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ABSTRACT

Aims. We extend semi-analytical computations of excitation rates for solar oscillation modes to those of other solar-like oscillating
stars to compare them with recent observations
Methods. Numerical 3D simulations of surface convective zones of several solar-type oscillating stars are used to characterize the
turbulent spectra as well as to constrain the convective velocities and turbulent entropy fluctuations in the uppermost part of the
convective zone of such stars. These constraints, coupled with a theoretical model for stochastic excitation, provide the rate P at
which energy is injected into the p-modes by turbulent convection. These energy rates are compared with those derived directly from
the 3D simulations.
Results. The excitation rates obtained from the 3D simulations are systematically lower than those computed from the semi-analytical
excitation model. We find that Pmax, the Pmaximum, scales as (L/M)s where s is the slope of the power law and L and M are the mass
and luminosity of the 1D stellar model built consistently with the associated 3D simulation. The slope is found to depend significantly
on the adopted form of χk, the eddy time-correlation; using a Lorentzian, χL

k , results in s = 2.6, whereas a Gaussian, χG
k , gives s = 3.1.

Finally, values of Vmax, the maximum in the mode velocity, are estimated from the computed power laws for Pmax and we find that
Vmax increases as (L/M)sv. Comparisons with the currently available ground-based observations show that the computations assuming
a Lorentzian χk yield a slope, sv, closer to the observed one than the slope obtained when assuming a Gaussian. We show that the
spatial resolution of the 3D simulations must be high enough to obtain accurate computed energy rates.

Key words. convection – turbulence – Sun: oscillations – Hertzsprung-Russell (HR) and C-M – stars: variables: general –
methods: numerical

1. Introduction

Stars with masses M � 2 M� have upper convective zones where
stochastic excitation of p-modes by turbulent convection takes
place as in the case of the Sun. As such, these stars are of-
ten referred to as solar-like oscillating stars. One of the major
goals of the future space seismology mission CoRoT (Baglin &
The Corot Team 1998), is to measure the amplitudes and the
line-widths of these stochastically driven modes. From the mea-
surements of the mode line-widths and amplitudes, it is possible
to infer the rates at which acoustic modes are excited (see e.g.
Baudin et al. 2005). Such measurements will then provide valu-
able constraints on the theory of stellar oscillation excitation and
damping. In turn, improved models of excitation and damping
will provide valuable information about convection in the outer
layers of solar-like stars.

The mechanism of stochastic excitation has been modeled
by several authors (e.g. Goldreich & Keeley 1977; Osaki 1990;
Balmforth 1992; Goldreich et al. 1994; Samadi & Goupil 2001,
for a review see Stein et al. 2004). These models yield the
energy rate, P, at which p-modes are excited by turbulent con-
vection but require an accurate knowledge of the time averaged
and – above all – the dynamic properties of turbulent convection.

Eddy time-correlations. In the approach of Samadi & Goupil
(2001, hereafter Paper I), the dynamic properties of turbulent
convection are represented by χk, the frequency component of
the auto-correlation product of the turbulent velocity field; χk
can be related to the convective eddy time-correlations. Samadi
et al. (2003b, hereafter Paper III) have shown that the Gaussian
function usually used for modeling χk is inappropriate and is at
the origin of the under-estimation of the computed maximum
value of the solar p-modes excitation rates when compared with
the observations. On the other hand, the authors have shown that
a Lorentzian profile provides the best fit to the frequency depen-
dency of χk as inferred from a 3D simulation of the Sun. Indeed,
values of P computed with the model of stochastic excitation of
Paper I and using a Lorentzian for χk = χ

L
k is better at reproduc-

ing the solar seismic observations whereas a Gaussian function,
χG

k , under-estimates the amplitudes of solar p-modes. Provided
that such a non-Gaussian model for χk is assumed, the model
of stochastic excitation is – for the Sun – rather satisfactory. An
open question, which we address in the present paper, is whether
such non-Gaussian behavior also stands for other solar-like os-
cillating stars and what consequences arise for the theoretical
excitation rates, P.

Stochastic excitation in stars more luminous than the Sun.
In the last five years, solar-like oscillations have been detected
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in several stars (see for instance the review by Bedding &
Kjeldsen 2003). Theoretical calculations result in an overestima-
tion of their amplitudes (see Kjeldsen & Bedding 2001; Houdek
& Gough 2002). For instance, using Gough’s (1976, 1977) non-
local and time dependent treatment of convection, Houdek et al.
(1999) have calculated expected values of Vmax, the maximum
oscillation amplitudes, for different solar-like oscillating stars.
Their calculations, based on a simplified excitation model, im-
ply that Vmax of solar-type oscillations scale as (L/M)1.5 where
L and M are the luminosity and mass of the star (see Houdek &
Gough 2002, hereafter HG02). A similar scaling law was empir-
ically found earlier by Kjeldsen & Bedding (1995). As pointed
out by HG02, all these scaling laws overestimate the observed
amplitudes of solar-like oscillating stars hotter and more mas-
sive than the Sun (e.g. βHydri, ηBootis, Procyon, ξHydrae). As
the mode amplitude results from a balance between excitation
and damping, this overestimation of the mode amplitudes can
be attributed either to an overestimation of the excitation rates
or an underestimation of the damping rates. In turn, any over-
estimation of the excitation rates can be attributed either to the
excitation model itself or to the underlying convection model.

All the related physical processes are complex and difficult to
model. The present excitation model therefore uses a number of
approximations such as the assumption of incompressibility, and
the scale length separation between the modes and the turbulent
eddies exciting the modes. It has been shown that the current
excitation model is valid in the case of the Sun (Paper III), but
its validity in a broader region of the HR-diagram has not been
confirmed until now.

Testing the validity of the theoretical model of stochastic ex-
citation with the help of 3D simulations of the outer layers of
stellar models is the main goal of the present paper. For that
purpose, we compare the p-mode excitation rates for stars with
different temperatures and luminosities as obtained by direct cal-
culations and by the semi-analytical method as outlined below.

Numerical 3D simulations enable one to compute directly
the excitation rates of p-modes for stars with various tempera-
tures and luminosities. For instance this was already undertaken
for the Sun by Stein & Nordlund (2001) using the numerical
approach introduced in Nordlund & Stein (2001). Such calcu-
lations will next be called “direct calculations”. They are time-
consuming and do not easily allow massive computations of the
excitation rates for stars with different temperatures and lumi-
nosities. On the other hand, an excitation model offers the ad-
vantage of testing separately several properties entering the ex-
citation mechanism which are not well understood or modeled.
Furthermore, once it is validated, it can be used for a large set of
1D models of stars.

