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Abstract. Exact axisymmetric analytical solutions of the governing MHD equations for magnetized and rotating outflows are
applied to the solar wind during solar minimum as observed by ULYSSES. Using the spacecraft data, the latitudinal dependences
of physical quantities such as the density, velocity, magnetic field and temperature are analytically described. The self-similar
solutions are then compared to the global structure of the wind from one solar radius to 5 AU and beyond, including consistently
the rotation of the outflow. The model makes it possible to describe the initial flaring of the magnetic dipolar structure, repro-
ducing in a satisfactory way the observed profiles of the velocity, density and temperature with heliocentric distance. Finally,
this model is in agreement with the conjecture that the solar wind should not be collimated at large distances, even close to its
rotational axis.
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1. Introduction

The modelling of the solar wind is usually performed either
by basically following the fluid approach (Parker 1963) or
by emphasizing the kinetic aspects of the solar wind plasma
as they emerge from relatively recent ULYSSES observa-
tions at several AU (e.g., Balogh et al. 2001). The kinetic ap-
proach has been successful in reproducing, for example, the
profile of the electron temperature at large distances (e.g.,
Zouganelis et al. 2004), but it fails to explain proton behaviour
closer to the Sun. In this study we shall largely follow the
fluid approach, confining our attention to the dynamics of
the ions in the solar wind. In that context, various numeri-
cal attempts at modelling the rotating steady solar wind (e.g.
Sakurai 1985; Washimi 1990; Tsinganos & Bogovalov 2000;
Keppens & Goedbloed 2000) have been successful at repro-
ducing various of its observed features, by using a polytropic
equation of state. In another study Usmanov et al. (2000) pre-
sented a sophisticated numerical simulation which reproduces
many related solar wind observations by using a realistic en-
ergy equation which includes heating by Alfvén waves in
the WKB approximation, albeit by excluding rotation. This
model has been further refined (Usmanov & Goldstein 2003)

by incorporating solar rotation and a tilted dipole magnetic
field up to 10 solar radii. The full 3D MHD equations are
solved in an inner computational domain while in the outer
one only the dynamics of the flow along radial fieldlines is
solved numerically. Although the study reproduces with some
good agreement the latidudinal dependence of the solar wind,
there is still a problem in fitting simultaneously the observa-
tional data for the density and temperature, both in the inner
solar corona and in the extended wind. This is also the case
with other MHD simulations of the solar wind which use a
polytropic equation of state, unless they include a specific extra
heating (Riley et al. 2001).

However, such numerical simulations are rather time con-
suming for exploring the full range of boundary conditions of
the problem and solving at once the wind structure at all dis-
tances. Semi-empirical models have also been developed to
model coronal holes following Munro & Jackson (1977) (e.g.
Guhathakurta et al. 1999; Zangrilli et al. 2002; Zouganelis et al.
2004). Such semi-empirical models usually adopt a global 3D
structure of the wind which is to zeroth order consistent with
the observations, and then solve for the energy budget along
each fieldline. In this way, such models are able to explore more
sophisticated energy equations or kinetic effects but cannot
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solve consistently the structure of the flow itself. Conversely,
here we propose to use exact MHD solutions to describe the
average dynamical quantities and their latitudinal and radial
variations in the wind. As a byproduct, the use of the ULYSSES
data for the solar wind is a way to explore the limitations of
such analytical models when they are used to model analogous
outflows in jets from young stars where the observational con-
straints are not so well known.

Similarly to the pioneering work of Nerney & Suess
(1975a,b,c) (see also Nerney & Suess 1985, and references
therein), the approach we use is based on two different sets of
meridionally self-similar solutions (see Sect. 2) for the non-
polytropic MHD equations presented in earlier connections
(Lima et al. 2001, hereafter LPT01; Sauty et al. 1999, here-
after STT99; Sauty et al. 2002, hereafter STT02; Sauty et al.
2004, hereafter STT04). These two approaches allow us to
parametrize the latitudinal dependence of the solar wind den-
sity, velocity and magnetic fields by solving consistently the
momentum equation, including not only solar rotation but also
the rotation of the wind itself and the resulting deviations from
Parker’s spiral.

The first set (following STT99, hereafter called model A)
allows only for a rather smooth variation of the density and
wind speed with heliolatitude. Although it is an exact solu-
tion of the MHD equations, it is derived by keeping only the
lowest harmonics in an expansion with the latitude of the var-
ious variables of the wind. This model may describe vari-
ous MHD structures, including a fieldline flaring as in helmet
streamers around the equatorial plane or the collimation of the
fieldlines towards the axis due to magnetic stresses. It is this last
property that enables the model to be suitable for describing
jets from young stars by combining plasma ejection from both
the central star and the surrounding disk (see STT02, STT04).

The second set (using LPT01, hereafter called model B)
assumes that the wind is purely radial in the poloidal plane.
Conversely to the previous set, it may allow for a sharper vari-
ation of the wind variables in the latitudinal direction. This is
well adapted to the radial solar wind of the outer corona and
to the observed sharp transition between the slow and the fast
solar wind. Note however that it is not equivalent to a pure 1D
modelling as it consistently solves the transfield equation in all
space and not solely the conservation of energy along the lines.

