & Voyager (1989)
M 2.36638 × 10−4 M� Pioneer & Voyager (1989)
R 2575 km IAU 2000 2002
GM� 3.77747586645 × 1022 km3 y−2 Pioneer, Voyager + IERS 2003
J2 (3.15 ± 0.32) × 10−5 Cassini (2006)
c22 (1.1235 ± 0.0061) × 10−5 Cassini (2006)

C
MR2 0.31 (. . .)

Note 1. The mean values of Titan’s mean motion n, eccentricity e and inclination γ come from TASS1.6 theory (Vienne & Duriez 1995), the radii
come from the IAU 2000 recommendations (Seidelmann et al. 2002), Titan’s mass M and Saturn’s J2 come from the Pioneer and Voyager space
missions (Campbell & Anderson 1989). These two values are those used in TASS1.6 theory, we choose to keep them in order to remain coherent.
The mass of Saturn has been derived from the fly-bys of the Pioneer and Voyager space missions, but the published value is given in solar masses.
That is why we also indicate IERS 2003 as a reference, which gives us the solar mass. Titan’s J2 and C22 come from the fly-by T11 of the Cassini
space mission (Tortora et al. 2006), but unfortunately no value for C

MR2 is available yet. We can only hypothesize that it should be included between
0.3 and 0.4, as the case for the Galilean satellites of Jupiter.

Table 2. Values used in the Hamiltonian (21) that have been computed
from the physical and orbital parameters given Table 1.

Parameter Numerical value
d0 1 222 345.284 km
n∗ 143.8339397847 rad y−1

γ1 1.016129 × 10−4

γ2 7.248387 × 10−5

δ1 −1.522286 × 10−4

δ2 −1.085897 × 10−4

δs 9.247193 × 10−5

where σ represents the angle between the axis of least inertia
of Titan f1 and the direction Saturn-Titan, and ρ is the differ-
ence between the two ascending nodes. At the exact equilibrium,
these two angles should be zero.

This way, and also assuming d ≈ d0 (i.e., neglecting Titan’s
orbital eccentricity), the Hamiltonian (21) becomes

H = nP2

2
− nP + �̇R + nδ1(1 + δs)[a1 sin2 K

+a2 sin K cos K cos ρ

+a3 cos 2ρ(1 − cos 2K)]+nδ2(1+δs)[b1(1+cos K)2 cos 2σ

+b2 sin K(1 + cos K) cos(2σ + ρ)

+b3 sin2 K cos(2σ + 2ρ)

+b4 sin K(1 − cos K) cos(2σ + 3ρ)

+b5(1 − cos K)2 cos(2σ + 4ρ)], (31)

with the mean longitude disappearing after averaging, except of
course in the p variable. The term −nP + �̇R has to be added
because the canonical transformation we use is time-dependent.
The Hamiltonian (31) has been computed with Maple software,
and the analytical expressions of the coefficients ai and bi are
the same as in Henrard & Schwanen (2004). This means that,
assuming that the ascending node of the orbit of the considered
body circulates or not does not change the expressions of ai and
bi, the formulae given in Henrard & Schwanen (2004) can be ap-
plied to bodies whose node does not circulate, e.g. J-4 Callisto,
S-6 Titan or S-8 Iapetus. The analytical expressions of these

Table 3. Numerical values of ai and bi.

Parameter Numerical value

a1 −4.9990584229813 × 10−1

a2 1.12039208002146 × 10−2

a3 1.56929503117011 × 10−5

b1 2.49984306803404 × 10−1

b2 5.60213623923651 × 10−3

b3 4.70788509351034 × 10−5

b4 1.75839129195533 × 10−7

b5 2.46284149427823 × 10−10

coefficients are recalled in Appendix A, while Table 3 gives their
numerical values in our context.

At the exact equilibrium, we have σ = 0, ρ = 0, dσ
dt =

∂H
∂P =

0, and dρ
dt =

∂H
∂R = 0. These two last equations give

E1(P,K) = n

[
P − 1 +

(
1 + δs

)
∆

cos K − 1
P sin K

]
= 0 (32)

and

E2(P,K) = �̇6 +
(
1 + δs

) n∆
P sin K

= 0 (33)

with

∆ = δ1

[
a1 sin 2K + a2 cos 2K + 2a3 sin 2K

]
+δ2

[
− 2b1 sin K(1 + cos K) + b2(cos K + cos 2K)

+b3 sin 2K + b4(cos K − cos 2K)

+2b5 sin K(1 − cos K)
]
. (34)

Since Titan’s ascending node oscillates around a fixed value, we
have �̇6 = 0. A numerical resolution of (32) and (33) gives

K∗ = 1.1204858615× 10−2 rad

= 2311.168 arcsec = 38′31.168′′ (35)

P∗ = 1; (36)
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Table 4. Numerical values of the coefficients µxx and γxx.