As it was done for the Sun in Samadi et al. (2003c, hereafter
Paper II) and Paper III, 3D simulations can also provide quanti-
ties which can be implemented in a formulation for the excitation
rate P, thus avoiding the use of the mixing-length approach with
the related free parameters, and assumptions about the turbulent
spectra. Such calculations will next be called “semi-analytical
calculations”.

We stress however that in any case, we cannot avoid the use
of 1D models for computing accurate eigen-frequencies for the
whole observed frequency range. In the present paper, the 1D
models are constructed to be as consistent as possible with their
corresponding 3D simulations, as described in Sect. 3.

This paper is organized as follows: in Sect. 2 we present the
methods considered here for computing P, that is the so-called
“direct” method based on Nordlund & Stein’s (2001) approach
(Sect. 2.1) and the so-called “semi-analytical” method based on

the approach from Paper I, with modifications as presented in
Papers II and III and in the present paper (Sect. 2.2).

Comparisons between direct and semi-analytical calcula-
tions of the excitation rates are performed in seven representative
cases of solar-like oscillating stars. The seven 3D simulations all
have the same number of mesh points. Section 3 describes these
simulations and their associated 1D stellar models.

The 3D simulations provide constraints on quantities re-
lated to the convective fluctuations, in particular the eddy time-
correlation function, χk, which, as stressed above, plays an im-
portant role in the excitation of solar p-modes. The function χk
is therefore inferred from each simulation and compared with
simple analytical function (Sect. 4).

Computations of the excitation rates of their associated
p-modes are next undertaken in Sect. 5 using both the di-
rect approach and the semi-analytical approach. In the semi-
analytical method, we employ model parameters as derived from
the 3D simulations in Sect. 4.

In Sect. 5.2 we derive the expected scaling laws for Pmax,
the maximum in P, as a function of L/M with both the direct
and semi-analytical methods and compare the results. This al-
lows us to investigate the implications of such power laws for
the expected values of Vmax and to compare our results with the
seismic observations of solar-like oscillations in Sect. 5.3. We
also compare with previous theoretical results (e.g. Kjeldsen &
Bedding 1995; Houdek & Gough 2002).

We finally assess the validity of the present stochastic excita-
tion model and discuss the importance of the choice of the model
for χk in Sect. 6.

2. Calculation of the p-mode excitation rates

2.1. The direct method

The energy input per unit time into a given stellar acoustic mode
is calculated numerically according to Eq. (74) of Nordlund &
Stein (2001) multiplied by S, the area of the simulation box, to
get the excitation rate (in erg s−1):

P(ω0) =
ω2

0 S
8 ∆ν Eω0

∣∣∣∣∣
∫

r
dr ∆P̂nad(r, ω0)

∂ξr
∂r

∣∣∣∣∣
2

(1)

where ∆P̂nad(r, ω) is the discrete Fourier component of the non-
adiabatic pressure fluctuations,∆Pnad(r, t), estimated at the mode
eigenfrequency ω0 = 2πν0, ξr is the radial component of the
mode displacement eigenfunction, ∆ν = 1/T the frequency res-
olution corresponding to the total simulation time T and Eω0 is
the mode energy per unit surface area defined in Nordlund &
Stein (2001, their Eq. (63)) as:

Eω0 =
1
2
ω2

0

∫
r

dr ξ2r ρ
( r
R

)2
. (2)

Note that Eq. (1) corresponds to the direct calculation of PdV
work of the non-adiabatic gas and turbulent pressure (entropy
and Reynolds stress) fluctuations on the modes. The energy in
the denominator of Eq. (1) is essentially the mode mass. The
additional factor which turns it into energy is the mode squared
amplitude which is arbitrary and cancels the mode squared am-
plitude in the numerator. For a given driving (i.e. P dV work),
the variation of the mode energy is inversely proportional to the
mode energy (see Sect. 3.2 of Nordlund & Stein 2001). Hence,
for a given driving, the larger the mode energy (i.e., the mode
mass or mode inertia) the smaller the excitation rate.
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In Eq. (1) the non-adiabatic Lagrangian pressure fluctua-
tion, ∆P̂nad(r, ω), is calculated as the following: we first compute
the non-adiabatic pressure fluctuations ∆Pnad(r, t) according to
Eq. (A.3) in Appendix A. We then perform the temporal Fourier
transform of ∆Pnad(r, t) at each depth r to get ∆P̂nad(r, ω).

The mode displacement eigenfunction ξr(r) and the mode
eigenfrequencyω0 are calculated as explained in Sect. 3. Its ver-
tical derivative, ∂ξr/∂r, is normalized by the mode energy per
unit surface area, Eω0 , and then multiplied by ∆P̂nad. The re-
sult is integrated over the simulation depth, squared and divided
by 8∆ν. We next multiply the result by the area of the simula-
tion box (S) to obtain P, the total excitation rates in erg s−1 for
the entire star. Indeed the nonadiabatic pressure fluctuations are
uncorrelated on large scales, so that average ∆P2

nad is inversely
proportional to the area. Multiplication by the area of the stellar
simulation gives the excitation rates for the entire star as long as
the domain size is sufficiently large to include several granules.

2.2. The semi-analytical method

Calculations of excitation rates by the semi-analytical method
are based on a model of stochastic excitation. The excitation
model we consider is the same as presented in Paper I. In this
model of excitation and in contrast to previous models (e.g.
Goldreich & Keeley 1977; Balmforth 1992; Goldreich et al.
1994), the driving by turbulent convection is ensured not only by
the Reynolds stress tensor but also by the advection of the tur-
bulent fluctuations of entropy by the turbulent movements (the
so-called entropy source term).

As in Paper I, we consider only radial p-modes. We do
not expect any significant differences for low 
 degree modes.
Indeed, in the region where the excitation takes place, the low 

degree modes have the same behavior as the radial modes. Only
for very high 
 degree modes (
 � 100) – which will not be seen
in stars other than the Sun – can a significant effect be expected,
as is quantitatively confirmed (work in progress).

The excitation rates are computed as in Paper II, except for
the change detailed below. The rate at which a given mode with
frequency ω0 = 2πν0 is excited is then calculated with the set
of Eqs. (1)–(11) of Paper II. These equations are based on the
excitation model of Paper I, but assume that injection of acous-
tic energy into the modes is isotropic. However, Eq. (10) of
Paper II must be corrected for an analytical error (see Samadi
et al. 2005). This yields the following correct expression for
Eq. (10) of Paper II:

S R(r, ω0) =
∫ ∞

0

dk
k2

E(k, r)

u2
0

E(k, r)

u2
0

×
∫ +∞
−∞

dωχk(ω0 + ω, r) χk(ω, r) (3)

where u0 =
√
Φ/3 ū, Φ is Gough’s (1977) anisotropy factor, ū is

the rms value of u, the turbulent velocity field, k the wavenumber
and χk(ω) is the frequency component of the correlation product
of u.

