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ABSTRACT

Context. A magnetic cloud (MC) is a magnetic flux rope in the solar wind (SW), which, at 1 AU, is observed ∼2–5 days after its
expulsion from the Sun. The associated solar eruption is observed as a coronal mass ejection (CME).
Aims. Both the in situ observations of plasma velocity distribution and the increase in their size with solar distance demonstrate that
MCs are strongly expanding structures. The aim of this work is to find the main causes of this expansion and to derive a model to
explain the plasma velocity profiles typically observed inside MCs.
Methods. We model the flux rope evolution as a series of force-free field states with two extreme limits: (a) ideal magneto-
hydrodynamics (MHD) and (b) minimization of the magnetic energy with conserved magnetic helicity. We consider cylindrical flux
ropes to reduce the problem to the integration of ordinary differential equations. This allows us to explore a wide variety of magnetic
fields at a broad range of distances to the Sun.
Results. We demonstrate that the rapid decrease in the total SW pressure with solar distance is the main driver of the flux-rope radial
expansion. Other effects, such as the internal over-pressure, the radial distribution, and the amount of twist within the flux rope have
a much weaker influence on the expansion. We demonstrate that any force-free flux rope will have a self-similar expansion if its total
boundary pressure evolves as the inverse of its length to the fourth power. With the total pressure gradient observed in the SW, the
radial expansion of flux ropes is close to self-similar with a nearly linear radial velocity profile across the flux rope, as observed.
Moreover, we show that the expansion rate is proportional to the radius and to the global velocity away from the Sun.
Conclusions. The simple and universal law found for the radial expansion of flux ropes in the SW predicts the typical size, magnetic
structure, and radial velocity of MCs at various solar distances.
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1. Introduction

Interplanetary coronal mass ejections (ICMEs) are the mani-
festation of magnetized plasma structures ejected from the Sun
as CMEs (e.g., Wimmer-Schweingruber et al. 2006; Zurbuchen
& Richardson 2006). ICMEs are dynamic structures that move
through and interact with the solar wind (SW). The size of an
ICME drastically increases, typically by more than a 103 factor,
during its travel from the Sun to the external heliosphere.

Magnetic clouds (MCs) are a particular subset of ICMEs
that have a well-structured magnetic field. They are formed by
twisted magnetic flux tubes, called flux ropes (e.g., Burlaga
1995). Though there is still no consensus, non-MC ICMEs
are probably formed by magnetic structures similar to MCs. It
is plausible that MCs are only observed when the spacecraft
crosses the magnetic structure close to its center (Jian et al.
2006). The MC/ICME ratio increases from ≈15% at solar max-
imum to ≈100% at solar minimum (Cane & Richardson 2003).
This evolution is most likely due to an observational selection
effect since at solar maximum CMEs are launched from higher
solar latitudes than at minimum, so a spacecraft located in the
ecliptic more frequently crosses the periphery of the magnetic
structure than at solar minimum (Richardson & Cane 2004).
A secondary effect is that there are more interactions between
ICMEs at solar maximum, so more distortion/reconnection of

the magnetic structures is expected at solar maximum than
minimum.

The in situ measurements are limited to the spacecraft tra-
jectory crossing the incoming ICME. Therefore, one needs to
rely on modeling to derive the global magnetic structure from
local measurements. This has restricted the analysis so far to
MCs. Most of the magnetic models neglect the evolution of the
magnetic field during the crossing time of the observed MC, and
consider a flux rope locally invariant along its axis. These differ-
ent approaches are reviewed by Riley et al. (2004), Dasso et al.
(2005), Forbes et al. (2006), and briefly summarized below.

The magnetic field in MCs can be relatively well modeled
by the so-called Lundquist model (Lundquist 1950), which con-
siders a static and axially-symmetric linear force-free magnetic
configuration (e.g., Burlaga 1988; Lepping et al. 1990; Lynch
et al. 2003). Alternately, Farrugia et al. (1999) considered a
cylindrical shape for the cloud cross-section and a non-linear
force-free field, while Mulligan et al. (1999), Hidalgo et al.
(2002), and Cid et al. (2002) have considered a cylindrical cloud
with a finite plasma pressure. Elliptical models have also been
developed with a linear force-free field (Vandas & Romashets
2003) and with a non-force free field (Hidalgo 2003). They are
able to describe distortions of the magnetic structures due to the
interaction with its environment.
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The magnetic structure of MCs has also been analyzed by
solving the magneto-static force balance as a Cauchy problem
(e.g., Hu & Sonnerup 2002; Hu et al. 2005). The amount of dis-
tortion from circular cross section is variable in the MCs an-
alyzed. Some MCs are significantly distorted (within the limit
that a Cauchy problem is ill-posed, since it is sensitive to mod-
ifications of the boundary conditions, so that the results can be
significantly affected by the temporal resolution and the range of
the data used).

Inside MCs, and more generally inside ICMEs, the measured
plasma velocity typically has a linear variation along the space-
craft trajectory. A much higher velocity is present in the front
than in the back, indicating expansion. Burlaga & Behannon
(1982) found consistency between the expansion speed esti-
mated from in situ observations and the increase of their typi-
cal size, obtained from measurements with different spacecraft
located between 2 and 4 AUs.