Parameter Numerical value

γσσ 2.1717941364 × 10−4

γσρ 1.3632529077 × 10−8

γρρ 1.6372888272 × 10−8

γqq 3.4788181236 × 10−4

µσσ 5.0000000409 × 10−1

µσρ −6.5206613577 × 10−5

µρρ 1.0387557096
µqq 1.4564940392 × 10−5

hence,

R∗ = 6.2773771522× 10−5 (37)

the asterisk meaning “at the equilibrium”.
In the orbital model we use, I6 is constant at

0.011204858615 rad, which is exactly the value of K∗ we
get. Such an accuracy of 11 digits is given to indicate the
numerical equality of the two values, but it has no real physical
meaning, so Titan’s mean obliquity (measured with respect to
its orbital inclination) should be nearly zero. This is confirmed
by this formula, given by Henrard & Schwanen (2004):

K∗ ≈ δ1 + δ2

δ1 + δ2 − �̇
n

I, (38)

which becomes K∗ ≈ I when the mean value of the precession
rate of the line of nodes is zero.

3.2. The fundamental frequencies of the free librations

Since the equilibrium has been found, the Hamiltonian is cen-
tered in order to study the behavior of the system near the equi-
librium. We introduce a new set of canonical variables:

ξσ = σ ησ = P − P∗
ξρ = ρ ηρ = R − R∗
ξq ηq

As a translation, this transformation is canonical. In these vari-
ables, the main part of the Hamiltonian of the problem is
quadratic. Its quadratic part is namedN and we have

N
n(1 + δs)

= γσσξ
2
σ + 2γσρξσξρ + γρρξ

2
ρ + γqqξ

2
q

+µσση
2
σ + 2µσρησηρ + µρρη

2
ρ + µqqη

2
q. (39)

The analytical expressions of the coefficients µxx and γxx are re-
called in Appendix B, and their numerical values are gathered
in Table 4. The reader should be aware that these coefficients
are similar to those in Henrard & Schwanen (2004), but differ-
ent from the ones used by Henrard for Io (2005a) and Europa
(2005b) where other variables are used.

We now introduce the following new set of canonical
variables:

ξσ = x1 − βx2 ησ = (1 − αβ)y1 − αy2
ξρ = αx1 + (1 − αβ)x2 ηρ = βy1 + y2
ξq = x3 ηq = y3

with α and β conveniently chosen so as to untangle the vari-
ables ξ and η. It can be easily checked that this transformation is
canonical, because it preserves the differential form; i.e.

dξσ.ησ + dξρ.ηρ + dξq.ηq = dx1.y1 + dx2.y2 + dx3.y3. (40)

Table 5. Numerical values of the coefficients of the HamiltonianN after
the variables have been untangled.

Parameter Numerical value

ζ1 2.1717941364 × 10−4

ζ2 1.6372032547 × 10−8

ζ3 3.4788181236 × 10−4

ψ1 0.5000000000
ψ2 1.0387557096
ψ3 1.4564940392 × 10−5

α −6.1404734778 × 10−9

β 6.2770815833 × 10−5

With these new variables, the Hamiltonian (39) can be written as

N
n(1 + δs)

= ζ1x2
1 + ζ2x2

2 + ζ3x2
3 + ψ1y

2
1 + ψ2y

2
2 + ψ3y

2
3 (41)

with

ζ1 = γσσ + 2γσρα + γρρα2 (42)

ζ2 = γσσβ
2 − 2β(1 − αβ)γσρ + γρρ(1 − αβ)2 (43)

ψ1 = µσσ(1 − αβ)2 + 2β(1 − αβ)µσρ + β2µρρ (44)

ψ2 = α
2µσσ − 2αµσρ + µρρ (45)

ζ3 = γqq (46)

ψ3 = µqq. (47)

The numerical values of these coefficients are gathered Table 5.
We can now introduce the last following set of polar canoni-

cal coordinates:

x1 =
√

2UU∗ sin u y1 =

√
2U
U∗ cos u

x2 =
√

2VV∗ sin v y2 =

√
2V
V∗ cos v

x3 =
√

2WW∗ sinw y3 =

√
2W
W∗ cosw

with

U∗ =
√
ψ1

ζ1
(48)

V∗ =
√
ψ2

ζ2
(49)

W∗ =
√
ψ3

ζ3
· (50)

The purpose of this last canonical transformation is to show the
free librations around the exact Cassini state. The arguments of
these free librations are u, v, and w, and the amplitudes asso-
ciated are proportional to

√
U,
√

V , and
√

W respectively. We
can easily check that this transformation is canonical because
we have du.U + dv.V + dw.W = dx1.y1 + dx2.y2 + dx3.y3. We can
now write

N = ωuU + ωvV + ωwW (51)

with

ωu = 2n6

√
ψ1ζ1(1 + δs) (52)
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Table 6. The free librations around the equilibrium state.

Proper modes ω (rad y−1) T (period in years)
u 2.9998383244 2.0945079794
v 3.7541492157 × 10−2 167.36642435
w 2.0491499350 × 10−2 306.62399075

Table 7. Comparison of the periods of the free librations of Io and
Europa given by different models.

Proper modes Henrard SONYR This paper
Io
u 13.25 days 13.18 days 13.31 days
v 159.39 days 157.66 days 160.20 days
w 229.85 days 228.53 days
Europa
u 52.70 days 55.39 days 52.98 days
v 3.60 years 4.01 years 3.65 years
w 4.84 years 4.86 years

Note 2. The results labelled “Henrard” come from (Henrard 2005a) for
Io and (Henrard 2005c) for Europa, while the results labelled “SONYR”
come from (Rambaux & Henrard 2005).