ULYSSES data for the first polar passages around the pe-
riod of the last solar minimum offer a complete set of obser-
vations of the dynamical variables of the wind with latitude
between 1.3 and 2.3 AU. Moreover, solar minimum is a pe-
riod where the solar wind is exceptionally close to axisymme-
try with two main polar coronal holes surrounded by equatorial
streamers. In addition, the wind may well be approximated as
being rather close to a steady state during that period. For all
these reasons, we first constrain the various parameters of the
two models from ULYSSES data, as explained in Sect. 3. Then,
we use model A (Sect. 4) to predict the inner structure of the so-
lar wind dynamics and geometry consistent with our analysis of
the spacecraft data. In the inner region of the corona, the lowest
orders in the multipole development with colatitude are more
relevant, which justifies the use of model A. We postpone the
complete use of model B and its comparison with the present

results to a forthcoming paper. We present different ways of
constructing global solutions that describe the solar wind from
the stellar surface up to the heliopause, and discuss the prop-
erties of the solutions thus obtained. In particular, we compare
the computed physical quantities close to the solar surface with
observations, and check how consistent they are.

2. Governing equations for meridional self-similar
outflows

2.1. Model A with nonradial streamlines

Model A (see also Tsinganos & Sauty 1992; Sauty &
Tsinganos 1994) is an axisymmetric wind model obtained by
a self-consistent solution of the full system of the ideal MHD
equations. All three components of the velocity and magnetic
fields are considered in this particular description and so the
model is able to describe the usual flaring of the fieldlines ob-
served in coronal holes, especially during the phase of solar
minimum, something which plays an important role in the ini-
tial acceleration of the solar wind. In tackling the difficult prob-
lem of dealing with both variations, radial distance and lati-
tude, an expansion of the MHD integrals (angular momentum,
corotation frequency, etc.) in latitude is made using harmon-
ics. Such an expansion makes the whole system of MHD equa-
tions tractable from an analytical point of view and also repre-
sents a heliolatitudinal variation of the wind variables which
is in accordance with observations. In the limit of a hydro-
dynamical wind, application of this model to the data analy-
sis of Munro & Jackson (1977) is given in Tsinganos & Sauty
(1992). A more detailed parametric study of the properties of
this particular solution has been presented in STT99, STT02
and STT04. Conversely to Nerney & Suess (1975a,b,c) where
an expansion is made around the equatorial plane we use, in
the present model, exact solutions of the whole set of equa-
tions restricting the latitudinal variations to their lowest order
and using polar values as reference.

In the following we use spherical coordinates [r, θ, ϕ]. As
is already known from axisymmetric wind theory, the phys-
ically relevant solution passes through various critical points
(Weber & Davis, 1967). One is at the Alfvén radius where the
poloidal speed Vp attains the poloidal Alfvén speed such that
Bp =

√
4πρpVp. For numerical purposes all quantities have

been normalized with respect to values at the Alfvén radius r∗
along the polar axis θ = 0. At this point the velocity is V∗,
the density ρ∗, and from the definition of the Alfvén point the
magnetic field is B∗ =

√
4πρ∗V∗.

The dimensionless spherical radius is denoted by R = r/r∗.
The velocity, magnetic, density, and pressure fields of model A
are given below. They are functions of the spherical dimension-
less radius R and of the co-latitude θ and can be written in the
northern hemisphere as:

Vr = V∗
f M2

R2

cos θ
√

1 + δ f sin2 θ

, (1)

Vθ = −V∗
M2

2R
d f
dR

sin θ
√

1 + δ f sin2 θ

, (2)
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Vϕ = λV∗
(

1 − f M2/R2

1 − M2

)
R sin θ

√
1 + δ f sin2 θ

, (3)

Br = B∗
f

R2
cos θ, (4)

Bθ = −B∗
1

2R
d f
dR

sin θ, (5)

Bϕ = λB∗
(
1 − f /R2

1 − M2

)
R sin θ, (6)

ρ =
ρ∗
M2

(
1 + δ f sin2 θ

)
, (7)

P =
1
2
ρ∗V2

∗Π
(
1 + κ f sin2 θ

)
, (8)

where δ, λ and κ are parameters while M(R), Π(R) and f (R) are
three radial functions. The parameter δ governs the latitudinal
variation of density, κ the latidudinal variation of the pressure
and λ of the rotation. M(R) is the poloidal Alfvén Mach num-
ber,Π(R) measures the radial variation of the pressure and f (R)
the geometry of the flow.

2.2. Model B with radial streamlines

In the case of model B (Lima & Priest 1993; and LPT01, where
the magnetic field is implemented) the main idea is to keep the
latitudinal dependences of the various quantities as general as
possible. This meant sacrificing one of the components of the
velocity and magnetic field (the latitudinal θ component) which
was taken to be zero. The two remaining non-zero components
(the radial r and azimuthal ϕ ones) yield stream and fieldlines
that, when projected on the meridional plane, are always radial.
Although this might constitute a drastic approximation espe-
cially in the accelerating part of the solar wind, it is in good
agreement with observations after the wind has passed the crit-
ical points. The advantage of this approach is that the latitudi-
nal dependences are versatile enough to reproduce sharp varia-
tions of the physical quantities, as was indeed observed during
the first ULYSSES fly-by pass from the southern to the north-
ern ecliptic hemispheres. A detailed parametric study of this
solution can be found in LPT01.

