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An ensemble of Brownian particles in a feedback controlled flashing ratchet is studied. The ratchet
potential is switched on and off depending on the position of the particles, with the aim of maximizing
the current. We study in detail a protocol which maximizes the instant velocity of the center of mass of
the ensemble at any time. This protocol is optimal for one particle and performs better than any
periodic flashing for ensembles of moderate size, but is defeated by a random or periodic switching for
large ensembles.

DOI: 10.1103/PhysRevLett.93.040603 PACS numbers: 05.40.–a, 02.30.Yy
0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

x

V 

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

x

Veff

FIG. 1. The ratchet potential (left panel) and the correspond-
ing effective potential for the one-particle controlled ratchet
(right panel), both for V0 � 5kT and a � 1=3. (Units: L � 1,
D � 1, and kT � 1.)
Rectification of thermal fluctuations is becoming a
major research topic in nonequilibrium statistical me-
chanics, with potential applications in biology, condensed
matter, and nanotechnology [1,2].

Most of these rectifiers or Brownian ratchets work by
introducing an external time-dependent perturbation in
an asymmetric equilibrium system. In the case of rocking
ratchets, the perturbation is an ac uniform field, whereas
for the flashing ratchet [3,4] the perturbation consists of
switching on and off an asymmetric sawtooth potential,
such as the one depicted in Fig. 1 (left panel).

The models and applications studied so far have been
focused on periodic or random time-dependent perturba-
tions [1]. On the other hand, in this Letter we study a
feedback controlled perturbation, i.e., an external force
depending on the state of the system. Introducing control
in Brownian ratchets is relevant for the aforementioned
applications. Feedback control could be implemented in
systems where particles are monitored, as occurs in some
experimental setups with colloidal particles [5]. Control
theory is also of extreme relevance in biology [6,7], and
most protein motors probably operate as control systems
(see [8] for a specific example). Finally, controlled ratch-
ets are relevant from a theoretical point of view. The idea
of rectifying thermal noise was originally introduced by
Smoluchowski [9] and Feynman [10] in relation to the
Maxwell demon. Recently, Touchette and Lloyd pointed
out that the original Maxwell demon can be considered a
feedback control system and found that thermodynamics
imposes some limitations to control [11].

Using controlled Brownian ratchets one can build
models to check these limitations and understand how
information can be used to increase the performance of a
system. For instance, it is not hard to prove that some
single-particle ratchets become Maxwell demons if in-
formation on the position of the Brownian particle is
available [12]. In this Letter we will study the more
involved problem of a collective flashing ratchet, focusing
on the induced current of particles.
0031-9007=04=93(4)=040603(4)$22.50 
Consider a flashing ratchet [3,4] consisting of a
Brownian particle in an asymmetric sawtooth potential,
such as the one depicted in Fig. 1 (left panel). If the po-
tential is flashed in a periodic or random way, the par-
ticle exhibits a systematic motion to the right [1,3,4].
However, if we know where the particle is at any time,
there is a better switching strategy.We could switch on the
potential whenever the force is positive and switch it off
if the force is negative. Under this switching protocol, the
particle feels the effective nonperiodic potential depicted
in Fig. 1 (right panel). Obviously, the particle moves to the
right and this is the optimal switching policy, inducing
larger currents than any periodic or random switching.

The problem of control becomes less trivial for ratchets
consisting of many particles. Control strategies can in-
duce an effective coupling among particles and the sys-
tem becomes a coupled Brownian motor [13].

Consider an ensemble of N overdamped Brownian
particles at temperature T in an external asymmetric
periodic potential V�x�, that can be either on or off. The
dynamics is described by the Langevin equation:

� _xi�t� � ��t�F�xi�t��� 
i�t�; i � 1; . . . ; N; (1)

where xi�t� is the position of particle i, � is the friction
coefficient, and 
i�t� are thermal noises with zero mean
and correlation h
i�t�
j�t0�i � 2�kT�ij��t� t0�. The
2004 The American Physical Society 040603-1
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force is given by F�x� � �V 0�x� where V�x� is a periodic,
V�x� L� � V�x�, asymmetric potential defined by

V�x� �

( V0

a
x
L ; if 0 	 x

L 	 a;
� V0

�1�a� �
x
L� a� � V0; if a 	 x

L 	 1;
(2)

and depicted in Fig. 1, left panel. Finally, ��t� is a control
parameter which we assume that can take on the values 1
and 0, i.e., the only allowed operations on the Brownian
motor consist of switching on and off the potential V�x�.