ωv = 2n6

√
ψ2ζ2(1 + δs) (53)

ωw = 2n6

√
ψ3ζ3(1 + δs). (54)

The numerical results are gathered in Table 6, so the periods as-
sociated to the 3 free librations around the equilibrium state are
respectively 2.09, 167.37, and 306.62 years. Table 7 gives an ap-
plication of the formulae given in this paper to the Galilean satel-
lites of Jupiter Io and Europa, and we make a comparison with
the analytical results of Henrard (2005a,c) and the numerical re-
sults of Rambaux & Henrard (2005) obtained with the SONYR
model (Rambaux & Bois 2004), which is a relativistic N-body
model. The small differences between our results and Henrard’s
analytical results come from Henrard neglecting a3, b3, b4, and
b5 for Io, and b4 and b5 for Europa.

4. Numerical study

To check the reliability of our previous results and to go further
in the study of Titan’s forced rotation, we used the numerical
tool. This allowed us first to obtain a solution for the rotation of
Titan and then to describe it by frequency analysis and to split
the free from the forced solutions.

4.1. Numerical integration

We integrated the 6 equations coming from the Hamiltonian (21)
over 9000 years, i.e. between −4500 and 4500 years, the time
origin being J1980. In these equations, x and y come from
TASS1.6 ephemerides. We recall that x, y, and z are the coordi-
nates of the barycenter of mass of Saturn in the frame ( f1, f2, f3)
rigidly linked to Titan (see Sect. 2.3).

We used the Adams-Bashforth-Moulton 10th-order
predictor-corrector integrator, with a constant timestep h = 1.6 ×
10−4 year, i.e. 5.844 × 10−2 day. We considered that the shortest
significant fundamental period of the system is given by 3λ6,
i.e. ≈5.315 days ≈ 90 × h.

Table 8 gathers the initial conditions we used. These con-
ditions were arbitrarily chosen near the Cassini state. It implies
that, by choosing these initial conditions, we supposed that Titan

Table 8. Initial conditions chosen for the numerical integration, at t =
−4500 years.

Variable Expression
p0 λ60 − π
r0 −�60

ξ0 10−4

η0 10−4

P0 1 − �̇60
n6

(1 − cos K0) + 10−4

R0 1.0001 × P0(1 − cos K0)

Note 3. These conditions have been arbitrarily chosen near the Cassini
state, with λ60, �60, and �̇60 respectively the values of Titan’s mean
longitude, argument of the ascending node, and its instantaneous angu-
lar rate, at t = −4500 years, given by TASS1.6. K0 is the initial value of
the obliquity K on the same date.

is at the Cassini state. In these initial conditions, the initial value
of K K0 is defined as

K0 =
δ1 + δ2

δ1 + δ2 − �̇60

n6

· (55)

This equation is very similar to (38). We used it to be sure that
the system is near the equilibrium. We did not want to start at
the exact equilibrium but very close in order to be able to de-
tect the 3 free librations that we studied in the previous section.
However, we should keep in mind that the frequencies computed
in Table 6 are in fact limits of the frequencies of the free libra-
tions when their amplitudes tend to zero. Thus, too high am-
plitudes of free librations would alter the frequencies too much.
In that way, their comparison with the expected fundamental fre-
quencies of the free librations might be difficult, so their identifi-
cation as these fundamental frequencies could become doubtful.

Figure 2 gives plots of some significant data resulting from
the numerical integration. Figure 2a shows the behavior of the
variables P = G

nC (modulus of the plotted value) and σ, and
Fig. 2b shows the behavior of ρ, i.e. the difference between the
two nodes. We can see that this angle is oscillating around 0, as
predicted by the theory. We can also visually detect a period of
about 700 years, and will see later that it is a forced component
due to the behavior of Titan’s orbital ascending node. Figure 2c
shows the behavior of the wobble J, we obtained it from the vari-
ables ξq and ηq. Finally, Fig. 2d shows the “obliquity” K. In this
last panel, we can see the same 700-year-periodic contribution
detected in ρ. Unfortunately, looking at these plots does not give
information on the free and the forced components of the solu-
tions. That is why we used the frequency analysis technique.

4.2. Analysis of the solutions

We use the frequency analysis to describe the solutions given by
the numerical integration, i.e. to give a quasi-periodic represen-
tation of these solutions. Such a technique has already been used
often to describe the orbital motion of planets (see Laskar 1988)
or natural satellites (cf. for instance Vienne & Duriez 1995; or
very recently Lainey et al. 2006).

One of the main difficulties with this kind of problem is that
we have two timescales for the periods of the terms that appear
in the synthetic representations: Titan’s orbital period is roughly
16 days, while the period of its pericenter is about 700 years.
In order to correctly detect the long-period terms, the total time-
interval used to analyze the solution should be about as long as
the longest period expected, here ≈3200 years, and the timestep
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(a) (b)

(c) (d)

Fig. 2. Numerical simulation of Titan’s obliquity over 9000 years, the time origin being J1980 = 2 444 240 JD. Here the behavior of the variables P,
σ, ρ, J and K is being displayed. Explanations are in the text.

shorter than half the shortest period expected (about 5 days).
Thus, data over 3200 years should be represented with a timestep
of 2.5 days, but this would require about 500 000 points. This
would take a very long computation time, but fortunately some
alternative techniques exist to solve this problem.