For consistency between the two models and conversely to
the original articles, we use below the same normalization (as
in model A) at the Alfvén point along the polar axis, where
r = r∗, by means of the dimensionless radius R = r/r∗. For this
second model B the velocity, magnetic, density, and pressure
fields in the northern hemisphere are:

Vr = V∗
M2

R2

√
1 + µ sin2ε θ

1 + δ sin2ε θ
, (9)

Vϕ = λV∗
(

1 − M2/R2

1 − M2

)
R sinε θ

√
1 + δ sin2ε θ

, (10)

Br =
B∗
R2

√
1 + µ sin2ε θ, (11)

Bϕ = λB∗
(
1 − 1/R2

1 − M2

)
R sinε θ, (12)

ρ =
ρ∗
M2

(1 + δ sin2ε θ), (13)

P =
1
2
ρ∗V2

∗
(
Π0 + Π1 sin2ε θ

)
. (14)

Where δ, µ, ε and λ are parameters while M(R), Π0(R)
and Π1(R) are three radial functions. The parameters δ and λ
and M(R) have the same role as in model A. The parameter µ
controls the latitudinal variation of the momentum flux density
and ε the sharpness of the density latidudinal variation. Π0(R)
andΠ1(R) control the radial variation of the pressure, along the
polar axis and out of the polar axis, respectively.

2.3. On the assumptions of meridionally self-similar
models

Substituting the forms of the physical quantities into the mass
and momentum conservation equations we get three ordinary
differential equations in radius for the three functions of the
radial distance defined in Sects. 2.1 and 2.2. Details of the
numerical and analytical techniques can be found in LPT01
and STT02.

The function f (R) simply gives the geometry of the wind. It
is a constant if the poloidal fieldlines are radial. In model B, we
just need to consider that f = 1 throughout the whole wind
region, which produces radial poloidal fieldlines. The func-
tion f (R) is, in fact, the inverse of the well known expansion
factor used in solar wind theory (Kopp & Holzer 1976).

The function M(R) corresponds to the poloidal Alfvén
Mach number which is unity at the Alfvén radius, where
corotation more or less ceases. In the present approach it
is assumed that Alfvénic surfaces of constant M are spher-
ical and do not depend on colatitude. This is a priori a
very restrictive assumption but crucial for using self-similarity
(Vlahakis & Tsinganos 1998). To verify that it is consistent
with ULYSSES observations, we will start by assuming that be-
tween 1 and 5 AU M varies like R. This comes from the fact
that in this region the poloidal field lines are radial, velocity is
constant with distance and density drops as the inverse of the
square of the distance (cf. the following section). Then, plot-
ting the variations of M with latitude scaled down at 1 AU,
as shown in Fig. 1, we may conclude that this assumption is a
good approximation even far from the sun and despite the obvi-
ous large scattering in the slow wind region due to the change in
magnetic polarity. We get as an average M(1 AU) = M0 ≈ 19.

3. Using ULYSSES data to constrain
the parameters

3.1. General procedure

Using the least mean squares method we have fitted the
ULYSSES hourly averaged data for the protons at various lati-
tudes with models A and B. In the following sections we will
take hourly averaged data from the Swoops Ions experiment
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Fig. 1. Scaled Alfvén Mach number at 1 AU. The points represent
daily averaged data from the Swoops Ions experiment on ULYSSES.

onboard ULYSSES, try to fit this data and, from those fits, esti-
mate the corresponding model parameters.

To plot the variation with latitude of the physical quantities
to be fitted at the orbit of the spacecraft, we assume that the
variation with distance is known such that we can normalize all
quantities to their values at 1 AU. For instance, we assume that
the velocity at a given latitude is constant with distance and that
the poloidal streamlines and fieldlines are radial. From mass
and magnetic flux conservation we deduce as well the variation
with distance of the mass and particle density, assuming that the
radial magnetic field decreases like 1/r2. This implies that the
toroidal magnetic field varies like 1/r (Tsinganos et al. 2003)
such that the magnetic fieldlines trace out Parker’s spiral. To
deduce the pressure variation with latitude we need an extra
assumption on the temperature profile, which we shall explain
later.

All quantities evaluated at 1 AU along the polar axis
are noted with the subscript 0, except the toroidal field
BT0 = Bϕ(r = 1 AU, θ = π/2) which is evaluated in the equa-
torial plane.

3.2. Particle density

Following our previous argument, the density at 1 AU can be
written for model A as

n(1 AU) = n0

(
1 + δ f0 sin2 θ

)
, (15)

while for model B

n(1 AU) = n0

(
1 + δ sin2ε θ

)
. (16)

n0 is the particle density on the polar axis and f0 is the value
of f , both at 1 AU. The function f is a constant if the stream-
lines are radial. To fit these functions to the data on the density
we simply scaled them up by plotting (solid curves in Fig. 2),

nscaled = r2
(AU) nmeasured. (17)

If we want to go back to the mass density used in the model,
we can simply assume a fully ionized gas and use ρ0 =

µ mproton n0, where µ is the mean molecular weight.
Fitting the data points with the curves resulting from

model A (Fig. 2a) and model B (Fig. 2b) we arrive at n0, δ f0
and, for the case of model B, ε (see Table 1).

3.3. Momentum flux density

With the streamlines assumed radial, the second step is to fit
the momentum flux density

Φ = nV2
r r2. (18)

We choose this function instead of the radial velocity because
in the models addressed here this quantity is independent of
both the distance from the sun and the value of δ previously
determined. For model A, at 1 AU we have

Φ(1 AU) = n0V2
0 cos2 θ, (19)

while for model B

Φ(1 AU) = n0V2
0

(
1 + µ sin2ε θ

)
. (20)

Thus, from the two fits (Fig. 3) we deduce the value of V0. In
addition, for model B, we get the value of µ, as displayed in
Table 1, assuming the value of n0 deduced from the fit of the
density data. In Table 1 (in parenthesis with *) we also show
the two values of n0 and V0 for model A deduced by fitting
the data on the momentum flux density with two parameters
(n0 and V0) rather than one (V0). Although the discrepancy be-
tween the two values of V0 obtained by fitting the momentum
flux density as given by models A and B, using a single param-
eter, is rather high, note that the values of n0 and V0 obtained
by fitting both parameters using model A are close to the ones
obtained with model B. In the following, we have chosen to re-
strict ourselves to the first set of parameters obtained by fitting
both expressions with one single free parameter.