The method then requires the knowledge of a number of
input parameters which are of three different types:

1) Quantities which are related to the oscillation modes: the
eigenfunctions (ξr) and associated eigen-frequencies (ω0).

2) Quantities which are related to the spatial and time aver-
aged properties of the medium: the mean density (ρ0), αs ≡
〈(∂p/∂s)ρ〉 – where s is the entropy, p the gas pressure and
〈. . .〉 denotes horizontal and time averages – the mean square

of the vertical component of the convective velocity, 〈w2〉,
the mean square of the entropy fluctuations, 〈s̃2〉, and the
mean anisotropy,Φ (Eq. (2) of Paper II).

3) Quantities which contain information about spatial and tem-
poral auto-correlations of the convective fluctuations: the
spatial spectrum of the turbulent kinetic energy and entropy
fluctuations, E(k) and Es(k), respectively, as well as the tem-
poral spectrum of the correlation product of the turbulent
velocity field, χk.

Eigen-frequencies and eigenfunctions (in 1) above) are
computed with the adiabatic pulsation code ADIPLS
(Christensen-Dalsgaard & Berthomieu 1991) for each of
the 1D models associated with the 3D simulations (see Sect. 3).

The spatial and time averaged quantities (in 2) and 3) above)
are obtained from the 3D simulations in the manner of Paper II.
For E(k), however, we use the actual spectrum as calculated
from the 3D simulations and not an analytical fit as was done
in Paper II. However as in Paper II, we assume for Es(k) the k-
dependency of E(k) (we have checked this assumption for one
simulation and found no significant change in P).

For each simulation, we determine χk as in Paper III (cf.
Sect. 4). Each χk is then compared with various analytical forms,
among which some were investigated in Paper III. Finally we se-
lect the analytical forms which are the closest to the behavior of
χk and use them, in Sect. 5, to compute P.

3. The convection simulations and their associated
1D models

Numerical simulations of surface convection for seven differ-
ent solar-like stars were performed by Trampedach et al. (1999).
These hydrodynamical simulations are characterized by the ef-
fective temperature, Teff and acceleration of gravity, g, as listed
in Table 1. The solar simulation with the same input physics and
number of mesh points is included for comparison purposes. The
surface gravity is an input parameter, while the effective temper-
ature is adjusted by changing the entropy of the inflowing gas at
the bottom boundary. The simulations have 50 × 50 × 82 grid
points. All of the models have solar-like chemical composi-
tion, with hydrogen abundance X = 0.703 and metal abundance
Z = 0.0145. The simulation time-series all cover at least five
periods of the primary p-modes (highest amplitude, one node at
the bottom boundary), and as such should be sufficiently long.

The convection simulations are shallow (only a few percent
of the stellar radius) and therefore contain only few modes. To
obtain mode eigenfunctions, the simulated domains are aug-
mented by 1D envelope models in the interior by means of
the stellar envelope code by Christensen-Dalsgaard & Frandsen
(1983a). Convection in the envelope models is based on the
mixing-length formalism (Böhm-Vitense 1958).

Trampedach et al. (2006a) fit 1D stellar envelopes to aver-
age stratifications of the seven convection simulations by match-
ing temperature and density at a common pressure point near the
bottom of the simulations. The fitting parameters are the mixing-
length parameter, α, and a form-factor, β, in the expression for
turbulent pressure: P1D

turb = β�u
2
MLT, where uMLT is the convective

velocities predicted by the mixing-length formulation. A consis-
tent matching of the simulations and 1D envelopes is achieved
by using the same equation of state (EOS) by Däppen et al.
(1988, also referred to as the MHD EOS, with reference to
Mihalas, Hummer, and Däppen) and opacity distribution func-
tions (ODF) by Kurucz (1992a,b), and also by using T -τ rela-
tions derived from the simulations (Trampedach et al. 2006b).
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Table 1. Characteristics of the convection 3D simulations: tsim is the duration of the relaxed simulations used in the present analysis, Hp is the
pressure scale height at the surface, Lh the size of the box in the horizontal direction, Cs the sound speed and ts the sound travel time across Hp.
All the simulations have a spatial grid of 50 × 50 × 82.

Star tsim size log g Teff Hp Lh/Hp Cs ts tsim/ts

[min] [Mm3] [K] [km] [km s−1] [s]
αCen B 59 4.0 × 4.0 × 2.2 4.5568 5363 95. 42.1 7.49 12.72 278.3
Sun 96 6.0 × 6.0 × 3.4 4.4377 5802 134 44.8 7.78 17.30 332.9
Star A 80 11.6 × 11.6 × 6.4 4.0946 4851 316 36.7 7.98 39.66 121.0
αCen A 44 8.9 × 8.8 × 5.1 4.2946 5768 189 47.1 7.81 24.17 109.2
Star B 110 20.7 × 20.7 × 11.3 4.0350 6167 359 57.7 7.76 46.29 142.6
Procyon 119 20.7 × 20.7 × 10.9 4.0350 6470 380 54.5 7.52 50.50 141.4
ηBoo 141 36.9 × 36.9 × 16.3 3.7534 6023 709 52.0 7.40 96.13 88.0

Fig. 1. Location of the convection simulations in the HR dia-
gram. The symbol sizes vary proportionally to the stellar radii.
Evolutionary tracks of stars, with masses as indicated, were calcu-
lated on the base of Christensen-Dalsgaard’s stellar evolutionary code
(Christensen-Dalsgaard 1982; Christensen-Dalsgaard & Frandsen
1983a).

The average stratifications of the 3D simulations, augmented
by the fitted 1D envelope models in the interior, were used as
the basis for the eigenmode calculations using the adiabatic pul-
sation code by Christensen-Dalsgaard & Berthomieu (1991).
These combinations of averaged 3D simulations and matched
1D envelope models will, from hereon, be referred to as the
1D models.

The positions of the models in the HR diagram are presented
in Fig. 1 and their global parameters are listed in Table 2. Five
of the seven models correspond to actual stars, while Star A and
Star B are merely sets of atmospheric parameters; their masses
and luminosities are therefore assigned somewhat arbitrarily (the
L/M-ratios, only depending on Teff and g, are of course not
arbitrary).

4. Inferred properties of χk

For each simulation, χk(ω) is computed over the whole
wavenumber (k) range covered by the simulations and at
different layers within the region where modes are excited. We
present the results at the layer where the excitation is maximum,

Table 2. Fundamental parameters of the 1D-models associated with the
3D simulations of Table 1.