Self-similar models have been used to describe the expan-
sion of flux ropes. Some consider only a radial expansion (e.g.,
Farrugia et al. 1993; Osherovich et al. 1993; Farrugia et al.
1997; Nakwacki et al. 2008), while others consider an isotropic
expansion (e.g., Shimazu & Vandas 2002; Berdichevsky et al.
2003; Dasso et al. 2007). The main problem of the first group
of models is that, even taking a force-free configuration at some
point of the evolution, the only radial expansion implies the cre-
ation of strong unbalanced magnetic forces during the evolution.
Then, the force-free state is singular in these models, happen-
ing only at one single time during the evolution, while obser-
vations show that MCs typically have a low-β plasma. A self-
similar isotropic expansion does not change the force balance,
so the second group of models are expected to be a better ap-
proximation. However, it is not obvious that the expansion could
be isotropic since the magnetic force is anisotropic in a flux rope.

Flux rope evolution has also been investigated with
MHD simulations (Cargill et al. 2000; Cargill & Schmidt 2002;
Riley et al. 2003; Manchester et al. 2004; Chané et al. 2006; Wu
et al. 2007; Shen et al. 2007). A flux rope model is typically in-
serted in a SW model close to the Sun as an initial condition.
Typically, these MHD simulations found that a flux rope, mov-
ing much faster than the surrounding SW, has its cross section
flattened as it moves outward. Flattening is interpreted as two
effects, one geometrical (spherical expansion) and the second
due mainly to the dynamic pressure of the overtaken SW (Riley
et al. 2003). The magnetic tension of the flux rope is not suffi-
cient in these simulations to maintain an approximately circular
cross section.

In present work we analyze the expansion of flux ropes in
the SW with a complementary approach to the self-similar ex-
pansion models and to the MHD simulations cited above. Here
we model the dynamical evolution of the flux rope as a mov-
ing boundary problem (see, e.g., Crank 1984), where the “Stefan
condition” is provided by the pressure balance between the am-
bient solar wind and the MC boundary. Our approach is to keep
only the main physical effects in order to derive, as well as we
can, analytical results showing the effects of the main physical
parameters. We assume a force-free evolution, and we will test
how well the evolution could be considered as self-similar. The
hypothesis and the main equations are derived in Sect. 2, with
the scope to define the key variables of the evolution. The equa-
tions are solved in Sect. 3 for three very different types of flux
rope. In Sect. 4, we use the known properties of the SW and our
theoretical results to derive the expected and generic expansion
of flux ropes in the SW. Then, we compare these results to the
observed expansion of MCs and ICMEs. In Sect. 5 we analyze

Fig. 1. Schematic of a flux rope ejected from the Sun (the apex of the
central field line is at a distance D from the Sun). The magnetic config-
uration of a magnetic cloud (MC) is well represented by an elongated
twisted flux tube mostly anchored to the Sun. The schematic on the
left shows the locally straight approximation used in this work (A color
version is available in the electronic version).

the evolution of flux ropes with the hypothesis of minimizing
their magnetic energy with a preserved magnetic helicity; we
show that under these dissipative conditions, flux ropes expand
almost at the same rate as in ideal MHD. This further extends
our main result, showing that the expansion of flux rope in the
SW is mainly due to the decrease of the total SW pressure with
solar distance. Finally, we summarize our results and conclude
in Sect. 6.

2. Equations for a force-free expanding flux rope

In this section we present a new model to describe the evolu-
tion of an expanding flux rope in the solar wind, deriving the
complete set of its equations. Since MCs typically have a low-β
plasma, we expected that their magnetic field is near to a force-
free state. Below, the main hypothesis of the model is that the
flux rope stays in a force-free state and conserves elementary
magnetic fluxes while it evolves (i.e. we suppose an ideal-MHD
evolution). The aim is to keep only the most important physical
ingredients needed to understand the typical expansion rate of
MCs as derived from in situ observations.

2.1. Ideal MHD and force-free field evolution

This section describes the internal evolution of the flux rope.
Its interaction with the surrounding SW is described in the next
section.

The magnetic configuration of a MC is typically described
by a flux rope ejected from the Sun (Fig. 1). When the flux rope
is moving faster than the surrounding SW, plasma and magnetic
field typically accumulate in front (in the so-called sheath re-
gion). With this forcing, magnetic reconnection is expected, and
indeed evidence of reconnection occurrences have been found
(Gosling et al. 2005; Dasso et al. 2007). The amount of recon-
nected flux is highly variable in MCs, depending at least on the
SW field structures overtaken, the relative orientation of the SW
and MC leading fields, and the difference between the SW and
MC velocities. Below we neglect this interaction that will basi-
cally “peal” the flux rope so that a progressively less extended
flux rope is moving in the SW. The surviving flux rope is in-
deed expected to expand following roughly the same law as the
original one since the main driver of the expansion, the decrease
of SW pressure with solar distance (see below), is basically the
same.
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The main driver of the flux rope expansion is the quasi-
balance between forces inside and outside the rope during its
travel in the solar wind. Below, we retain only the Lorentz force
inside the flux rope, since the plasma β is low in MCs (typi-
cally β ≈ 0.1, with values ranging from less than ≈10−2 to a
few times 0.1 (e.g., Burlaga & Behannon 1982; Lepping et al.
2003; Feng et al. 2007; Wu & Lepping 2007), so the plasma
pressure has a weak contribution. Other forces such as gravity
are also negligible compared to the magnetic pressure gradient.
In the frame of the MC, the plasma velocity is typically smaller
than the Alfvén velocity (a few 100 km s−1, Burlaga & Behannon
1982), then the magnetic evolution can be described, to first ap-
proximation, by a series of force-free equilibrium ( j × B ≈ 0).