We will consider the following two switching
strategies:

Periodic switching.—��t� �� � ��t�, with ��t� � 1
for t 2 �0; �=2�, and ��t� � 0 for t 2 ��=2; ��. This case
is equivalent to the periodic flashing ratchet [3,4], since
particles are independent.

Controlled switching.—

��t� � 	�f�t��; with f�t� �
1

N

XN
i�1

F�xi�t��; (3)

where f�t� is the net force per particle and 	�y� is the
Heaviside function; 	�y� � 1 if y � 0 and 0 otherwise.
As can be deduced from Eq. (1), this strategy maximizes
the instant velocity of the center of mass, _xc:m:�t� �
1
N

PN
i�1 _xi�t�. Particles are no longer independent, due to

the feedback control 	�f�t��.
We first compare numerical results for the two switch-

ing strategies described above. In Fig. 2, the center of
mass velocity is plotted as a function ofN for the periodic
switching with the optimal period [1,3,4,14], and for the
controlled switching, both for V0 � 5kT and a � 1=3.
For this potential, the optimal period has been found to
be �opt ’ 0:05L2=D, giving h _xc:m:i ’ 0:29D=L. The con-
trolled switching yields a higher velocity than the peri-
odic strategy only up to a certain N (N ’ 1300 for the
previous values of the parameters). We also see from
simulations that the velocity goes to zero when N ! 1,
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FIG. 2. Average of the speed of the center of mass, h _xc:m:i, for
simulations of the periodic switching with optimal period
�opt � 0:05L2=D (dashed line); simulations of the controlled
ratchet (circles with error bars); the binomial approximation,
Eq. (6), (solid line); and the large N approximation, Eq. (12),
(dotted line); all for V0 � 5kT and a � 1=3. (Units: L � 1,
D � 1, and kT � 1.)
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in the controlled case. This is surprising at first sight,
because the controlled strategy given by (3) maximizes
the instant velocity _xc:m:�t�. However, this local maximi-
zation does not ensure good results in the long term, as we
have already shown for the so-called paradoxical games
and other deterministic systems [15].

The case N � 1 can be solved analytically, since it
consists of a single particle moving in the effective po-
tential depicted in the right plot of Fig. 1, as mentioned
above. The corresponding stationary Fokker-Planck
equation can be solved, yielding

h _x�t�ist �
2DV0�1� e

�V0
kT �=L

2kT�1� a2��1� e
�V0
kT � � V0a2�1� e

�V0
kT �

; (4)

where D � kT=� is the diffusion coefficient. For V0 �
5kT and a � 1=3, this yields a stationary speed h _xist ’
4:27D=L, more than 10 times larger than the highest
speed obtained with a periodic switching. For N � 1, in
fact, this controlled switching is clearly optimal.

For arbitrary N, by summing and averaging the
Langevin equations (1) with the prescription (3), one
obtains the following exact equation for the mean veloc-
ity of the center of mass:

h _xc:m:�t�i �
1

�
h	�f�t��f�t�i: (5)

The net force per particle f�t� can be written in terms of
the number n�t� of particles in the interval �0; aL�. Notice
also that the system reaches a stationary regime, because
there is not any explicit dependence on time in the con-
trolled switching case.

The average on the right-hand side of Eq. (5) can be
approximately computed in the stationary regime making
the following two assumptions: (i) particles are statisti-
cally independent [i.e., the stationary distribution has the
form �st�x1; x2; . . . ; xN� �

QN
i�1 �st�xi�] and (ii) the proba-

bility that a given particle is in the interval �0; aL� is a.
These are reasonable assumptions since both are fulfilled
by the two equilibrium distributions corresponding to,
respectively, switching on and off for a long period of
time. Under this approximation, the probability distribu-
tion of the random variable n�t� is a binomial distribution
in the stationary regime and the average velocity becomes

h _xcmist ’
V0

�LN

XN
n<Na

�
�
n
a
�
N � n
1� a

��
N
n

�
an�1� a�N�n:

(6)

This binomial approximation, Eq. (6), has been tested for
various values of V0 and a giving good results for small N
(see Fig. 2). Equation (6) is in fact exact for N � 1 in the
limit V0=�kT� ! 0 [as can be proven from Eq. (4)]. This is
expected since the equilibrium distribution is then almost
uniform both for the on and off potentials. As a conse-
quence, the binomial approximation gives better results
040603-2
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when decreasing V0=�kT�, not only for N � 1, but also
for N > 1.