3.4. Radial magnetic field

A similar procedure can be used to deduce parameters referring
to the magnetic field. In particular, we plot in Fig. 4

Br,scaled = r2
(AU)Br,measured (21)

and compare it to

Br(1 AU) = B0 cos θ, (22)

for model A and

Br(1 AU) = B0

√
1 + µ sin2ε θ if θ < π/2 (north),

(23)

Br(1 AU) = −B0

√
1 + µ sin2ε θ if θ > π/2 (south),

for model B. The fit gives us the value of the magnetic field
on the polar axis at 1 AU, B0 in Table 1. Because of the rela-
tive flip of the magnetic axis and the rotation axis, northern and
southern polar coronal holes tend to mix at low latitudes around
the equatorial plane. Besides, the system is not exactly axisym-
metric and part of the fast solar wind coming from the northern
polar coronal hole can reach southern latitudes and vice versa.
To avoid bias to the mixing at low latitudes, we can redo the
same procedure excluding data points in the range of latitudes
between −20 and 20 degrees. This yields the values in Table 1
indicated by **. As far as the radial magnetic field is concerned
this does not change drastically the values obtained.
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Fig. 2. Plot of the scaled proton density versus latitude. The points represent hourly averaged data from the Swoops Ions experiment on
ULYSSES. The solid curve corresponds to the fit using model A in panel a) and model B in panel b).

Table 1. Parameters obtained from models A and B at 1 AU deduced
from the fitting of ULYSSES hourly averaged data. All quantities eval-
uated at 1 AU along the polar axis (except the toroidal field evaluated
on the equatorial plane) are noted with the subscript 0. (*) correspond
to those values determined by fitting the data on the momentum flux
density using least-mean squares and determining the two parameters
simultaneously. (**) correspond to using the data on the magnetic field
without the points between −20◦ and 20◦ of latitude. Values in paren-
theses were not taken into consideration in further calculations. Note
that for model B f0 = 1 and κ has been defined using Eq. (29).

Parameters Model A (Set I) Model B (Set II)

δ f0 1.88 1.95

κ f0 0.871 0.345

ε – 5.64

µ – −0.180

V0 (km s−1) 1007 (832*) 775

n0 (cm−3) 1.86 (2.73*) 2.48

B0 (µG) 37.6 (37.3**) 30.4 (32.3**)

BT0 (µG) 14.3** (13.9) 29.5** (18.2)

3.5. Toroidal magnetic field

The toroidal or azimuthal component of the magnetic field Bϕ,
denoted by BT, gives us a way to determine the value of the
remaining free parameter λ. We proceed similarly to what we
did for the radial magnetic field, plotting in Fig. 5

Bϕ,scaled = r(AU)Bϕ,measured (24)

and comparing it to

Bϕ(1 AU) = −BT0 sin θ , if θ < π/2 (north),

(25)

Bϕ(1 AU) = BT0 sin θ , if θ > π/2 (south),

for model A and

Bϕ(1 AU) = −BT0 sinε θ, if θ < π/2 (north),

(26)

Bϕ(1 AU) = BT0 sinε θ, if θ > π/2 (south),

for model B.
The fit gives us the value of the toroidal magnetic field in

the equatorial plane at 1 AU, BT0, to which we refer in Table 1.
Because of the relative flip of the magnetic axis and the rotation
axis, northern and southern coronal holes of opposite polarities
tend to mix, as we have already pointed out in the previous sec-
tion. As it is almost impossible to disentangle them, we fit after
excluding the data points in the range of latitudes between −20
and 20 degrees (solid lines in Fig. 5). This yields the param-
eter BT0 in Table 1 indicated by **. Conversely to the radial
magnetic field, the reversal around the equator is a rather dras-
tic effect and tends to yield an underestimate of the real value
of BT0. For this reason we prefer to use those values to deter-
mine the parameter λ. Unfortunately, λ depends on the values
of the magnetic field, M0 and R0, the last one being

R0 =
r(1 AU)

r∗
· (27)

So, λ cannot be determined without a knowledge of the location
of the Alfvén radius in real space.

In principle, we could constrain the value of λ by using
both the toroidal magnetic and velocity fields. Unfortunately, as
shown in Fig. 6, the data on the toroidal velocity cannot be used
directly. Firstly, we would expect the velocity to be of the same
sign on both hemispheres as on the surface of the Sun, being
zero on the two polar axes. Secondly, the rather small values of
the measured velocities may be considered to be lower than the
capability of the instrument to measure them. Strangely, what
Fig. 6 really shows is a kind of reversal of the toroidal velocity
close to the equator, similarly to what happens with Br and Bϕ.
In fact, in these models if the poloidal velocity is constant af-
ter the Alfvén point and the lines radial, then Vr = V∗ and
f M2/R2 = 1 (Eqs. (1) and (9); of course in model B, f = 1)
then the toroidal velocity is exactly 0 from Eqs. (3) and (10).
Though we did not consider this assumption before starting the
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Fig. 3. Plot of the scaled momentum flux density versus latitude. As in Fig. 2, the points represent hourly averaged data from the Swoops Ions
experiment, the solid curve corresponds to the fit using model A in panel a) and model B in panel b).
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Fig. 4. Plot of the scaled radial magnetic field versus latitude. The points represent hourly averaged data from the Swoops Ions experiment, the
solid curve corresponds to the fit using model A in panel a) and model B in panel b).
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Fig. 5. Plot of the scaled toroidal magnetic field versus latitude. The points represent hourly averaged data from the Swoops Ions experiment.
The curves correspond to the fit using model A in panel a) and model B in panel b). In the fit with the dashed line all points have been taken
into account while in the fit with the solid line the points between –20 and 20 degrees latitude (i.e. between the two dotted vertical lines) have
been excluded. Note that in panel a) the solid and dashed lines almost coincide.