A MC typically has an elongated flux rope structure with a
cross-section size much thinner than the curvature radius of its
axis, so we approximate locally the magnetic field by a cylindri-
cal field with a local invariance along its axis. We also simplify
the problem by considering a circular cross section (Fig. 1). With
these simplifications B is described only by its axial, Bz(r), and
azimuthal, Bθ(r), components; they are functions of the local ra-
dius r. The internal force balance is written as

d(B2
z + B2

θ)/2

dr
+

B2
θ

r
= 0. (1)

The flux rope evolution should then follow approximately the
above force-free equilibrium during its evolution in the SW.
We define the field Bo (with components Bz,o = Bz(ro) and
Bθ,o = Bθ(ro)) at a time t = to during the evolution. This ref-
erence field has no special requirements except to be a known
field that satisfies Eq. (1), and we derive below the field at any
time t as a function of the field at to.

In this study we suppose an ideal MHD evolution (except in
Sect. 5), so at all times there is the following elementary mag-
netic flux conservation

Bθ dz dr = Bθ,o dzo dro (2)

Bz r dr = Bz,o ro dro. (3)

These equations relate B to Bo through the implicit expansion
function r(ro).

2.2. Drivers of the evolution

In this section we describe the model for the evolution of the
flux rope: first, its axial expansion, then its interaction with the
surrounding SW. The apex of the flux rope axis is located at
the variable distance D from the Sun, and it has a length L that
increases with D (Fig. 1). We suppose that the axial expansion
is uniform along and across the flux tube, so the local expansion
rate dz/dzo is simply provided by the relative extension of the
flux rope axis

L̃(D) ≡ dz/dzo = L/Lo, (4)

where Lo is the flux rope length at t = to. L̃ is non-dimensional,
and below we add a ˜ on top of all variables that are normalized
at the reference state, see Table 1 for the main variables. The
evolution of L̃ induces an evolution of Bθ (via Eq. (2)) and also
of Bz (via Eq. (1)).

A second driver of the magnetic field evolution is the force
balance with the surrounding SW. As the total SW pressure de-
creases with solar distance (D) the flux rope expands and its
internal pressure decreases accordingly, progressively reaching

Table 1. Definition of the main non-dimensional variables.

Symbola Definition Quantity
D̃ = D/Do distance of the axis apex to the Sun
L̃ = L(D)/L(Do) flux rope length
P̃t =

�(D)
�(Do)

Pt (D)
Pt (Do) total pressure at the flux rope boundary

r̃o = ro/Ro radial coordinate of the reference field
r̃ = (P̃t)1/4 r/Ro radial coordinate
B̃ = (P̃t)−1/2 B/Bc,o magnetic field strength at r
B̃c = (P̃t)−1/2 Bc/Bc,o magnetic field strength at the center
s̃ = L̃ (P̃t)1/4 size factor

ão = aoRo amount of twist for the GH field
Ão = Ao/Ro axial field extension for the SP field

a The non-dimensional variables (with a ˜ on top) are normalized at
the reference field, that is labeled with a “o” subscript. The reference
field is at a distance Do from the Sun, it has a radius Ro and a central
field strength Bc,o. The value of B taken at the flux rope center have a
“c” subscript. GH means Gold & Hoyle and SP “split” (see Sects. 3.1
and 3.2).

new states of quasi-equilibrium. This balance of pressure, at the
flux rope boundary r = R (flux rope radius), is simply written as

B2
θ(R) + B2

z (R)

2μo
= Pt(D), (5)

where Pt is the total SW averaged pressure around the MC.
However, when a flux rope moves faster than the SW, a dy-

namic pressure, typically on the order of ρSW(v − vSW)2/2, is
present in front of the flux rope (where ρSW is the SW density
and v − vSW is the relative velocity of the MC with respect to
the SW). This dynamic pressure has a distribution around the
flux rope that depends on the Mach number of the relative flow
in pure hydrodynamic, and it is even more complex with a mag-
netized SW. Moreover, when the MC is moving significantly
faster than the SW, a MHD shock is present in front of the flux
rope. For a small fraction of MCs, typically those traveling in
the fast solar wind with a comparable mean speed, both forward
and reverse shocks are observed (e.g. Gosling et al. 1998). These
shocks are associated with a jump in the total pressure. Each of
the above complex interactions with the SW are not isotropic
around the flux rope and so they contribute to its deformation as
present in MHD simulations (Sect. 1).