The most common technique is the use of a digital filter
that splits the short-period terms from the long-period ones (see
Carpino et al. 1987). However, this technique might alter the
signal. Another technique has been used here, which consists
in using two samples of data with very close timesteps, as ex-
plained in Laskar (2004). More precisely, for each variable, we
extracted two samples of 65 536 data from the results of the nu-
merical integration, one point every 848 for the first sample and
one point every 864 for the other one. As a result, the first sam-
ple represents the solutions for 8891.7888 years with a timestep
h1 = 49.55712 days, and the second represents the solutions for
9059.5584 years with a timestep h2 = 50.49216 days.

These two timesteps are far too large to detect contributions
with a period of about 16 days. In fact, the short-period terms
are detected, but with a wrong frequency. When a frequency ν is
too high, it is detected as

ν1 = ν +
k1

h1
(56)

in analyzing the first sample, and as

ν2 = ν +
k2

h2
(57)

in analyzing the second one, where k1 and k2 are (a priori un-
known) integers. We have

(ν2 − ν1)h2 = k2 − k1
h2

h1
(58)

and

ν2h2 − ν1h1 = ν(h2 − h1) + k2 − k1. (59)

If we now define [x] as the closest integer to the real x (i.e. |[x]−
x| < 1

2 ), we have

[ν2h2 − ν1h1] = k2 − k1 (60)

and finally

k1 =
h2

h1 − h2
((ν2 − ν1)h2 − [ν2h2 − ν1h1]), (61)

where Eq. (60) requires that h1 and h2 are close enough, i.e.
|ν(h2 − h1)| < 1

2 . In our case, the highest frequency that we can
detect with this method is 1

2(h2−h1) ≈ 0.54 d−1, so we can detect
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Table 9. Decomposition of the solution for P with the two timesteps, i.e. h1 = 49.55712 days (left) and h2 = 50.49216 days (right).

N◦ Amp. Phase (◦) T (y) Amp. Phase (◦) T (y)

1 1.000000002 −4.57 × 10−8 3.50 × 1013 1.000000002 8.95 × 10−8 −1.82 × 1013

2 0.000099514 0.76 2.09773 0.000099514 0.77 2.09773
3 0.000025104 144.00 1.25952 0.000025104 144.00 0.83097

Note 4. The origin of phases is here the origin of the frequency analysis, i.e. 4499.99344 years before J1980. The series are given in cosine.

Table 10. Proper modes of the system.

Proper Frequency Period Cause
mode (rad y−1)
λ5 508.00932017 4.52 days Rhea
λ6 143.92404729 15.95 days Titan
λ8 28.92852233 79.33 days Iapetus
φ5 0.17554922 35.79 years e5

Φ5 −0.17546762 35.81 years γ5

φ6 0.00893386 703.30 years e6

Φ6 −0.00893124 703.51 years γ6

φ8 0.00197469 3181.86 years e8

Φ8 −0.00192554 3263.07 years γ8

λ9 0.21329912 29.46 years Sun
φu 2.995 2.09773 years

√
U

φv 0.0375 167.4883 years
√

V
φw 0.0205 306.3360 years

√
W

Note 5. The modes λ5 to λ9 (first part of the table) come from Vienne &
Duriez (1995), while the second part contains the free librations around
the Cassini state. These terms have been evaluated from the solutions
given by our numerical integration. The fourth column gives the orbital
parameter to which the proper mode is linked, ei being the eccentricity
of the satellite i, and γi the sine of its semiinclination. The subscripts i
are 5 for Rhea, 6 for Titan, and 8 for Iapetus.

every term with a period longer than 11.75 days, while analyzing
only one sample would give periods longer than about 100 days
(i.e. 2 timesteps). Such accuracy is enough to detect Titan’s or-
bital period.

Table 9 is an example of the decomposition of a variable
(here P = G

nC , with G the norm of the angular momentum) with
the two timesteps. The algorithm used for determining each fre-
quency is taken from (Laskar et al. 1992) and has been iteratively
applied to refine each frequency, as described in (Champenois
1998). In this table, term 1 is a constant part, while the second
one is clearly the free libration associated to the proper mode u.
The slight difference between the obtained and the expected pe-
riods should be partly due to the associated amplitude not be-
ing null, and partly to the approximations used in our analytical
model (i.e. no eccentricity and a constant inclination). However,
we can see that the two determinations give very different results
for term 3, so we can infer that it is in fact a short-period term.

Applying (61) we find T = 15.6612 days. That is very near
to Titan’s orbital period, so this term should be an integer com-
bination of Titan’s orbital period and other contribution(s).

It is now interesting to identify the periodic terms contained
in the solutions associated to the considered variables. Table 10
gives the proper modes that are expected. They should appear
in the quasiperiodic decompositions of the solutions as parts
of integer combinations, so integer combinations of the fre-
quencies of the proper modes are performed to identify each
term of the decompositions. We do not use the phases be-
cause they are uncertain in the Titan ephemerides given by
Vienne & Duriez (1995). The reason is that the given phases
are in fact integer combinations of the phases coming from the

Table 11. Quasiperiodic decomposition of the variable P.