Star Teff M/M� R/R� L/L� LM�/ML�
[K]

αCen B 5363 0.90 0.827 0.51 0.56
Sun 5802 1.00 1.000 1.02 1.02
Star A 4852 0.60 1.150 0.66 1.10
αCen A 5768 1.08 1.228 1.50 1.38
Star B 6167 1.24 1.769 4.07 3.28
Procyon 6470 1.75 2.102 6.96 3.98
ηBoo 6023 1.63 2.805 9.31 5.71

i.e., where u0 is maximum, and for two representative wavenum-
bers: k = kmax at which E(k) peaks and k = 10 kmin, where kmin
is the first non-zero wavenumber of the simulations. Indeed, the
amount of acoustic energy going into a given mode is largest at
this layer and at the wavenumber k 	 kmax, provided that the
mode frequency satisfies: ω0 � (kmax u0). Above ω0 ∼ kmax u0,
the efficiency of the excitation decreases rapidly. Therefore low
and intermediate frequency modes (i.e., ω0 � kmax u0) are pre-
dominantly excited at k 	 kmax. On the other hand, high fre-
quency modes are predominantly excited by small-scale fluctua-
tions, i.e. at large k. The exact choice of the representative large
wavenumber is quite arbitrary; however it cannot be too large
because of the limited number of mesh points k � 25 kmin and
in any case, the excitation is negligible above k 	 20 kmin. We
thus chose the intermediate wavenumber k = 10 kmin. Figure 2
presents χk as obtained from the 3D simulations of Procyon,
αCen B and the Sun, at the layer where u0 is maximum and for
the wavenumber kmax. Although defined as a function of ω, for
convenience, χk is plotted as a function of ν = ω/2π through-
out this paper. Figure 3 displays χk for k = 10 kmin. Results for
the other simulations are not shown, as the results for Procyon,
αCen B and the Sun correspond to three representative cases.

In practice, it is not easy to implement directly in the exci-
tation model the ν-variation of χk inferred from the 3D simula-
tions. An alternative and convenient way to compute P is to use
simple analytical functions for χk which are chosen so as to best
represent the 3D results. We then compare χk computed with the
3D simulations with the following simple analytical forms: the
Gaussian form

χG
k (ω) =

1

ωk
√
π

e−(ω/ωk)2
, (4)

the Lorentzian form

χL
k (ω) =

1
πωk/2

1

1 + (2ω/ωk)2
, (5)
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Fig. 2. The filled dots represent χk obtained from the 3D simulations
for the wavenumber k at which E(k) is maximum and at the layer where
the excitation is maximum in the simulation. The results are presented
for three simulations: Procyon (top), the Sun (middle) and αCen B
(bottom). The solid curves represent the Lorentzian form, Eq. (5), the
dashed curves the Gaussian form Eq. (4), and the dot dashed curves the
exponential form Eq. (6).

and the exponential form

χE
k (ω) =

1
ωk

e−|2ω/ωk |. (6)

In Eqs. (4)–(6),ωk is the line-width of the analytical function and
is related to the velocity uk of the eddy with wave number k as:

ωk ≡ 2 kuk. (7)

In Eq. (7), uk is calculated from the kinetic energy spectrum E(k)
as (Stein 1967)

u2
k =

∫ 2k

k
dk E(k). (8)

Fig. 3. Same as Fig. 2 for k = 10 kmin where kmin is the first non-zero
wavenumber of the simulation.

As shown in Figs. 2 and 3, the Lorentzian χL
k does not re-

produce the ν-variation of χk satisfactorily. This is particularly
true for the solar case. This contrast with the results of Paper III
where it was found that χL

k reproduces nicely – at the wavenum-
ber where E is maximum – the ν-variation of χk inferred from the
solar simulation investigated in Paper III. These differences in
the results for the solar case can be explained by the low spatial
resolution of the present solar simulation compared with that of
Paper III. Indeed we have compared different solar simulations
with different spatial resolution and found that the ν-variation of
χk converges to that of χL

k as the spatial resolution increases (not
shown here). This dependency of χk with spatial resolution of
the simulation is likely to hold for the non-solar simulations as
well. This result then suggests that χk is in fact best represented
by the Lorentzian form, χL

k .
As a consequence, realistic excitation rates evaluated directly

for a convection simulation should be based on simulations with
higher spatial resolution. However the main goal of the present
work is to test the excitation model, which can be done with the
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present set of simulations. Indeed, we only need to use as inputs
for the excitation model the quantities related to the turbulent
convection (E(k), χk,. . . ) as they are in the simulations, no matter
how the real properties of χk are.

For the present set of simulations, we compare three ana-
lytical forms of χk: Lorentzian, Gaussian and exponential. For
large k, χk is overall best modeled by a Gaussian (see Fig. 3 for
k = 10 kmin). For small k (see Fig. 2 for k = kmax) both the expo-
nential and the Gaussian are closer to χk than the Lorentzian.

For a given simulation, depending on the frequency, differ-
ences between χk(ν) and the analytical forms are more or less
pronounced.

The discrepancy between χk(ν) inferred from the 3D sim-
ulations and the exponential or the Gaussian forms vary sys-
tematically with stellar parameters; decreasing as the convec-
tion gets more forceful, as measured by, e.g., the turbulent- to
total-pressure ratio. Of the three simulations illustrated in Fig. 2,
Procyon has the largest and αCen B has the smallest Pturb/Ptot-
ratio.

As a whole for the different simulations and scale lengths k,
we conclude that the ν-variation of χk in the present set of sim-
ulations lies between that of a Gaussian and an exponential.
However, neither of them is completely satisfactory. Actually a
recent detailed study by Georgobiani et al. (2006, in prepara-
tion) tends to show that χk cannot systematically be represented
at all wavenumbers by a simple form such as a Gaussian, an ex-
ponential or a Lorentzian, but rather needs a more generalized
power law. Hence, more sophisticated fits closer to the simu-
lated ν-variation of χk could have been considered, but for the
sake of simplicity we chose to limit ourselves to the three forms
presented here.

5. p-mode excitation rates across the HR diagram

5.1. Excitation rate spectra (P(ν))

For each simulation, the rates P at which the p-modes of the
associated 1D models are excited are computed both directly
from the 3D simulations and with the semi-analytical method
(see Sect. 2). In this section, the semi-analytical calculations are
based on two analytical forms of χk: a Gaussian and an exponen-
tial form as described in Sect. 4. The Lorentzian form as intro-
duced in Sect. 4 is not investigated in the present section. Indeed
our purpose here is to test the model of stochastic excitation by
using constraints from the 3D simulations, and a Lorentzian be-
haviour is never obtained in the present 3D simulations.