We suppose below that the relative velocity of the flux rope
with respect to the SW is sufficiently small, or equivalently that
the magnetic tension is strong enough to neglect the deformation
of the flux rope cross section, as well as the anisotropy of the
total SW pressure around the flux rope. Then, at the boundary of
the flux rope, defined by r = R, we write the pressure equilibrium
as

B2
θ(R) + B2

z (R)

2μo
= �(D) Pt(D), (6)

where �(D) is a factor that includes the internal over-pressure,
the isotropic part of the dynamic pressure, and shock pressure
discontinuity.

While Pt(D) can be imposed as an external background pres-
sure, �(D) can be written as an explicit function of D only
a posteriori, when the flux rope evolution is solved. However,
the non-dimensional factor �(D) is typically in the interval be-
tween unity and several units (being larger for a stronger shock).
Moreover �(D) is generally not expected to change drastically
with D since it would require an important modification of the
flux rope velocity, or of the SW properties at some distance D.
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In contrast, Pt(D) has a strong and systematic variation, typi-
cally ≈D−3 (see Sect. 4.2). For example, as the flux rope moves
from 0.1 to 1 AU, Pt decreases by a factor ≈103 well above any
plausible variation of�(D).

We define the non-dimensional function P̃t using the refer-
ence state (field Bo when the flux rope is at the distance Do)

P̃t(D) ≡ �(D) Pt(D)
�(Do) Pt(Do)

=
B2(R)

B2
o(Ro)

· (7)

Formally, P̃t incorporates the contribution of �(D), so P̃t in-
cludes the over-pressure present in the MC with respect to its
surrounding SW. Then, this over-pressure could be incorporated
in the following results if�(D) is derived in some cases. In prac-
tice, this effect is only expected to be a correction to Pt(D), and
the uncertainties on Pt(D) derived presently by the observations
are probably larger than the contribution of�(D) itself.

2.3. Main equations of the evolution

In this section we write the above equations in a minimal for-
mat, decreasing both the number of equations and variables from
five (Eqs. (1), (2), (3), (4), (7)) and Bθ, Bz, B, r, dz/dzo) to two
(Eq. (10), (11)) and B, r).

Since the magnetic field strength is present both in the force-
free equation and the boundary equation (Eqs. (1), (7)), we
keep B as one of the main unknown function. From Eqs. ((2)–
(4)), we derive Bθ = Bθ,o(dro/dr)/L̃ and Bz = Bz,o(ro/r) (dro/dr).
Then, both Bθ and Bz can be written as a function of B =√

B2
θ + B2

z , r and the reference equilibrium by dividing previous
equations by B. Thus, for example,

Bθ(r) = B(r)
r Bθ,o√

(r Bθ,o)2 + (L̃ ro Bz,o)2
, (8)

where Bθ,o and Bz,o are functions of ro. Then, Eq. (1) is rewrit-
ten as

dB
dr
= −r B

B2
θ,o

(r Bθ,o)2 + (L̃ ro Bz,o)2
· (9)

The evolution of r is constrained by magnetic flux conservation.
With Eq. (8) included in Eq. (2), we have

dr
dro
=

√
(r Bθ,o)2 + (L̃ ro Bz,o)2

L̃ r B
· (10)

Since we suppose an ideal MHD evolution, ro labels a given
plasma blob during the evolution (it is a Lagrangian coordinate),
and r(ro) describes the radial evolution of this plasma blob. Then,
we use ro as the basic variable to describe all quantities. An equa-
tion for B(ro) is simply obtained by multiplying Eqs. (9) by (10)

dB
dro
= − B2

θ,o

L̃
√

(r Bθ,o)2 + (L̃ ro Bz,o)2
· (11)

The boundary conditions of the system of Eqs. ((10), (11)) are

r = 0 at ro = 0

B(ro) =
√

P̃t Bo(Ro) at ro = Ro. (12)

The force-free field evolution is described by a boundary-value
problem coupling two first order differential Eqs. ((10), (11));

its solution provides r(ro) and B(ro), from which we can derive
the magnetic profile B(r) and the field components (e.g. Eq. (8)).
The magnetic field evolution is driven by the change of both the
axial extension (L̃) and the total pressure at the boundary (P̃t).

2.4. Reformulation of the equations

Since Bθ,o(ro = 0) = 0 for any non-singular magnetic field,
the system of Eqs. ((10), (11)) presents a weak singularity at
r = ro = 0 (in both equations the numerator and denominator
vanish). We define the function bθ,o as

bθ,o(ro) ≡ Bθ,o(ro)/ro. (13)

Equations ((10), (11)) rewrite as the non-singular equations

dr2

dr2
o
=

√
(r bθ,o)2 + (L̃ Bz,o)2

L̃ B
, (14)

dB

dr2
o
= − b2

θ,o

2L̃
√

(r bθ,o)2 + (L̃ Bz,o)2
. (15)

The field strength B is a decreasing function of r2
o, and since it

should be finite at the boundary (Eq. (12)), B cannot vanish. The
same argument applies to Bo, so Bz,o and ro bθ,o cannot vanish
together at the same value of ro. Since r = 0 only for ro = 0, Bz,o
and r bθ,o cannot also vanish together. Then, both denominators
in Eqs. ((14), (15)) are well behaved for all the integration range
of r2

o (0,R2
o).