N◦ Amp. Phase (◦) T (y) Ident. Cause

1 1.000000002 4.89 × 10−10 −1.82 × 1013 constant
2 0.000099514 63.00 2.09773 φu

√
U

3 0.000025104 35.44 15.6612 days unknown

Note 6. The series are in cosine. The fourth column gives the orbital
parameters associated to each identified term.

Table 12. Quasiperiodic decomposition of the variable R. The series are
in cosine.

N◦ Amp. ×105 Phase (◦) T (y) Ident. Cause

1 9.17912502 2.07 × 10−6 6.12 × 1010 constant
2 8.22242693 −170.93 703.50790 −Φ6 γ6

3 2.28952572 174.72 167.48834 φv
√

V
4 1.49857669 −143.60 219.82166 Φ6 + φv

√
Vγ6

5 0.30469561 −107.54 3252.81 Φ8 γ8

6 0.22920477 −61.85 899.49195 Φ8 − Φ6 γ6γ8

7 0.05732146 −80.14 176.5406 Φ8 + φv
√

Vγ8

8 0.01907471 163.85 14.72857 2λ9 Sun

identified proper modes and very-long-period arguments due to
the solar perturbation that are assumed to be constant on an
ephemerides-timescale.

The results are summarized in Tables 11 to 16, the origin of
the phases now being J1980. There, K is given in radians, and the
other variables have no unit. The terms with a period T written
in years could have been obtained in analyzing only one set of
data. In fact, the two sets have been analyzed, and the results are
the same for these terms. Except for two of them, all the compo-
nents have been clearly identified. The terms whose periods are
written in days were determined by comparing the results given
by the two analysis. These terms are not clearly identified, the
reason probably being that they require a high accuracy in their
determination. In (61), two quantities are substracted, so a can-
cellation problem might appear and complicate the determina-
tion. Moreover, an integer combination between a short-period
term (like Titan’s mean longitude λ6) and a long-period term
gives a short-period term very close to the original short period,
so the short-period terms that we detected might in fact be sums
of several terms with very close frequencies, making them very
difficult to split.

These short-period terms seem to have a period very close
to Titan’s orbital period, except the term 5 in the decomposition
of σ. If we consider that the timesteps h1 and h2 are not close
enough and that we have in fact [ν(h2 − h1)] = 1, (61) becomes

k1 = 1 +
h2

h1 − h2
((ν2 − ν1)h2 − [ν2h2 − ν1h1]), (62)

and we obtain a term whose period is 5.22008 days. This is quite
close to the period associated to 3λ6.
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Table 13. Quasiperiodic decomposition of the complex variable ηq +√−1ξq.

N◦ Amp. ×104 Phase (◦) T (y) Ident. Cause

1 9.12391728 −51.69 306.33602 φw
√

W
2 6.01688587 51.69 −306.33605 −φw

√
W

3 5.73033451 158.48 351.70284 φ6 − Φ6 e6γ6

4 3.83212940 −158.48 −351.70284 Φ6 − φ6 e6γ6

5 0.63642954 −35.86 135.27368 φv − Φ6

√
Vγ6

6 0.38395548 35.86 −135.27368 Φ6 − φv
√

Vγ6

Table 14. Quasiperiodic decomposition of the variable σ. The series are
in sine.

N◦ Amp. ×103 Phase (◦) T (y) Ident. Cause

1 4.78176461 63.00 2.09773 φu

√
U

2 0.02510524 35.43 15.6612 days unknown
3 0.01147635 −5.61 167.47831 φv

√
V

4 0.01014094 8.48 703.51797 −Φ6 γ6

5 0.00961527 −74.09 55.1128 days unknown
6 0.00896290 −56.74 2.11032 φu + 2Φ6

√
Uγ2

6

7 0.00891238 2.47 2.08529 φu − 2Φ6

√
Uγ2

6
8 0.00744233 137.13 15.6602 days unknown
9 0.00566630 165.69 219.75766 φv + Φ6

√
Vγ6

The quasiperiodic decomposition of the solutions allows us
to split the forced solution away from the free one. The free
solution around the equilibrium can only be known with ob-
servations that could give initial conditions for the numerical
integration. However, the forced solution only depends on the
equilibrium and can be obtained in dropping, in the solutions
given in Tables 11 to 16, the terms depending on the free libra-
tion modes φu, φv and φw. Thus, we can for instance see that an-
gle J is not zero at the equilibrium but has a forced motion. This
possibility of a forced wobble has already been pointed out by
Bouquillon et al. (2003) in a general study of the rotation of the
synchronous bodies (i.e. that are in a 1:1 spin-orbit resonance).

5. Discussion

5.1. Comparison between the analytical and the numerical
results

Table 17 gives a comparison between our analytical and numer-
ical results. We recall that, in the analytical model, the orbit of
Titan is circular with a constant inclination, whereas the orbital
eccentricity of Titan (i.e. 0.0289) is taken into account in the
numerical model, along with the variation in its inclination. We
can see very good matching for the periods of the free librations
around the equilibrium. In contrast, we can see a significant dif-
ference in the equilibrium obliquity K∗. The line ε refers to the
equilibrium obliquity with the normal of Titan’s orbit as its ori-
gin. It is computed by substracting the mean inclination of Titan
to K∗. The mean inclination of Titan is 1.12049 × 10−2 in the
analytical model and 1.18985 × 10−2 in the numerical one. The
difference in K∗ partly comes from the difference in the mean
inclination of Titan, but probably not only from it.