The results of the calculations of P using both methods are
presented in Fig. 4 for the six most representative simulations. In
order to remove the large scattering in the direct calculations, we
perform a running mean over five frequency bins. The results of
this averaging are shown by dot-dashed lines. The choice of five
frequency bins is somewhat arbitrary. However we notice that
between 2 to 10 frequency bins, the maximum and the shape of
the spectrum do not significantly change.

Comparisons between direct and semi-analytical calcula-
tions using either χG

k or χE
k all show systematic differences: the

excitation rates obtained with the direct calculations are sys-
tematically lower than those resulting from the semi-analytical
method. These systematic differences are likely due to the too
low spatial resolution of the 3D simulations which are used here
(see Sect. 5.2 below).

At high frequency, the use of χE
k instead of χG

k results in
larger P for all stars. This arises from the fact that χE

k spreads
slightly more energy at high frequency than χG

k does (see Fig. 2).

The largest difference between the two types of calculation
(direct versus semi-analytical) is seen in the case of Procyon.
Indeed, the simulation of Procyon shows a pronounced depres-
sion around ν ∼ 1.5 mHz. Such a depression is not seen in the
semi-analytical calculations. The origin of this depression has
not been clearly identified yet but is perhaps related to some in-
terference between the turbulence and the acoustic waves which
manifests itself in the pressure fluctuations in the 3D work inte-
gral but is not included in the semi-analytical description.

5.2. Influence of the 3D simulation characteristics

In order to assess the influence of the spatial resolution of the
simulation on our results, we have at our disposal three other
solar 3D simulations, with a grid of 253 × 253 × 163, 125 ×
125 × 82 and 50 × 50 × 82 (hereafter S1), and a duration of
∼42 min, 70 min and 100 min, respectively.

We have computed the p-modes excitation rates according to
the direct method for those three simulations. For each of those
simulations we have also computed the excitation rates accord-
ing to the semi-analytical method assuming either a Lorentzian
χk or a Gaussian χk.

As shown in Fig. 5 (top), the excitation rates computed ac-
cording to the direct calculation increase as the spatial resolution
of the 3D simulation increases. The excitation rates computed
with the 3D simulations with the two highest spatial resolutions
reach approximately the same mean amplitude level, indicating
that this level of spatial resolution is sufficient for the direct cal-
culations.

We note that as the spatial resolution increases, the semi-
analytical calculations using a Lorentzian χk decrease by a fac-
tor ∼2 (not shown here). The differences in the semi-analytical
calculations based on the 253 × 253 × 163 simulation and the
125 × 125 × 82 simulation are found very small, indicating that
this level of spatial resolution is sufficient for the semi-analytical
calculations too.

Finally, we note that the excitation rates obtained for the
50×50×82 solar simulation (S1) are approximatively two times
smaller than excitation rates for the 50 × 50 × 82 solar simu-
lation otherwise used throughout this work (S0 hereafter). This
difference is attributed to the fact that the two simulations do not
correspond to the same realization. Indeed, as a test, we have ex-
tended the duration of the simulation S1 up to 500 min. The full
time series has then been divided into subsets of equal duration
of 100 min and p-mode excitation rates have been computed for
each subset. We find that the maximum in the p-modes excitation
ratesP(ν) oscillates from a subset to another about a mean value.
The observed variations are large: the maximum in P(ν) can be
larger (smaller resp.) by ∼1.5 (0.5 resp.) times the maximum in
the power spectrum obtained by averaging the power spectra of
all subsets. Hence we find that at low spatial resolution, different
realizations yield excitation rates that are scattered about a mean
value at each frequency. This dispersion is likely to be respon-
sible for the factor of two difference between the excitation rate
maxima obtained for the two realizations S0 and S1. This type
of dependency of P – with the starting time of the time series
and its duration – is expected to be smaller for simulations with
resolution higher than 50×50×82, because of the larger number
of excitation sources there. This will be studied in a subsequent
work.
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Fig. 4. Excitation rates, P, are presented as functions of mode frequency for six of the seven convection simulations listed in Tables 1 and 2. Each
triangle corresponds to a single evaluation of the 3D work integral estimated for a given eigenfrequency according to Eq. (1). The dot-dashed lines
correspond to a running mean of the triangle symbols performed over five frequencies. The solid and dashed lines correspond to the excitation rates
calculated with the semi-analytical method and using the Gaussian and the exponential forms of χk, respectively. All results shown are obtained as
the sum of contributions from the two sources of excitation: excitation by the turbulent pressure and excitation by the non-adiabatic gas pressure.

5.3. Eddy-time correlation: Lorentzian versus Gaussian

As seen in Sect 5.2 above, the characteristics of the simulations
influence the semi-analytical calculations of the mode excita-
tion rates (through the input parameters which enter the semi-
analytical calculations and which are taken from the 3D simu-
lation). We want to compare the results of the semi-analytical
calculations using χL

k with the semi-analytical calculations using

χG
k . It is then necessary to insert the 3D inputs in these calcula-

tions coming from simulations with the highest quality, here the
highest available resolution.

Figure 5 (bottom) compares semi-analytical calculations us-
ing a Lorentzian χk with those using a Gaussian χk. All theses
semi-analytical calculations are here based on the energy spec-
trum of the simulation with the spatial resolution of 253× 253×
163 (see Sect. 5.2).
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Fig. 5. Top: as in Fig. 4 for solar simulations only. The solid line corre-
sponds to the semi-analytical calculations based on a Lorentzian χk and
a simulation with a spatial resolution of 253× 253× 82. The other lines
are running means over five frequencies of the direct calculation based
on solar simulations with different spatial resolution: 253 × 253 × 82
(dashed line), 125×125×82 (dot dashed line) and 50×50×82 (dot dot
dashed line). Bottom: the solid and dashed lines have the same mean-
ing as in the top figure. The dot-dashed line corresponds to the semi-
analytical calculations based on a Gaussian χk .

The average level of the excitation rates calculated accord-
ing to the direct method and with the simulation with the highest
spatial resolution is in between the semi-analytical calculations
based on Lorentzian χk and those based on a Gaussian χk, never-
theless they are in general slightly closer to the semi-analytical
calculations based on Lorentzian χk. This result is discussed in
Sect. 6.2.1.

5.4. Maximum of P as a function of L/M

Figure 6 shows Pmax, the maximum in P, as a function of L/M
for the direct and the semi-analytical calculations.

The same systematic differences between the direct and the
semi-analytical calculations as seen in Fig. 4 are of course ob-
served here. Note that the differences slightly decrease with
increasing values of L/M.

We have also computed the excitation rate with the semi-
analytical method using χL

k . The maximum excitation rate as
evaluated with χL

k is systematically larger than both the direct
calculations and the semi-analytical results based on χG

k or χE
k .