The evolution of B is driven by the modification of both the
flux rope length, L̃, and the total pressure P̃t. L̃ is present only
in Eqs. ((14), (15)) and P̃t is present only in the boundary condi-
tions (Eq. (12)). In order to group them in the equations, we de-
fine a normalized field, B̃, that has a fixed value at the boundary,
r = R during the evolution (this fixed value is Bo(Ro)/Bo(0)). We
also define a normalized radius, r̃, guided by the flux conserva-
tion (in order of magnitude). Then, we normalize both quantities
to the reference field,

B̃ ≡ (P̃t)−1/2 B/Bc,o

r̃ ≡ (P̃t)1/4 r/Ro,
(16)

where Bc,o = Bo(ro = 0) is the field magnitude at the center of
the reference field.

With the normalization (16), Eqs. ((14), (15)) are rewritten as

dr̃2

dr̃2
o
=

√
(r̃ b̃θ,o)2 + (s̃ B̃z,o)2

s̃ B̃
, (17)

dB̃

dr̃2
o
= − b̃2

θ,o

2s̃
√

(r̃ b̃θ,o)2 + (s̃ B̃z,o)2

, (18)

with r̃o = ro/Ro, b̃θ,o = bθ,o Ro/Bc,o, B̃z,o = Bz,o/Bc,o, and with
the size factor, s̃, defined by

s̃ = L̃ (P̃t)1/4 . (19)

The boundary conditions are

r̃2 = 0 at r̃2
o = 0

B̃ = Bo(Ro)/Bc,o at r̃2
o = 1. (20)



P. Démoulin and S. Dasso: Causes and consequences of magnetic cloud expansion 555

The system of Eqs. ((17)–(20)) provides the evolution of B̃ and r̃
(and thus the size and the internal distribution of the magnetic
field in the MC) while the flux rope travels in the solar wind. This
system is numerically solved with a shooting method (Press et al.
1992, chap. 17) starting the integration at r̃2

o = 0 from r̃2 = 0
and B̃ = B̃c. An iteration on B̃c is realized so that B̃(r̃2

o = 1)
converges to the boundary conditions (Eq. (20)).

The normalization defined by Eq. (16) is also applied to the
field components to define B̃θ, B̃z. Then, Eq. (8) is written as

B̃θ = B̃
r̃ B̃θ,o√

(r̃ B̃θ,o)2 + (s̃ B̃z,o)2
, (21)

and we have a similar equation for B̃z

(
=

√
B̃2 − B̃2

θ

)
.

2.5. General properties of the evolution

In the system of Eqs. ((17)–(20)), for a given reference field
(B̃θ,o, B̃z,o), r̃ and B̃ are only functions of s̃ (so only of a com-
bination of L̃ and P̃t). We conclude that the normalized field
B̃(r̃), as well as its components (Eq. (21)), depends only on s̃.
The explicit dependance of the field B(r) on P̃t is only present
as a multiplicator factor: the field B(r) is deduced from B̃(r̃) by
multiplying the normalized field strength by (P̃t)1/2 Bc,o and the
normalized radial distance by (P̃t)−1/4 Ro.

A typical reference magnetic field has an axial field domi-
nating in the core of the flux rope, and an azimuthal field dom-
inating at the periphery (recalling that a well behave field has
bθ,o(0) = 0). As s̃ increases to large values, Eq. (18) implies a
smaller gradient of B̃ across the flux tube. This corresponds to a
magnetic field having a smaller magnetic tension, so more dom-
inated by its axial component (see Eq. (1)). So, as s̃ increases,
the core expands more than its periphery, and the azimuthal field
is compressed close to the border of the flux rope (this is illus-
trated later for specific fields in Fig. 5). On the other hand, as s̃
decreases to small values, the field strength has an increasing
gradient provided by an increasing magnetic tension of the az-
imuthal field. So as s̃ decreases the magnetic field is increasing
dominated by its azimuthal component in a larger fraction of the
flux rope periphery.

In the particular case where the evolution with heliodistance
of the length and pressure satisfy s̃ = 1, Eqs. ((17)–(20)) are
satisfied with r̃ = r̃o and B̃ = B̃o. In this case the only evolution
is a re-scaling of the radius by L and of the field strength by L−2.
So, when P̃t = 1/L̃4, the evolution is simply an isotropic self-
similar evolution regardless of the reference field.

For MCs in the SW, L̃ increases approximatively as the
distance, D̃, while P̃t decreases approximatively as D̃−nP (see
Sect. 4), so s̃ = D̃1−nP/4. With nP close to 4, any flux rope evolu-
tion is close to self-similar. However, in the SW, typically, nP ≈ 3
(see Sect. 4.2), then s̃ ≈ D̃0.25 has a moderate but still a signif-
icant evolution, e.g. a factor ≈3 for an evolution between 0.1
and 10 AU. Then, in the SW, is the rope evolution close to a
self-similar evolution or is there an important reorganization of
the field inside the flux rope? How do the flux rope radius and
the field strength change with distance from the Sun? To answer
these questions we need to solve the above equations for differ-
ent reference fields Bo.