5.2. Influence of Titan’s inclination and eccentricity

Titan’s inclination plays an overwhelming role in its obliquity, as
shown in (38). Moreover, the proper modesΦ5,Φ6, andΦ8 given

Table 15. Quasiperiodic decomposition of the variable ρ. The series are
in sine.

N◦ Amp. Phase (◦) T (y) Ident. Cause

1 0.18089837 175.64 167.49723 φv
√

V
2 0.15667339 −170.90 703.52446 −Φ6 γ6

3 0.11829380 −175.17 135.28724 φv − Φ6

√
Vγ6

4 0.09023900 −161.91 351.75789 2Φ6 γ2
6

5 0.07735641 −166.02 113.46712 φv − 2Φ6

√
Vγ2

6
6 0.05226443 −152.60 234.50407 −3Φ6 γ3

6

7 0.05058400 −156.89 97.70793 φv − 3Φ6

√
Vγ3

6

8 0.03311443 −147.68 85.79329 φv − 4Φ6

√
Vγ4

6
9 0.03060799 −143.30 175.88361 −4Φ6 γ4

6

10 0.02165111 −138.40 76.46679 φv − 5Φ6

√
Vγ5

6
11 0.02035272 −173.58 74.84659 2φv − Φ6 Vγ6

12 0.02027563 −167.25 67.64828 2φv − 2Φ6 Vγ2
6

13 0.01799820 −132.60 140.70722 −5Φ6 γ5
6

14 0.01785634 −158.19 61.71406 φv − 3Φ6

√
Vγ3

6
15 0.01739585 163.87 14.72858 2λ9 Sun
16 0.01498249 −176.87 83.76245 2φv V
17 0.01472909 −149.81 56.73966 2φv − 4Φ6 Vγ4

6

18 0.01417957 −128.79 68.97041 φv − 6Φ6

√
Vγ6

6
19 0.01152268 −140.62 52.50108 2φv − 5Φ6 Vγ5

6
20 0.01065513 −121.56 117.25730 −6Φ6 γ6

6
21 0.00929051 −148.93 62.81242 unknown
22 0.00899501 154.97 15.04352 2λ9 + Φ6 Sun, γ6

23 0.00881939 −131.88 48.85511 2φv − 6Φ6 Vγ6
6

24 0.00657942 −122.55 45.68121 2φv − 7Φ6 Vγ7
6

25 0.00635299 −110.18 100.50834 −7Φ6 γ7
6

26 0.00609640 −109.01 57.66387 unknown
27 0.00584381 −87.12 109.64279 φv − 2Φ6 − Φ8

√
Vγ2

6γ8

28 0.00584403 −95.53 129.88963 φv − Φ6 − Φ8

√
Vγ6γ8

29 0.00531164 −19.68 29.44635 λ9 Sun
30 0.00513296 −81.36 317.28640 −2Φ6 − Φ8 γ2

6γ8

Table 16. Quasiperiodic decomposition of K. The series are in cosine.

N◦ Amp. ×102 (rad) Phase (◦) T (y) Ident. Cause

1 1.25481164 8.68 × 10−10 −2.65 × 1013 constant
2 0.68465799 −170.92 703.51272 −Φ6 γ6

3 0.17842225 175.02 167.49146 φv
√

V
4 0.10246867 −161.88 351.76856 −2Φ6 γ2

6

5 0.07264971 −15.67 219.80041 φv + Φ6

√
Vγ6

Table 17. Comparison between our analytical and numerical results.

Parameter Analytical Numerical Difference

K∗ (rad) 1.1204859 × 10−2 1.25481164 × 10−2 12%
ε (arcmin) 0 2.233 (. . .)
Tu (y) 2.094508 2.09773 0.15%
Tv (y) 167.36642 167.49723 0.08%
Tw (y) 306.62399 306.33602 0.09%

in Table 10 can be linked in its inclination, because they consist
of the main (or at least second) part of the solutions for ζ =
sin I

2 exp(
√−1�) for Rhea, Titan, and Iapetus in TASS1.6, and

they appear in the solution for ζ6 (related to Titan’s inclination).
It is striking, for instance in reading Table 15, that the term Φ6
plays a very important role in the forced and in the free solution.
We can even figure the period of 703.51 years just in looking at
Fig. 2b.

In contrast, the proper modes φ5, φ6, and φ8 do not clearly
appear, with the exception of φ6 in ηq +

√−1ξq. These modes
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(a) (b)

(c) (d)

Fig. 3. Numerical simulation of Titan’s obliquity over 9000 years, with C
MR2 = 0.35. The displayed variables are the same as in Fig. 2.

are related to the eccentricities of Rhea, Titan, and Iapetus, and
their values are respectively 10−3, 0.0289, and 0.0294. In fact, φ6
might play a more important role than suggested by Tables 11
to 16, because it could be confused with −Φ6 by the algorithm
of frequency analysis. The reason is that these two terms have
very close periods, i.e. 703.3 and 703.51 years. If we call ν1
and ν2 the associated frequencies and ν0 the Fourier fundamental
frequencies (i.e. the frequency associated to a term whose period
is the interval of study, 9000 years in our cases, it has no link
to the fundamental frequencies of the system), the algorithm of
frequency analysis can split ν1 from ν2 only if

|ν1 − ν2| > 2ν0. (63)

This implies that the interval of study should be longer than
4.712 × 106 yr. Such a timescale is not consistent with the
ephemerides and so cannot be considered. It does not mean that
the terms identified asΦ6 are in fact φ6, because the period found
is much closer to 703.51 years than to 703.30. It just means that
there might be a very small contribution due to φ6 in the iden-
tified term. Moreover, we cannot exclude a role played by the
eccentricities in the values of the equilibrium obliquity and of
the fundamental frequencies of the free librations.