Fig. 6. Pmax versus L/M where L is the luminosity and M is the mass of
the 1D models associated with the 3D simulations. The triangles corre-
spond to the direct calculations (labeled as “DirEx 3D” in the legend),
and the other symbols correspond to the semi-analytical calculations us-
ing the three forms of χk: the crosses assume a Gaussian, the diamonds
an exponential and the squares a Lorentzian, respectively. Each set of
Pmax is fitted by a power law of the form (L/M)s where s is the slope of
the power law. The line-styles correspond to the three semi-analytical
cases and the direct calculations, as indicated in the lower right corner
of the plot.

Table 3. Values found for the slopes s (see Sect. 5.4) and sv (see
Sect. 5.5). “Method” is the method considered for the calculations of P.

Method χk s sv
direct — 3.4 —

semi-analytical Gaussian 3.1 1.0
semi-analytical exponential 3.0 0.9
semi-analytical Lorentzian 2.6 0.7

In the solar case, Pmax is found to be closer to the value de-
rived from recent helioseismic data (Baudin et al. 2005) when
using a Lorentzian compared to a Gaussian (see also Belkacem
et al. 2006b, B06b hereafter). The “observed” excitation rates
are derived from the velocity observations V as follows:

P = 2π ΓνM(h) V2 (9)

where M is the mode mass, V is the mode velocity amplitude
and h is the height above the photosphere where the mode mass
is evaluated. The mode line width at half maximum in Hz, Γν =
η/π, (η is the mode amplitude damping rate in s−1) is determined
observationally in the solar case.

Using the recent helioseismic measurements of V and Γν by
Baudin et al. (2005) and the mode mass computed here for our
solar model at the height h = 340 km (cf. Baudin et al. 2005),
we find Pmax,� = 6.5 ± 0.7 × 1022 erg s−1. This value must be
compared with those found with χL

k and χG
k , namely PL

max,� =
4.9 × 1022 erg s−1 and PG

max,� = 1.2 × 1022 erg s−1 respectively.

Scaling laws: All sets of calculations can be reasonably well
fitted with a scaling law of the form Pmax ∝ (L/M)s where s
is a slope which depends on the considered set of calculations.
Values found for s are summarized in Table 3.
• For the semi-analytical calculations, we find s = 2.6 using

χL
k , s = 3.0 using χE

k and s = 3.1 for the Gaussian form.
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The Lorentzian form results in a power law with a smaller
slope than the Gaussian. This can be understood as follows: a
Gaussian decreases more rapidly with ν than a Lorentzian. As
the ratio L/M of a main sequence star increases, the mode fre-
quencies shift to lower values. Hence p-modes of stars with large
values of L/M receive relatively more acoustic energy when
adopting a Gaussian rather than a Lorentzian χk. It is worth-
while to note that even though the ratio L/M is the ratio of two
global stellar quantities, it nevertheless characterizes essentially
the stellar surface layers where the mode excitation is located
since L/M ∝ T 4

eff/g.• For the set of direct calculations, some scatter exists as a
consequence of the large statistical fluctuations in Pmax and a
linear regression gives s = 3.4. As expected, this value is rather
close to that found with the semi-analytical calculations using
either χG

k or χE
k .

5.5. Maximum of the mode amplitudes (Vmax)
as a function of L/M

The theoretical oscillation velocity amplitudes V can be com-
puted according to Eq. (9) The calculation requires the knowl-
edge of the excitation rates,P, damping rates, η, and mode mass,
M. Although it is possible – in principle – to compute the con-
vective dampings from the 3D simulations (Nordlund & Stein
2001), it is a difficult task which is under progress. However,
using for instance Gough’s Mixing-Length Theory (1976; 1977,
G’MLT hereafter), it is possible to compute η and P for different
stellar models of given L,M and deduce Vmax, the maximum of
the mode amplitudes, as a function of L/M at the cost of some
inconsistencies.

In Samadi et al. (2001), calculations of the damping rates η
based on G’MLT were performed for stellar models with differ-
ent values of L and M. Although these stellar models are not
the same as those considered here, it is still possible, for a crude
estimate, to determine the dependency of Vmax with L/M.

Hence we proceed as follows: for each stellar model com-
puted in Samadi et al. (2001), we derive the values of η and
M at the frequency νmax at which the maximum amplitude is
expected. From the stars for which solar-like oscillations have
been detected, Bedding & Kjeldsen (2003) have shown that this
frequency is proportional to the cut-off frequency. Hence we
determine νmax = (νc/νc,�) νmax,� where νc is the cut-off fre-
quency of a given model and the symbol � refers to solar quan-
tities (νmax,� 	 3.2 mHz and νc,� 	 5.5 mHz). We then obtain
(ηmax Mmax) as a function of L and M.

On the other hand, in Sect. 5.4, we have established Pmax
as a function of L and M. Then, according to Eq. (9), we can
determine Vmax(L,M) for the different power laws of Pmax.

We are interested here in the slope (i.e. variation with L/M)
of Vmax and not its absolute magnitude, therefore we scale the
theoretical and observed Vmax with a same normalization value
which is taken as the solar value Vmax,� = 33.1 ± 0.9 cm s−1 as
determined recently by Baudin et al. (2005).

We find that Vmax increases as (L/M)sv with different values
for sv depending on the assumptions for χk. The values of sv are
summarized in Table 3 and illustrated in Fig. 7. We find sv 	 0.7
with χL

k and sv 	 1.0 with χG
k .

These scaling laws must be compared with observations of a
few stars for which solar-like oscillations have been detected in
Doppler velocity. The observed Vmax are taken from Table 1 of
HG02, except for ηBoo, ζ Her A, β Vir, HD 49933 and µ Ara,
for which we use the Vmax quoted by Carrier et al. (2003), Martić
et al. (2001), Martić et al. (2004), Mosser et al. (2005) and

Fig. 7. Same as Fig. 6 for Vmax/Vmax,�, the maximum of the mode ampli-
tudes relative to the observed solar value (Vmax,� = 33.1 ± 0.9 cm s−1).
The filled symbols correspond to the stars for which solar-like oscil-
lations have been detected in Doppler velocity. The lines – except the
dashed line – correspond to the power laws obtained from the predicted
scaling laws for Pmax (Fig. 6) and estimated values of the damping
rates ηmax (see text for details). Results for two different eddy time-
correlation functions, χk, are presented: Lorentzian (solid line) and
Gaussian (dot-dashed line) functions. For comparison the dashed line
shows the result by HG02. Values of the slope sv are given on the plot
and in Table 3.

Bouchy et al. (2005) respectively and ε Oph and η Ser quoted
by Barban et al. (2004).