3. Evolution of the normalized magnetic field

We consider below three examples of reference fields and fol-
low their evolution with the distance from the Sun. Generally,

the spatial distribution of B̃z and B̃θ, and their functional depen-
dence with the radius, changes during the evolution. The first
two cases considered below are exceptions to this general behav-
ior, and they can be solved analytically. This provides a deeper
understanding of the flux rope evolution than with a numerical
integration of the equations. The evolution of these two extremes
cases are compared to the evolution of a reference field, the
Lundquist’s field, as it often provides a good fit to the observed
magnetic field in MCs.

3.1. Uniformly twisted field

A uniformly twisted and non-linear force-free model (denoted
GH, Gold & Hoyle 1960) is written as

Bz,o ≡ Bc,o / (1 + a2
o r2

o),

Bθ,o ≡ Bc,o ao ro / (1 + a2
o r2

o). (22)

The parameter ao describes both the spatial extension of the field
and the amount of twist. To model a MC field, we consider this
model up to the radius ro = Ro. In the equations below we use
the normalized variables ão = ao Ro and r̃o = ro/Ro.

In order to compare the results of different magnetic field
configurations, we compute the ratio of the azimuthal to the axial
flux

Fratio,GH ≡
L
∫ Ro

0
Bθ,o dro

2π
∫ Ro

0
Bz,o ro dro

= aoRo = ão. (23)

In this expression, we select the length L of the flux-rope portion
to be 2πRo to simplify the expression (this is not an additional
hypothesis since Fratio is just used below to compare different
field distributions for a given flux rope length).

The evolution of a uniformly twisted flux rope is special
since, apart from a change in magnitude, the spatial distribution
of the twist cannot change due to radial expansion (nor due to
axial expansion since we suppose a uniform expansion, Eq. (4)).
Since the twist stays spatially uniformly distributed in the flux
rope whatever is its evolution, then Bθ = arBz, with “a” being an
unknown (to be determined). Including this Bθ in Eq. (1) implies
that the field is a GH’s field, with only the freedom of modified
parameters (called Bc, a,R). This result is also directly shown by
writing the ratio of Eqs. (18) to (17). The terms in r̃2

o simplify
when a GH reference field (Eq. (22)) is inserted, and the equa-
tion can be directly integrated in r̃2 to write

B̃(r̃) = B̃c/
√

1 + (r̃ ão/s̃)2, (24)

where B̃c is an integration constant. This is the field strength
of a GH model (field components can be easily derived using

Eq. (21) and B̃z =

√
B̃2 − B̃2

θ).
The solution of the evolution is completed by integration of

Eq. (17) with Eqs. ((22), (24)) included. We find
(
1 + r̃2ã2

o/s̃
2
)B̃c s̃2

= 1 + ã2
o r̃2

o. (25)

This shows that the expansion of the full flux rope is in general
not self-similar as r̃ is a non linear function of r̃o, even if the
magnetic field stays a GH field (Eq. (24)). This is so because the
radius R̃ of the flux rope is located at a variable position within
the GH profile as s̃ is changed (this is illustrated later in Fig. 5
with the B components). However, a self-similar expansion is
present in the region where the axial field dominated, ão r̃o � 1,
since r̃ ≈ r̃o/

√
B̃c there.
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Fig. 2. Log-log plots of the normalized central magnetic field strength, B̃c, and radius R̃ defined by Eq. (16) in function of the size factor, s̃ defined
by Eq. (19). B̃c is defined as the relative evolution of the central to the border field strength normalized to the reference field (B̃c =

B(0)
B(R)

Bo(Ro)
Bo(0) ). Three

cases suppose an ideal MHD evolution with reference fields (at s̃ = 1) being the Gold & Hoyle (GH, Eq. (22)), the “split” (SP, Eq. (30)), and the
linear force-free field (LU, Eq. (35)). The fourth case (ME, Eq. (45)) always has the magnetic energy to keep the magnetic helicity preserved. The
ratio of the azimuthal to the axial flux, Fratio (computed with a length Lo = 2πRo) is typically ≈2 in MCs (left panels), while Fratio = 5 illustrates a
very twisted flux rope (right panels). (A color version is available in the electronic version).

Equation (25) included in Eq. (24) provides B̃ in function
of r̃o and allows us to impose the boundary condition on B̃
(Eq. (20)), defining an equation for the central field strength B̃c.
We find

2B̃c ln(B̃c) +

(
B̃c − 1

s̃2

)
ln

(
1 + F2

ratio,GH

)
= 0, (26)

where we replace ão by Fratio,GH (Eq. (23)) for comparison with
other fields. This is a key equation for the GH field evolution,
since when B̃c is known, the full magnetic field is known with
Eq. (24). It is then worth analyzing the properties of Eq. (26).

The reference state has s̃ = 1, then Eq. (26) is naturally
satisfied with B̃c = 1 and s̃ = 1 for all Fratio,GH values. Since
ln(1 + F2

ratio,GH) > 0, Equation (26) implies

B̃c > 1/
√

1 + F2
ratio,GH ≡ BGH. (27)

Deriving Eq. (26) with respect to s̃, and with the above lower
bound, B GH, one can demonstrate that B̃c is a decreasing func-
tion of s̃. This means that the field strength of the core decreases
more rapidly than at the flux rope border (where B̃ is fixed due to
the normalization selected in Eq. (16)). We conclude, from flux
conservation, that the flux rope core expands faster than its pe-
riphery as s̃ increases. As s̃ becomes much larger than unity, B̃c
tends toward BGH. This is the extreme limit where the core field

has expanded so much that it fills most of the flux rope. This
limit case has a nearly uniform B̃z field component.