integration, the terminal toroidal velocity ended up being rather
small compared to the radial one and the terminal radial velo-
city close to the radial velocity at the Alfvén point.

3.6. Temperature

The last information from the Swoops Ion Experiment to con-
strain the two models is the proton temperature profile. With
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Fig. 6. Plot of the toroidal velocity. The lack of precision in the data
prevents them from being used to constrain the parameters. As ex-
plained in the main text, this corresponds however to rather small
toroidal velocities consistent with our calculations.

the single fluid approximation used, the average temperature
corresponds mainly to that of the protons. The temperature can
be used to determine the last parameter κ of model A. However,
as the energy equation is not properly defined, we may obtain
at the end of our calculation an effective temperature profile re-
sulting from considering all sorts of pressures, like wave pres-
sure. This effective temperature might be much larger than the
kinetic one. The adopted procedure is used to constrain the lat-
itudinal variation of the pressure from the temperature profile
but we cannot control the temperature variation with distance.
All we can do is to check a posteriori how consistent it is with
the measured profile and predict the distribution of the heating
in the corona needed to support the wind.

As the temperature varies, both with latitude and radial dis-
tance, we have assumed that the variation with latitude should
be negligible inside the fast solar wind part. Thus, taking out
latitudes between −20◦ and 20◦, we fit the proton temperature
at high latitudes with a power law function for the polar tem-
perature of the form

T (R, θ = 0) = T0

(R0

R

)τ
· (28)

This gives τ ≈ 1.047 (Fig. 7). This is somewhat similar to the
fit for the electron temperature given in Issautier et al. (2001).
As another test, we also tried to use only data points beyond
1.52 AU instead of 1.3 AU which yielded τ ≈ 1.02 which is
very similar to the above value.

We then fitted a more general form of the temperature pro-
file to the whole set of points. The latitudinal dependence was
chosen to be consistent with Eqs. (7) and (8), assuming that the
poloidal streamlines are radial such that f (r ≥ 1 AU) = f0,

T (R, θ) = T0

(R0

R

)τ 1 + κ f0 sin2 θ

1 + δ f0 sin2 θ
· (29)

As δ f0 is already known from the fit of the density, we deduce
from the present fit (Fig. 8) the values of κ f0 shown in Table 1.

Of course we cannot use directly the equations of model
B to find the latitudinal dependence of the pressure, as this is
known only a posteriori once the full solution is constructed.
However, to constrain model A using parameters of set II we
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Fig. 7. Plot of the scaled proton temperature versus distance, using
only data for the fast wind for colatitudes ϕ above 70◦ and below −70◦.
We fit the data with a simple power law ∼1/Rτ which gives τ ≈ 1.047.

can use the same latitudinal dependence assuming of course
f (r ≥ 1 AU) = f0 = 1. Then we get the value of κ using
Eq. (29), consistent with the value of δ deduced previously
from model B.

To fit the temperature data we have been using the pro-
file of the so called “small” temperature from the experiment,
which is likely to be an underestimate of the real temperature.
However, even using data on the “high” temperature leads to
equivalent values for κ f0.

3.7. Parameters at 1 AU

The parameters obtained are summarized in Table 1. From
the previous sections note that the more general form of the
latitudinal dependences of the various quantities shown in
Eqs. (9)–(14) (model B) yields a more convincing fit to the
data than the form of Eqs. (1)–(6) (model A). Model A tends
to overestimate the polar speed V0 and underestimate the po-
lar density n0. Note, however, that the values in parenthesis for
SET I in Table 1, which were determined using other statistical
methods, are very close to those of set II. In any case, con-
sidering the precision to which we worked out the parameters,
the discrepancy between the two methods remains at a rather
satisfactory level in the sense that the two models did not give
drastically different outputs.

4. Construction of a complete solution

4.1. Initial conditions at the Alfvén surface

So far, the appropriate fitting of the ULYSSES data has made
it possible to deduce all parameters of models A and B. Thus,
we have analytical expressions for the heliolatitudinal depen-
dence of the variables of the wind at 1 AU. The next step is
to proceed towards the construction of a complete solution for
all heliocentric radial distances. This may be accomplished by
integrating over radial distance the ODEs of each of the two
models. In order to do so, we need to estimate the parame-
ters and physical quantities such as the polar velocity and den-
sity at the Alfvén radius. This cannot be done without further
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Fig. 8. Plot of the scaled proton temperature versus latitude. As in Fig. 2, the points represent hourly averaged data from the Swoops Ions
experiment, the solid curve corresponds to the fit using model A in panel a) and model B in panel b).

assumptions. A posteriori we will verify that our estimations
are in agreement with the general numerical output. If not we
will iterate and change consistently all our estimates until we
find an agreement between the input parametric values and
their output.