Figure 7 shows that the observations also indicate a mono-
tonic logarithmic increase of Vmax with L/M despite a large dis-
persion which may at least partly arise from different origins of
the data sets. For the observations we find a “slope” sv 	 0.7.
This is close to the theoretical slope obtained when adopting χL

k
and definitely lower than the slopes obtained when adopting χG

k
or adopted by HG02.

6. Summary and discussion

One goal of the present work has been to validate the model
of stochastic excitation presented in Paper I. The result of this
test is summarized in Sect. 6.1. A second goal has been to study
the properties of the turbulent eddy time-correlation, χk, and the
importance for the calculation of the excitation rates, P, of the
adopted form of χk. Section 6.2 deals with this subject.

6.1. Validation of the excitation model

In order to check the validity of the excitation model, seven
3D simulations of stars, including the Sun, have been consid-
ered. For each simulation, we calculated the p-mode excita-
tion rates, P, using two methods: the semi-analytical excitation
model (cf. Sect. 2.2) that we are testing, and a direct calculation
as detailed in Sect. 2. In the latter method, the work performed
by the pressure fluctuations on the p-modes is calculated directly
from the 3D simulations.

In the semi-analytical method, P is computed according to
the excitation model of Paper I. The calculation uses, as input,
information from the 3D simulations as for instance the eddy
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time-correlation (χk) and the kinetic energy spectra (E(k)).
However although χk has been computed for each simulation, in
practice for simplifying the problem of implementation as well
as for comparison purpose with Paper III, we chose to represent
the ν variation of χk with simple analytical functions. It is found
that the ν-variation of χk in the present simulations lies loosely
between that of an exponential and a Gaussian. We then perform
the validation test of the excitation model using those two forms
of χk.

We find that using either χG
k or χE

k in the semi-analytical cal-
culations of P results in systematically higher excitation rates
than those obtained with direct 3D calculations. These system-
atic differences are attributed to the low spatial resolution of our
present set of simulations. Indeed we have shown here that using
solar simulations with different spatial resolutions, the resulting
excitation rates increase with increasing spatial resolution.

We have next investigated the dependence of Pmax with L/M
(See Fig. 6), where L and M are the stellar luminosity and mass
respectively. As in previous works based on a purely theoretical
approach (e.g. Samadi et al. 2003a), we find that Pmax scales
approximatively as (L/M)s where s is the slope of the scaling
law: we find s = 3.4 with the direct calculations and s = 3.2
and s = 3.1 with the semi-analytical calculations using χG

k and
χE

k respectively. This indicates a general agreement between the
scaling properties of both types of calculations, which validates
to some extent the adopted excitation model across the domain
of the HR diagram studied here.

For the sake of simplicity, only simple analytical forms for
χk have been investigated here. We expect that the use of more
sophisticated forms for χk would reduce the dispersion between
the analytical and direct calculations, but would not affect the
conclusions of the present paper.

6.2. The eddy time-correlation spectra, χk

The slope s of the scaling law for Pmax, is found to depend
significantly on the adopted analytical form for χk. The semi-
analytical calculations using the Lorentzian form for χk results in
a significantly smaller slope s than those based on the Gaussian
or the exponential or from direct calculations (see Table 3).

Except for the Sun, independent and accurate enough con-
straints on both the mode damping rates and the mode exci-
tation rates are not yet available. We are then left to perform
comparison between predicted and observed mode amplitudes.
Unfortunately, obtaining tight constraints on χk using compari-
son between predicted and observed mode amplitudes is ham-
pered by large uncertainties in the theoretical estimates of the
damping rates. It is therefore currently difficult to derive the ex-
citation rates P for the few stars for which solar-like oscillations
have been detected (see Samadi et al. 2004). The future space
mission COROT (Baglin & The Corot Team 1998) will provide
high-quality data on seismic observations. Indeed the COROT
mission will be the first mission that will provide both high pre-
cision mode amplitudes and line-widths for stars other than the
Sun. It will then be possible to use the observed damping rates
and to derive the excitation rate P free of the uncertainties asso-
ciated with a theoretical computation of damping rates. In par-
ticular, it will be possible to determine Pmax as a function of L
and M from the observed stars. Such observations will provide
valuable constraints for our models for χk.

We can, nevertheless, already give some arguments below in
favor of the Lorentzian being the correct description for χk.

6.2.1. Solar case

In the 3D simulations studied here, including that of the Sun,
the inferred ν dependency of χk is far from a Lorentzian, in
contrast to that found with the solar 3D simulation investigated
in Paper III. However, by investigating solar simulations with
different resolutions, we find that, as the spatial resolution in-
creases, χk tends towards a Lorentzian ν-dependency. This ex-
planation is likely to stand for non-solar simulations too, but has
not yet been confirmed (work in progress).

Furthermore, as shown in Fig. 5, bottom, the direct calcula-
tions obtained with the simulation with the highest spatial res-
olution available is slightly closer to the semi-analytical calcu-
lations using the Lorentzian form than those using the Gaussian
one.

Independently of the resolution (if large enough of course),
a Lorentzian χk predicts larger values for Pmax than a Gaussian
or an exponential do. In particular in the solar case, the semi-
analytical calculation using χL

k results in a Pmax closer to the he-
lioseismic constraints derived by Baudin et al. (2005) compared
to using χG

k or χE
k . This latter result is in agreement with that of

Paper III.
Part of the remaining discrepancies with the helioseismic

constraints are attributed to the adopted closure model according
to Belkacem et al. (2006b, B06b hereafter). Indeed, theoretical
models of stochastic excitation adopt the quasi-normal approx-
imation (QNA). As shown in B06b, the skew introduced by the
QNA result in a under-estimation of the solar p mode excitation
rates. When the so-called closure model with plumes proposed
by Belkacem et al. (2006a) is adopted, new semi-theoretical cal-
culations fit rather well the recent helioseismic constraints de-
rived by Baudin et al. (2005, see B06b).

6.2.2. Vmax as a function of L/M

Consequences of the predicted power laws for Pmax have also
been crudely investigated here for the expected value of Vmax,
the maximum value of the mode velocity (Fig. 7). Calculations
of Vmax from Pmax require the knowledge of the mode damping
rates, η, which cannot be fully determined from the simulations.
We are then led to use theoretical calculations of the damping
rates. We consider here those performed by Samadi et al. (2001)
which are based on Gough’s (1976; 1977) non-local and time-
dependent formulation of convection. From those values of η
and the different power laws for Pmax expected values of Vmax
are obtained.

We find, as in Houdek & Gough (2002, HG02), that Vmax
scales as (L/M)sv. Calculations by HG02 result in sv 	 1.5. Our
semi-analytical calculations of Pmax based on a Gaussian χk re-
sult in a slightly smaller slope (sv 	 1.0). On the other hand,
using a Lorentzian χk results in a slope sv 	 0.7 which is closer
to that derived from the few stars for which oscillation ampli-
tudes have been measured.