At the opposite limit, for decreasing s̃ values B̃c increases
slightly less rapidly than s̃−2 (there is a correction depending on
− ln s̃). A simple approximation of B̃c, with a relative error lower
than 10%, for the ranges 0.1 < Fratio,GH < 10, 0.1 < s̃ < 10 is

B̃c =
(1 − BGH)

s̃ 1.65
+ BGH. (28)

Equations ((27), (28)), as well as Fig. 2, show that B̃c changes
more with s̃ as Fratio,GH increases, so for flux ropes with larger
twist. Indeed as Fratio,GH increases, larger values of s̃ are needed
to approach the limit B GH by the same amount. This means
that starting from a more twisted flux rope a longer evolution
is needed so that the core field, mainly axial, expands to fill a
given spatial fraction of the flux rope.

The normalized radius, R̃, of the flux rope is found by setting
r̃o = 1 in Eq. (25), or equivalently by setting B̃ in Eq. (24) to its
boundary value (Eq. (20)) and solving for r̃ = R̃. The second
way provides a more convenient equation for analysis,

R̃ =
s̃

ão

√
(1 + ã2

o)B̃2
c − 1. (29)

A similar analysis of the behavior of R̃ can be made than for B̃c
above. However, below we limit the description of the results to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810971&pdf_id=2
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the main points. R̃ is also a decreasing function of s̃ converg-
ing to a finite minimum value for large s̃ values (Fig. 2). The
amplitude of variations also increases with Fratio,GH. So R̃ has a
similar behavior as B̃c, with the main difference that the range
of variation is much reduced (Fig. 2). This can also be seen in
Eq. (29) where the factor s̃ is moderating the contribution of B̃c
(approximated by Eq. (28)).

3.2. “Split” field

We consider in this section the theoretical field where Bz,o and
Bθ,o are separated in two different regions

ro ≤ Ao Bz,o ≡ Bc,o , Bθ,o ≡ 0,

Ao < ro ≤ Ro Bz,o ≡ 0 , Bθ,o ≡ Bc,o Ao/ro. (30)

We simply refer to this magnetic field as “SP” below. This field
is an extreme case where each component fully dominates in
one region of the flux rope (in general, equilibriums have a
gradual transition between a Bz dominated core to a Bθ domi-
nated periphery). The magnitude of Bθ,o for the limit ro → Ao,+
is selected to have an equilibrium (magnetic pressure balance
with Bz,o). Below we use the normalized parameter Ão = Ao/Ro.

The ratio of the azimuthal to the axial flux, defined as in
Eq. (23), for this field is

Fratio,SP = 2Ro/Ao ln(Ro/Ao) = −2 ln(Ão) /Ão . (31)

Since the reference field (Eq. (30)) has only one non-null com-
ponent in each region, the evolved field keeps this property (due
to flux conservation). It implies a uniform Bz for r ≤ A and a
1/r dependence for Bθ for r > A, so that Eq. (1) is satisfied. The
integration of Eqs. ((17), (18)), with Eq. (30), the continuity of r̃
and B̃ at r̃ = Ã and the boundary condition of Eq. (20) provides
the equation for B̃c as

√
B̃c ln(B̃c) −

(√
B̃c − 1

s̃

)
ln(Ão) = 0. (32)

This equation has the same global structure than Eq. (26), then
B̃c has a similar behavior than for the GH field: it is a decreasing
function of s̃, with B̃c = 1 when s̃ = 1, and tends to a finite
value (=Ão) for large s̃ values. An analytical approximation, with
similar precision than for the GH field, is

B̃c =
1 − Ão

s̃1.1
+ Ão. (33)

It implies that the dependence of B̃c with s̃ is weaker than for
the GH field (Eq. (28), see also Fig. 2). The dependence of Ão
with Fratio,SP in Eq. (31) is also similar, while weaker, than for
the GH field (Eq. (27)).

The radial expansion of the field is found to be

r̃o ≤ Ão r̃ = r̃o/

√
B̃c,

Ão < r̃o ≤ 1 r̃ =
√

B̃c r̃
1/

(
s̃
√

B̃c

)
o . (34)

implying a self-similar expansion of the core and a periphery
strongly reduced in size as s̃ increases. The flux rope radius is
simply R̃ =

√
B̃c. This is a much simpler link to B̃c than for the

GH field (Eq. (29)), while it has a similar dependence (Fig. 2).