5.3. Uncertainty on Titan’s gravitational field

Titan’s gravitational field is not clearly known. We are confi-
dent in its mass thanks to the Pioneer and Voyager fly-bys (see

Campbell & Anderson 1989), but we are uncertain about 10%
of its J2, and we have no value for the ratio C

MR2 . We can just
hypothesize that it is included between 0.3 and 0.4, as it is the
case for the Galilean satellites for Jupiter. We arbitrarily chose

C
MR2 = 0.31 and also tried with C

MR2 = 0.35.
Tables 18 and 19 and Fig. 3 summarize the result of the study

of Titan’s rotation with C
MR2 = 0.35. Except for (c), the plots do

not show any evident difference with Fig. 2, because the fre-
quencies of the free librations are shifted just a little when C

MR2

changes. In contrast, the behavior of the wobble J (Fig. 3c) is
very interesting, because this angle can be 10 times bigger than
in the previous simulation. Table 13 indicates that the most im-
portant terms in the solutions of ξq and ηq, on which J depends,
are φw and 2Φ6. In our cases, the periods of these terms are very
close, so there might be a resonance between them, which could
explain the amplitude of J. The matching on the frequencies
of the free librations between the analytical and the numerical
methods is still good, while a shift on Titan’s mean obliquity
still exists.

6. Conclusion

This paper offers a first study of Titan’s rotation, where Titan is
seen as a rigid body. We obtain a quasiperiodic decomposition of
the forced solution, which can be split from the free solution in
which Titan’s obliquity plays an overwhelming role. Moreover,
we find good matching between the frequencies of the free
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Table 18. The free librations around the equilibrium state, with C
MR2 =

0.35.

Proper modes ω (rad y−1) T (period in years)
u 2.822839 2.225839
v 3.324655 × 10−2 188.987571
w 1.814709 × 10−2 346.236493

Table 19. Comparison between our analytical and numerical results,
with C

MR2 = 0.35.

Parameter Analytical Numerical Difference

K∗ (rad) 1.1204859 × 10−2 1.272996 × 10−2 13.6%
ε (arcmin) 0 2.858 (. . .)
Tu (y) 2.225839 2.22896 0.14%
Tv (y) 188.987571 189.10854 0.06%
Tw (y) 346.236493 348.49661 0.65%

librations around the equilibrium, analytically and numerically
evaluated, despite a model of circular orbit in the analytical
study. However, we find a slight difference in the equilibrium
obliquity. Finally, we cannot exclude a resonance between the
proper mode Φ6 and Titan’s wobble.

The next fly-bys of Cassini spacecraft should give us more
information on Titan’s gravitational field, so we should be able
to make a more accurate study on its rotation, that could include
direct perturbations on the other Saturnian satellites. These per-
turbations are supposed to be small (see for instance Henrard
2004) and should be negligeable compared to the uncertainties
we have on Titan’s gravitational parameters. After that, the next
step is to consider Titan as a multilayer non-rigid body and to
study the consequences of its internal dissipation on the rotation.
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Appendix A: The coefficients ai, bi

a1 =
sin2 I

2
− 1 + cos2 I

4
= −1

2
+ 3γ2 − 3γ4 (A.1)

a2 =
sin 2I

2
= 2γ

√
1 − γ2(1 − 2γ2) (A.2)

a3 =
sin2 I

8
=
γ2

2
(1 − γ2) (A.3)

b1 =
1 + 2 cos I + cos2 I

16
=

1 − 2γ2 + γ4

4
(A.4)

b2 =
2 sin I + sin 2I

8
= γ(1 − γ2)

√
1 − γ2 (A.5)

b3 =
3
8

sin2 I =
3
2
γ2(1 − γ2) (A.6)

b4 =
2 sin I − sin 2I

8
= γ3

√
1 − γ2 (A.7)

b5 =
1 − 2 cos I + cos2 I

16
=
γ4

4
(A.8)

Appendix B: The coefficients γxx and µxx

γσσ = −2δ2(b1(1 + cos K∗)2 + b2 sin K∗(1 + cos K∗)
+b3 sin2 K∗ + b4 sin K∗(1 − cos K∗) + b5(1 − cos K∗)2) (B.1)

γσρ = −δ2(b2 sin K∗(1 + cos K∗) + b3 sin2 K∗

+3b4 sin K∗(1 − cos K∗) + 4b5(1 − cos K∗)2) (B.2)

γρρ = −
(
δ1

(a2

4
sin 2K∗ + 4a3 sin2 K∗

)