From this result, we conclude that the problem of the over-
estimation of the amplitudes of the solar-like oscillating stars
more luminous than the Sun is related to the choice of the model
for χk. Indeed, previous theoretical calculations by Houdek et al.
(1999) are based on the assumption of a Gaussian χk. As shown
here, the Gaussian assumption results in a larger slope sv than
the Lorentzian χk. This is the reason why Houdek et al. (1999)
over-estimate Vmax for L/M > L�/M�.

On the other hand, if one assumes χk = χ
L
k , a scaling factor

is no longer required to reproduce Pmax for the solar p-modes.
Moreover, as a consequence of the smaller slope, sv, resulting



R. Samadi et al.: Excitation of solar-like oscillations across the HR diagram 307

from a Lorentzian χk, the predicted amplitudes for other stars
match the observations better.

This result further indicates that a Lorentzian is the better
choice for χk, as was also concluded in Paper III.

Departures of the theoretical curve from the observed points
in Fig. 7 can be attributed to several causes which remain to be
investigated:

1) A major uncertainty comes from the computed damping
rates as no accurate enough observations are available yet
to validate them. As V results from the balance between P
and η, the slope sv can also depend on the variation of η with
L/M. Thus, the large differences in sv between the seismic
observations and the calculations based on χG

k can also be,
a priori, attributed to an incorrect evaluation of the damp-
ing rates. However ηmax – the value of the damping rate at
the frequency νmax at which the maximum amplitude is ex-
pected – does not follow a clear scaling law with L/M. We
have looked at the ηmax variation in our set of G’MLT models
and found no clear dependence of ηmax on L/M but rather a
dispersion.

2) The observed stars in Fig. 7 have somewhat different chemi-
cal compositions; this can cause some scatter in the relation
Vmax–L/M which has not been taken into account here. All
the simulations investigated in the present work employ a
solar metal abundance. The metallicity has a direct impact
on the opacity and the EOS. Both in turn affect the internal
structure and are also decisive for the transition from convec-
tion to radiation in the photosphere and therefore determine
the structure of the super-adiabatic region. Hence, the prop-
erties of the super-adiabatic region, relevant for the excita-
tion rates, differ for stars located at the same position in the
HR diagram (e.g., same Teff and same g) but with different
metal abundances. Consequently the excitation of p-modes
for such stars probably differ, although it remains to be seen
to what extent. A differential investigation of the metallicity
effect is planned for the future.

6.3. Relative contribution of the turbulent pressure

Another issue concerns the relative contribution of the turbu-
lent pressure. The excitation of solar-like oscillations is gener-
ally attributed to the turbulent pressure (i.e. Reynolds stress) and
the entropy fluctuations (i.e. non-adiabatic gas pressure fluctua-
tions) and occurs in the super-adiabatic region where those two
terms are the largest. In Paper III, it was found that the two driv-
ing sources are of the same order of magnitude, in contradiction
with the results by Stein & Nordlund (2001) who found – based
on their 3D numerical simulations of convection – that the tur-
bulent pressure is the dominant contribution to the excitation.
The discrepancy is removed here as we used a corrected version
of the formulation of the contribution of the Reynolds stress of
Paper I (see Eq. (3)), leading to a larger contribution from the
Reynolds stress.

For the Sun, assuming χL
k (χG

k resp.), we now find that the
Reynolds stress contribution is 5 times (3 times resp.) larger than
that due to the entropy fluctuations (non-adiabatic gas-pressure
fluctuations). Hence, the Reynolds stress is indeed the dominant
source of excitation in agreement with the results of Stein &
Nordlund (2001). The best agreement with the latter results is
obtained with a Lorentzian χk.

However, we find that the relative contribution from
Reynolds stresses decreases rapidly with (L/M). For instance, in

the simulation of Procyon, the Reynolds stress represents only
∼30% of the total excitation rate.

From that, we conclude that the excitation by entropy fluc-
tuations cannot be neglected, especially for stars more luminous
than the Sun.
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Appendix A: Calculation of the non adiabatic
pressure fluctuations

The adiabatic variation of the gas pressure does not contribute
to the ∆(PdV) work over an oscillation period as it is in phase
with the volume (or density) variation. In practice, however, it
is beneficial for the accuracy of the computation of excitation to
subtract the adiabatic part of the gas pressure fluctuation, since it
reduces the coherent part. That part gives zero contribution only
in the limit of infinite time, or for an exact integer number of
periods. However, in practice, it gives rise to a random (or noisy)
contribution. Indeed, as we deal with a lot of different modes it is
hard to find a time-interval which is an integer number of periods
of each and all of the modes at the same time.

The Lagrangian variations of gas pressure, ∆Pgas must
satisfy

∆Pgas =
Γ1Pgas

ρ
∆ρ +

∂Pgas

∂S
∆S (A.1)

where Pgas, ρ and S are the gas pressure the density and the
entropy respectively and where the operator ∆ represents the
pseudo Lagrangian fluctuations of a given quantity. The concept
of pseudo Lagrangian fluctuations is introduced in Nordlund &
Stein (2001). Accordingly we derive the non-adiabatic gas pres-
sure fluctuations as:

∆Pgas,nad(r, t) ≡ ∆Pgas − c2
s ∆ρ (A.2)

where c2
s ≡ Γ1Pgas/ρ is the sound speed.

However, what we want to subtract off from ∆Pgas is that
part of the pressure variation that is due to adiabatic compression
and expansion due to the particular radial wave modes (i.e. the
low amplitude perturbation of ρ(r) on top of the possibly large
variations horizontally of ρ(r) that ρ(r) is an average of).

To find the nonadiabatic pressure fluctuations, we start with
calculations of horizontal averages of the primary quantities,
Pgas, Pturb, ρ and c2

s . We convert these averages to the pseudo-
Lagrangian frame of reference, in which the net mass flux van-
ishes. We then compute fluctuations of the resulting quantities
with respect to time, i.e., subtract their time averages:

∆Pgas = 〈Pgas〉h − 〈Pgas〉h,t
∆Pturb = 〈Pturb〉h − 〈Pturb〉h,t

∆ρ = 〈ρ〉h − 〈ρ〉h,t.
Here, 〈〉h refers to horizontal average and 〈〉h,t refers to conse-
quent time average performed on a horizontally averaged quan-
tity. Finally, the non-adiabatic fluctuations of the total pressure
(that is gas + turbulent pressure) are:

∆Pnad = ∆Pgas,nad + ∆Pturb

= ∆P − 〈c2
s〉h,t ∆ρ (A.3)

where ∆P ≡ ∆Pgas + ∆Pturb.
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