In the following we have chosen to use the two sets of pa-
rameters in Table 1 and integrate the equations of model A.
This choice is related to the fact that model A is able to re-
produce a more general geometry of the fieldlines from the
extreme case of flaring towards the equator, to collimation to-
wards the pole, passing by a configuration in which those lines
are purely radial. Model B is more limited in this sense since
it corresponds to this later geometry. However, we plan in fu-
ture work to integrate the equations of model B with the same
parameters and compare the obtained results with the present
ones. These two sets of parameters will thus yield two sets
of solutions: set I and set II, corresponding to the parameters
previously obtained by models A and B, respectively. On one
hand, model B includes higher order latitudinal variations than
model A. Thus, as we have already mentioned, the former fits
more accurately the rapid latitudinal variations of the observed
data. On the other hand we can assume that the dynamics is
mainly affected by the lowest order variations with latitude.
Assuming this, we use set II and integrate the equations of
model A, ignoring the values of µ and ε.

If we know the physical quantities at 1 AU, on the polar
axis, ρ0, V0 and B0, the value of the Alfvén Mach number at
that same distance follows from

M2
0 =

4πρ0V2
0

B2
0

· (30)

Substituting Eq. (30) into Eq. (7) we get the value of the mass
density at the Alfvén surface,

ρ∗ =
4πρ2

0V2
0

B2
0

· (31)

The location of the Alfvén surface r∗ depends on the degree
of streamline flaring towards the equator or collimation to-
wards the polar axis and on the plasma acceleration beyond
the Alfvén surface.

The expansion factor is given by f . At 1 AU, bearing in
mind that f = 1 at R = 1, the relative variation in the streamline
expansion is given by f (1 AU) = f0. From Table 1, we see that
guessing an initial value for f0 provides the initial values for δ
and κ.

The total acceleration gained between the Alfvén surface
and 1 AU can be parametrized by the ratio

η =
V0

V∗
· (32)

By guessing an initial value for ηwe immediately deduce some
initial guess for V∗ and B∗ =

√
4πρ∗V∗. Then, the value of r∗

follows from,

R0 =
1 AU
r∗(AU)

=
215 r�
r∗(r�)

=

√
f0

B∗
B0
, (33)

i.e., from R0 we get r∗ in AU or solar radii.
The next step is to get the value of λ from r∗, f0, B0 and BT0

by combining Eqs. (4) and (6) or Eqs. (11) and (12). Assuming
that the lines are almost radial and that we are at large distances
from the Alfvén radius (R0 � 1), we get

BT0 ≈ λB∗
R0

M2
0

⇔ λ ≈ BT0

B∗

M2
0

R0
· (34)

Finally, ν provides also the value of the gravitational potential.
Since the mass of the SunM and the gravitation constantG are
known, we can write

ν =

√
2GM
r∗V2∗

· (35)

Altogether, we can summarize our procedure as follows:

– First, determine M0 and ρ∗ from the data at 1 AU.
– Second, guess f0 and get as an output the parameters δ

and κ.
– Third, guess η = V0/V∗, which then gives V∗ and B∗.
– Finally, by combining all of the above, r∗, λ, and ν will

follow.
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4.2. Iterating

The first set of guessed parameters allows us to compute the
whole solution using our set of equations and a Runge-Kutta
integration algorithm. At this point there is, of course, no rea-
son why the final output should correspond to the initial input.
In particular, the computed f0, η and r∗ may not necessarily
coincide with the initial values guessed for these parameters.

Then we either use these new values of f0 and η (or r∗) from
our computation or some other estimates of those parameters
to recalculate consistently all the other parameters. Then, after
trial and error, we hope to get all parameters (on the input and
output phases of our calculation) to converge to each other.

A priori there is no reason why f0, η and r∗ should converge
simultaneously in this process. We were lucky enough that such
convergence was attained almost completely in the case of the
second set of parameters (set II, fom model B). However, for
the first set (set I, from model A), as η is completely arbitrary
we did not required that it remains similar on input and out-
put. Instead, we have rescaled V∗ such that everything remains
consistent with observations at 1 AU.

A more serious problem was that we were not able to
produce physical solutions with positive pressure everywhere
considering the high values of the magnetic field at 1 AU.
This may be due to the fact that the simple latitudinal de-
pendence of model A does not allow consistent treatment of
the role played by the equatorial sheet in the total force bal-
ance. Nevertheless, we were able to produce reasonable solu-
tions with consistent magnetic field values at the surface of the
sun by dividing the obtained values of B0 by a factor of 7 in
the case of set I and by 10 for set II. We note that Zangrilli
et al. (2002) had similar problems in modelling physical quan-
tities and their variation with latitude and distance both in the
low and in the extended corona. A similar problem of nega-
tive pressure values at low latitudes has been encountered in
Tsinganos & Trussoni (1991).

4.3. Results

In Table 2 we present the parameters of the final iteration with
which it is possible to solve the consistency problem mentioned
above.

Clearly, set II is better, both from the viewpoint of consis-
tency between the parameters fed at the last iteration and ob-
tained after computation and also because it gives more reason-
able values of the velocity and effective temperature (compare
Figs. 9 and 10). This is related to the fact we have already men-
tioned that parameters of model A give overestimates of the
polar velocity and underestimates of the polar density.

The values for the effective temperature for set I are high
with a maximum of around 35 × 106 K on the polar axis. Even
considering this temperature as an effective one this value may
be regarded as unreasonably high. In fact, the plotted effective
temperature is defined as

T =
Ptotal

nprotonkB
, (36)

Table 2. Parameter sets I and II integrating with model A, on last
iteration.