For sufficiently large values of N ( * 10), the binomial
distribution can be approximated by a Gaussian, yielding

h _xc:m:ist ’
1������������

2��2
p

Z 1

�1
df	�f�

f
�
e��f2=2�2� �

�

�
�������
2�

p ;

(7)

with �2 � V2
0=�L

2a�1� a�N�.
One can study within this approximation the following

general mixed strategy depending on f�t�: the potential is
switched on with a probability pon�f�t��, and switched off
with probability 1� pon�f�t��. Under the Gaussian ap-
proximation, the stationary velocity for this protocol is
the same as in Eq. (7) but replacing 	�f� by pon�f�. Then
it can be easily seen that the Gaussian approximation
predicts that the optimal strategy is the one considered
in this paper, i.e., pon�f� � 	�f�. However, this is not true
for large N (see Fig. 2).

The binomial and the Gaussian approximations fail in
other respects for large values of N. Both give h _xc:m:ist �
1=

����
N

p
, whereas numerical simulations show that h _xc:m:ist

decays more slowly.
For large N, numerical simulations reveal that the

system gets trapped near the equilibrium distribution of
either the on or the off potential, and switches are in-
duced only by fluctuations of the net force per particle
f�t�. This behavior is shown in Fig. 3, where the evolution
of f�t� and hxc:m:�t�i is depicted for N � 106. These fluc-
tuations decrease with N, then so does the frequency of
switches, yielding h _xc:m:i ! 0 for N ! 1. Therefore, the
system almost reaches the equilibrium distribution of
each dynamics. These equilibrium distributions for the
on and off potentials are, respectively, �st;on�x� �
e�V�x�=kT=Z and �st;off�x� � 1=L, where Z is a normaliza-
tion constant.

To gain some quantitative insight, let us consider the
case N � 1 (no fluctuations). In this case, the distribu-
tion of particles coincides with the solution of the follow-
ing mean-field Fokker-Planck equation:

�@t��x; t� � ����t�@xF�x� � kT@2x���x; t�; (8)
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FIG. 3. N � 106: Time dependence of the net force per par-
ticle f�t� (left panel) and the average position of the center of
mass hxc:m:�t�i (right panel). The gray background indicates the
off-potential time intervals. Both figures are for V0 � 5kT, a �
1=3. (Units: L � 1, D � 1, and kT � 1.)
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where ��t� � 	�f1�t��, f1�t� � hF�x�i, and the average
h�i is taken over ��x; t�.

We have studied the evolution of ��x; t� in two situ-
ations: (i) ��t� � 1 (potential on) with initial condition
given by �st;off�x� � 1=L and (ii) ��t� � 0 (potential off)
with initial condition given by �st;on�x�. We have calcu-
lated the average force f1�t� as a function of time by a
numerical integration of the Fokker-Planck equation. The
results are plotted in Fig. 4. When the potential is
switched on, the particles in the negative force interval
(where the force is stronger due to the asymmetry of the
potential) arrive earlier at the minima. This leads to an
initial increase in the net force per particle, f1�t�. [A
similar interpretation can be given to Fig. 4 (right panel).]

For large but finite N, f�t� fluctuates around f1�t� (cf.
Figs. 3 and 4), i.e., f�t� � f1�t� � fluctuations. Because
of these fluctuations, f�t� crosses zero and switches are
induced. In fact, for large N the controlled ratchet be-
haves as an excitable system: fluctuations induce the
switches and, after one of these switches, the system
has to perform a large excursion for the force to go
back to a small value, suitable for a new ‘‘excitation.’’
This picture allows us to calculate h _xc:m:i for large N. For

N finite, the fluctuations of f�t� are of order
�������������������
hF2ieq=N

q
.