+δ2

(b2

2
sin K∗(1 + cos K∗) + 2b3 sin2 K∗

+
9
2

b4 sin K∗(1 − cos K∗) + 8b5(1 − cos K∗)2
))

(B.3)

γqq =
1
2

γ1 + γ2

1 − γ1 − γ2
− (δ1 + δ2)

(cos(K∗ − I)
4

+
7
16

cos(2(K∗ − I)) +
5

16

)
(B.4)

µσσ =
1
2
+
δ1

P∗2
(
(a1 + 2a3)(1 − cos K∗)(3 cos K∗ − 1)

+
a2

2
sin K∗

(1 + cos K∗)2
(6 cos3 K∗ + 4 cos2 K∗ − 5 cos K∗ − 2)

)

+
δ2

P∗2
(
b1(3 cos K∗ + 1)(cos K∗ − 1) +

3
2

b2
sin K∗ cos 2K∗

1 + cos K∗
+b3(1 − cos K∗)(3 cos K∗ − 1)

+
b4

2
1 − cos K∗

1 + cos K∗
sin K∗(1 + 8 cos K∗ + 6 cos2 K∗) + 3b5

)
(B.5)

µσρ =
δ1

P∗2
(
(a1 + 2a3)(1 − 2 cos K∗)

+
a2

2
1 + 4 cos K∗ − 2 cos2 K∗ − 4 cos3 K∗

sin K∗(1 + cos K∗)

)

+
δ2

P∗2
(
2b1 cos K∗ − b2

4 cos2 K∗ − cos K∗ − 2
2 sin K∗

−b3(2 cos K∗ − 1) +
b4

2
cos K∗

sin K∗
cos K∗ − 1
cos K∗ + 1

(4 cos K∗ + 5)

−2b5
sin2 K∗

1 + cos K∗
)

(B.6)

µρρ = − δ1

P∗2
(
a1 +

a2

2
3 cos K∗ − 2 cos3 K∗

sin3 K∗
+ 2a3

)

+
δ2

P∗2
(
b1 +

b2

2
2 cos3 K∗ − 3 cos K∗ − 1

sin3 K∗

−b3 − b4

2
1 − 3 cos K∗ + 2 cos3 K∗

sin3 K∗
+ b5

)
(B.7)

µqq =
1
2

γ1 − γ2

1 − γ1 + γ2
· (B.8)



970 B. Noyelles et al.: Titan’s rotation

References

Andoyer, H. 1926, Mécanique Céleste (Paris: Gauthier-Villars)
Bertotti, B., & Farinella, P. 1990, Physics of the Earth and the Solar System

(A.P.: Kluwer)
Bouquillon, S., Kinoshita, H., & Souchay, J. 2003, Celes. Mech. Dyn. Astr., 86,

29
Brouwer, D., & Clemence, G. M. 1961, Methods of Celestial Mechanics

(New-York: Academic Press)
Campbell, J. K., & Anderson, J. D. 1989, AJ, 97, 1485
Carpino, M., Milani, A., & Nobili, A. M. 1987, A&A, 181, 182
Champenois, S. 1998, Dynamique de la résonance entre Mimas et Téthys, pre-

mier et troisième satellites de Saturne, Ph.D. Thesis, Observatoire de Paris
Deprit, A. 1967, Am. J. Phys., 35, 424
D’Hoedt, S., & Lemaître, A. 2004, Cel. Mech. Dyn. Astr., 89, 267
Henrard, J. 2005a, Icarus, 178, 144
Henrard, J. 2005b, Cel. Mech. Dyn. Astr., 91, 131
Henrard, J. 2005c, Cel. Mech. Dyn. Astr., 93, 101
Henrard, J., & Schwanen, G. 2004, Cel. Mech. Dyn. Astr., 89, 181

Lainey, V., Duriez, L., & Vienne, A. 2006, A&A, 456, 783
Laskar, J. 1988, A&A, 198, 341
Laskar, J. 2004, Frequency analysis, quasiperiodic decompositions, and Nyquist

limit in Journées scientifiques 2003 de l’Institut de Mécanique Céleste et de
Calcul des Éphémérides, Notes Scientifiques et Techniques de l’Institut de
Mécanique Céleste, S081, 29

Laskar, J., Froeschlé, Cl., & Celletti, A. 1992, Physica D, 56, 253
Lemmon, M. T., Karkoschka, E., & Tomasko, M. 1993, Icarus, 103, 329
Lemmon, M. T., Karkoschka, E., & Tomasko, M. 1995, Icarus, 113, 27
Rambaux, N., & Bois, E. 2004, A&A, 413, 381
Rambaux, N., & Henrard, J. 2005, The rotation of the Galilean satellites, in The

rotation of celestial bodies, ed. A. Lemaître (Namur: Presses Universitaires
de Namur)

Richardson, J., Lorenz, R. D., & McEwen, A. 2004, Icarus, 170, 113
Seidelmann, P. K., Abalakin, V. K., Bursa, M., et al. 2002, Cel. Mech. Dyn. Astr.,

82, 83
Tortora, P., Armstrong, J. W., Asmar, S. W., et al. 2006, The determination of

Titan’s gravity field with Cassini, DPS meeting 38, 56.01
Vienne, A., & Duriez, L. 1995, A&A, 297, 588