Input parameters Set I Set II

At 1 AU V0 (km s−1) 1007 776
(=R0) n0 (cm−3) 1.86 2.48

B0 (µG) 5.33 3.24
BT0 (µG) 2.04 2.95
T0 (K) 3.08 × 105 2.83 × 105

f0 0.600 0.500

At r∗ η = V0/V∗ 2.27 1.25
δ 3.14 3.90
λ 0.0143 0.0104
κ 1.451 0.690
ν 0.741 0.711

r∗ (r�) 3.54 1.96
V∗ (km s−1) 443 621
n∗ (cm−3) 26.0 × 103 74.8 × 103

B∗ (G) 0.0327 0.0778

Output parameters

At 1 AU T0 (K) 3.99 × 106 6.97 × 105

(=R0) f0 0.590 0.530

At r∗ η = V0/V∗ 1.03 1.12
r∗ (r�) 3.57 2.00

V∗ (km s−1) 977 690
n∗ (cm−3) 11.8 × 103 61.0 × 103

T∗ (K) 1.06 × 107 7.74 × 106

At r� T� (K) 10.7 × 106 4.89 × 106

Ω� (rad/s) 5.63 × 10−6 5.17 × 10−6

Br� (G) 0.998 0.427

where the total pressure may include various terms besides the
usual kinetic pressure,

Ptotal = Pkinetic + Pwaves + Pradiative + .... (37)

The values of the effective temperature for set II are still
too high but they are in the usual range of most MHD mod-
els of the solar wind. For instance, in the kinetic simula-
tions by Landi & Pantellini (2003), they obtain temperatures
around 3 times higher than the values usually adopted for
the solar corona. Similar problems appear in Zouganelis et al.
(2004) for the electron temperature, though they seem to have
a better treatment of the proton temperature. The high values
obtained in the present study might be related to the fact that
a full energy equation is not included in the models. Yet, with
set II, the maximum effective temperature of 15× 106 K can be
related to an important deposit of torsional Alfvén waves.

Let us consider that the kinetic temperature of the protons
may be of the order of 5 × 106 K at the maximum temperature.
This may even be an underestimate (e.g. see the values given
by Zangrilli et al. 2002). The maximum temperature in the plot
(set II) is below 15×106 K, corresponding to distances between
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Fig. 9. Plot of the poloidal velocity as a function of distance for the parameters of Table 2. In panel a) we show the solution using parameters
of set I and in panel b) we show the solution using parameters of set II. In each graph, the upper curve corresponds to α = 0 (at the pole)
and α increases by 0.1 between consecutive curves towards the lower curve (α = 0.5 which corresponds to the line crossing r∗ at θ = 45◦).
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Fig. 10. Plot of the effective poloidal temperature as a function of distance. As in Fig. 9, panel a) corresponds to parameter set I and panel b) to
set II and α ranges from α = 0 to α = 0.5.

Fig. 11. Plot of the fieldlines on a) for the solution using parameters of set I and on b) for the solution using parameters of set II. Distances are
given in units of r∗ which is given in Table 2.

1.1 and 1.3 r�. In this range the density decreases from around
n = 6 × 105 cm−3 to n = 2.5× 105 cm−3. The extra 10× 106 K,
if assumed to be a result of torsional Alfvén waves, would then
correspond to a wave pressure that is at most

PAlfven =
δB2
ϕ

8π
= nprotonkBTmax ≤ 8.3 × 10−4 dynes, (38)

yielding a reasonable fluctuation in the magnetic field of the
order

δBϕ
Br
≈ 0.144

0.427
≈ 0.34. (39)

By comparison, Usmanov et al. (2000) use a maximum of rela-
tive Alfvén wave amplitudes of the order δB/B ≈ 0.6, although
using a WKB approximation. So we may conclude that we get
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Fig. 12. The same as Fig. 11 but zooming in on the central region, in a) for the solution using parameters of set I and in b) for the solution using
parameters of set II. Distances are given in units of r∗.

sensible results. In fact, we could use our constraints on the dy-
namic of the wind to predict the distribution of wave damping
and heating. This is something we intend to do in the future in
a more precise way.

We plot in Fig. 9 the poloidal velocity for both sets of pa-
rameters and for α = f sin2 θ ranging between 0 and 0.5, i.e.,
between the pole and somewhere at mid-latitude as the line
α = 0.5 is at an angle of 45◦ at r = r∗. In both cases the
asymptotic speed has been attained by 4 R� along the polar
axis, which we believe to be a reasonable value. It may sound
as if the acceleration is rather fast compared to the usual mea-
surements close to the Sun. However, we should bear in mind
that this constitutes an upper limit on the velocity and acceler-
ation, since at mid-latitudes the radial speed is a fraction of the
polar speed as shown in Fig. 9. Observed velocity profiles in
coronal holes are always integrated over the line of sight, mix-
ing various latitude inside the coronal hole. This means that to
make a detailed comparison with observations of our velocity
profile in the low corona we need a more sophisticated way to
plot the average speed inside the coronal hole by integrating
over latitudes along the line of sight.

Figure 10 shows the effective poloidal temperature for both
sets of parameters and for α ranging between 0 and 0.5. The
values of the effective poloidal temperature, especially at mid-
latitudes, are in quite good agreement with observations for
set II, although we have already discussed that it is rather high
close to the polar axis. Moreover, we get very good agreement
of the temperature profile at large distances where ULYSSES
measurements are made. This is a nice surprise as we cannot
constrain the temperature profile from the model. It is a byprod-
uct of our calculation.