Therefore, a switch is possible whenever

jf1�t�j �

�������������
hF2ieq

N

s
: (9)

In our case, fluctuations are the same for the on and off
situations: hF2ieq � V2

0=�L
2a�1� a��.

On the other hand, f1�t� departs rapidly from zero,
reaches a maximum, and finally exhibits an exponential
decay, both for the on and off cases (Fig. 4, left and right
panels, respectively). Therefore, in each case

f1on;off�t� � Con;offe
�#on;off �t��on;off �; (10)

where Con;off are constants, �on;off are the transient times
of each dynamics, and 1=#on;off are the characteristic
times of the corresponding exponential decays.
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FIG. 4. N � 1: Net force per particle f1�t� � hF�x�i as a
function of time, for V0 � 5kT, and a � 1=3, and for the two
cases: Left panel: ��t� � 1 (potential on) and initial condition
given by the equilibrium profile for a flat potential, i.e.,
�st;off�x�; and right panel: ��t� � 0 (potential off) and initial
condition given by the equilibrium profile for a ratchet poten-
tial, i.e., �st;on�x�. (Units: L � 1, D � 1, and kT � 1.)

040603-3



P H Y S I C A L R E V I E W L E T T E R S week ending
23 JULY 2004VOLUME 93, NUMBER 4
Combining Eqs. (9) and (10), one obtains the following
switching time:

ton;off ’ con;off �
lnN

2#on;off
; (11)

where con;off are constants depending on the transient
regime of each dynamics.

Finally, the center of mass moves only when the po-
tential is on, covering a distance �xon, as shown in Fig. 3
(right panel) (when the potential is off, the evolution is
purely diffusive and �xoff � 0). Thus, the average veloc-
ity of the particles is

h _xc:m:i �
�xon

ton � toff
’

�xon
b� d lnN

; (12)

where b � con � coff and d � �#on � #off�=�2#on#off�.
Every parameter in Eq. (12) can be obtained from the
numerical integration of the corresponding Fokker-
Planck equation for N � 1. We have performed such an
integration for V0 � 5kT and a � 1=3, yielding �xon �
0:047L, #on � 40D, #off � 39D, and b � �0:071D�1.
Theory and numerical simulations show a good agree-
ment for large values of N (see Fig. 2). This good agree-
ment has also been verified for other values of V0, a, and
for other potential shapes, for example, V�x� �
V0�sin�2�x=L� � sin�4�x=L��.

It is interesting to note that the advance �xon is mainly
covered during a transient time, �on, that is of the order of
half the optimal period for periodic switching. Longer
switching periods, as we have in the present controlled
ratchet for large N, lead to lower performance. On the
other hand, for small N the controlled ratchet manages to
use the information provided by f to do adequate faster
switches and increase performance.

Notice that the feedback control studied in this Letter
is itself a rectification mechanism. Hence, for a � 1=2,
there are two sources of spatial asymmetry in our system:
the feedback control and the shape of the ratchet poten-
tial. Feedback control induces a net flux even for sym-
metric potentials, a � 1=2. In this case, f1�t� � 0 and
one has to consider only the fluctuations in f�t�.
Consequently, the binomial approximation works well
even for large values of N. Introducing an asymmetry
in the potential, a < 1=2, favors the flow of particles for
any N and changes the large N behavior of h _xc:m:i from
1=

����
N

p
to 1= lnN [cf. Eqs. (7) and (12)].

Summarizing, we have computed the current induced
in an ensemble of Brownian particles by a potential that is
switched on and off according to a simple feedback
strategy maximizing the instant velocity of the center
of mass and compared it with the current induced by a
040603-4
periodic switching. The results show that, for small N,
the current is better in the controlled case than in the
periodic switching, as expected. However, for large en-
sembles the controlled ratchet performs worse than the
periodic strategy.

There are a number of unsolved problems prompted
by our work. First, finding the optimal protocol for
N > 1, which probably differs from the one considered
in this Letter. Second, we have focused on maximiz-
ing the current, but it would be relevant to consider also
the maximization of the efficiency, specially to assess the
entropic value of the information about fluctuations and
the limitations imposed by thermodynamics to feedback
control [11].
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