However, another limitation of our modelling is that, al-
though the initial values of the magnetic field at the solar sur-
face in the coronal holes are quite reasonable, we have failed
to reproduce these values observed by ULYSSES at 1 AU by a
factor of 7 in set I to 10 in set II as seen from the values we
have used as input in Table 2. Higher values of the magnetic
field at large distances give too high a value of the magnetic
field at the surface of the sun (≈100 G) and negative pressure,
which is related to the dead zones in the equatorial plane being
too large. By taking only the lower dipolar order in the lat-
itudinal dependence we do not reproduce correctly the effect
of the current sheet on the equatorial plane at large distances.
Usmanov et al. (2000) showed that the current sheet is a rather

important ingredient of the force balance at large distances. We
may solve this problem by using model B instead of A to model
the solar wind in the outer corona.

On the opposite, we should stress that our solutions, despite
being constrained from measurements at 1 AU, reproduce fairly
well the dipolar structure of the magnetic field close to the sun
up to 2 solar radii as shown in Fig. 12 with f ∼ 1/R, Br ∼
cos θ/R3, Bθ ∼ sin θ/2R3. Moreover, one main result of these
calculations is that we are not getting any collimation at large
distances so far. This is in contradiction with our initial expec-
tation (see Heyvaerts & Norman 1989; Nerney & Suess 1985;
Usmanov et al. 2000) as the wind is carrying some current
which closes into the equatorial current sheet. We have shown
in STT02 that collimation is not a necessary condition as long
as the force from the toroidal magnetic field can be balanced by
either the curvature of the poloidal velocity field or by the pres-
sure gradient. We also note that the efficiency of the magnetic
rotator as defined in STT99 is rather low with a value of the
order ε/(2λ2) ≈ −50. We refer the reader to STT99 Eq. (3.12a)
for the definition, as it would be lengthy and out of order to re-
produce it here. Thus, the absence of collimation was not really
surprising considering the parametric analysis of STT02.

5. Conclusions

We have proposed here a method for modelling the rotating
and magnetized solar wind constraining the parameters from
ULYSSES data. We have used two models: model A from
STT99 and STT02 and model B from LPT01. These axisym-
metric solutions described in Sect. 2 include the effects of both
the fast and the slow components on the global structure and
the dynamics of the wind. Yet, they aim at describing the wind
mainly close to its polar axis, especially model A. They also
consistently include rotation, conversely to the usual axisym-
metric models for the solar wind.

Model A tends to over- or underestimate some physical
quantities, especially along the polar axis. Model B allows a
better fit because it can account for faster variations with lati-
tude. In Sect. 3 we have described in detail how to analyse the
data in the frame of our modelling.

Then we have used model A and the two sets of parameters
obtained through the latitudinal dependences appearing in the
solution for models A and B (sets I and II, respectively) to con-
struct the full solution from the solar surface up to ULYSSES



698 C. Sauty et al.: Nonradial and nonpolytropic astrophysical outflows. VII.

orbit as described in Sect. 4. Our results show that there are still
difficulties in trying both to fit the latitudinal profile of the solar
wind using ULYSSES data and to reconstruct the solution all the
way back from the spacecraft to the solar wind base. These in-
consistencies might be connected to intrinsic limitations of the
models used. They might also be associated with the contami-
nation of pure fast wind by pure slow wind flows, which affects
the variation with latitude (Usmanov & Goldstein 2003).

On the whole, we have been able to reproduce the density
and velocity profiles from the solar surface to ULYSSES orbit
reasonably well. We have also obtained a good value for the
rotation frequency of the Sun, which was not in the initial in-
put. The acceleration along one streamline may appear quite
strong when compared to the usual velocity profile measure-
ment. Yet one should bear in mind that the observed profiles
in coronal holes are integrated over different latitudes. With
variations with latitude being quite rapid, the averaged velo-
city along the line of sight increases much more slowly than
along the polar axis.

One characteristic of this non-polytropic model is that
flux tubes and coronal holes with large expansion factors
tend to give lower asymptotic speeds than those with small
expansion factors. This is in contradiction with the usual
polytropic models (e.g. Kopp & Holzer 1976) but in good
agreement with observations as shown by Wang (1995) and
Wang & Sheeley (2003).

We also reproduce fairly well the temperature profile at
large distances. In the low corona, the agreement is not too
bad providing that this is interpreted as an effective temper-
ature, especially around its maximum between 1 and 2 R�.
There, the total effective temperature can be divided roughly
into 1/3 of kinetic temperature and 2/3 of “temperature” com-
ing from wave pressure. If those waves are torsional Alfvén
waves we find that the toroidal magnetic field fluctuations need
to be more or less of the order of the radial magnetic field mag-
nitude itself. Of course a more complete study of heating and
wave damping is needed to support this conclusion. A more
quantitative study is in order but this has been postponed to the
future because we need a realistic energy equation to calculate
it properly.

We could reproduce the dipolar structure of the magnetic
field in the first few solar radii with approximately 0.5 G at
the surface of the coronal hole. However, we were not able to
model the correct magnitude of the field up to 1 AU but only
the shape of Parker’s spiral. This also needs to be improved.
The ultimate goal would be to combine both this model (which
uses STT99) at small distances and the LPT model at large dis-
tances where the lines are radial, to make a more consistent de-
scription of the whole wind. Assuming radial fieldlines at large
distances may solve the magnetic field problem by reducing the
way it decreases with distance and allowing the second model
to give better fits to the observed magnetic fields.
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