3.3. Linear force-free field

As an example of the general evolution of a flux rope field ob-
tained by solving numerically Eqs. ((17), (18), (20)) we select
the linear force-free model (Lundquist 1950) since it has shown
good fits to various MC observations,

Bz,o ≡ Bc,o J0(αoro),

Bθ,o ≡ Bc,o J1(αoro), (35)

where J0 and J1 are the ordinary Bessel functions of order 0
and 1, respectively. This magnetic field is simply noted LU. The
ratio of the azimuthal to the axial flux, defined as in Eq. (23), is

Fratio,LU =
1 − J0(αoRo)

J1(αoRo)
· (36)

Fits of Eq. (35) to observed MCs typically implies αoRo ≈
zJ0 ≈ 2.4, where the zJ0 is the first zero of the Bessel function
J0, so that the axial field is small at the MC border. It im-
plies that the flux ratio, as defined above, is around ≈ 2 in ob-
served MCs (more precisely Fratio,LU = 1.93 for αoRo = zJ0 ,
and 1.26 < Fratio,LU < 3.2 for 0.8 zJ0 < αoRo < 1.2 zJ0 ). The
evolution of B̃c and R̃ with s̃ is shown in Fig. 2.

3.4. Comparison of the field evolutions

Below, we compare the evolution of the three fields defined in
the above sections. Guided by the results on MCs, we compare
the fields for Fratio = 2 (Fig. 2, left panels). We also show the
case Fratio = 5 to illustrate an extreme case of very twisted flux
ropes (not observed). Such an extreme case is selected for view-
ing purpose since the effect of Fratio is weak. We do not plot
cases with Fratio < 2 since they have an even lower dependence
with s̃, and all the fields have closer values of B̃c and R̃ as Fratio
decreases.

As for the GH and SP fields (Eqs. (28), (33)), B̃c tends to-
wards a fixed value for large value of s̃ for the LU field (Fig. 2,
top panels). This corresponds to the case where the core field has
expanded to fill most of the flux rope, so the central field B̃c is
almost equal to the field strength at the boundary. For Fratio = 2,
this limit is nearly the same for the three reference fields. In view
of the strong differences in their twist distribution, we conclude
that it is a general property for all field distributions found in
MCs. Differences between the reference fields are only found
for larger values of Fratio. For Fratio = 5, the LU and SP results
are still very close together (Fig. 2, right panels).

A relatively strong variation of B̃c is present for small s̃
values. This is because the region dominated by Bθ gets in-
creasingly more extended compared to the core as s̃ becomes
small. This implies an increasingly stronger variation of the field
strength across the flux rope, then a central field less affected by
the boundary field value, and so a larger B̃c. For Fratio = 2, the
GH and LU fields have very similar values of B̃c, while the SP
field has significant lower values (Fig. 2, top left panel).

The results for R̃ are similar to the above results for B̃c, with
some minor differences that we do not describe (see Fig. 2, bot-
tom panels). A main difference is the magnitude of the varia-
tions, with typically a factor 3 lower variation of log10 R̃ than of
log10 B̃c.

While we consider three fields with very different twist pro-
files, the evolution of B̃c and R̃ are remarkably similar. This is
obviously the case for a low ratio of the azimuthal to axial flux,
Fratio, since all the fields are dominated by their axial compo-
nent and therefore these fields are similar. More interesting, this
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is approximately the case with Fratio ≈ 2, a case typical of the
values found in MCs. Even for the case of flux ropes much more
twisted than MCs, the evolution of B̃c and R̃ are similar despite
the very important differences in the field profiles (see Sect. 4.3
and Fig. 5).

We conclude that the evolution of B̃c and R̃ is weakly af-
fected by the type of field profile. Moreover, the amplitude of
the variation of B̃c and R̃ versus s̃ remains moderate, especially
for Fratio ≤ 2. We compare this moderate evolution to the much
stronger effect of P̃t in the field evolution in the next section.

4. Evolution of flux ropes in the solar wind

4.1. Flux rope length

The presence of counter-streaming suprathermal electrons in the
SW is one of the primary signatures used to identify ICMEs
(e.g., Gosling et al. 1987). It is also generally taken as an evi-
dence that the corresponding field line is still rooted at both ends
to the Sun since the solar corona is a reservoir of fast electrons
(see e.g., Crooker & Horbury 2006; Wimmer-Schweingruber
et al. 2006, for a review as well as possible caveats). Shodhan
et al. (2000) found that periods of counter-streaming electrons
are randomly distributed in 48 MCs observed near 1 AU, with
a mean frequency of 59% of the MC duration. A very similar
fraction, 55%, is found for 31 MCs observed at 5 AU indicating
that a large fraction of a typical MC is still linked to the Sun
(Crooker et al. 2004).

When the flux rope is attached to the Sun, the flux rope
length, L, is mostly proportional to the distance, D, to the Sun
(with only a weak correction depending on the evolution of the
shape of the flux rope axis). When the flux rope becomes de-
tached from the Sun, by reconnecting with the SW magnetic
field, the evolution of L is more involved since torsional Alfvén
waves are launched in the SW field. Here we simply suppose
that the axial flux rope expansion evolves proportionally to its
distance to the Sun. With the normalization to the reference field
(Table 1) the coefficient of proportionality simplifies and the nor-
malized length is simply

L̃ = D̃. (37)

The implications of this assumption are relatively weak since L̃
enters in Eqs. ((14), (15)) only with the size factor s̃ (Eq. (19)),
while the evolution of Pt is dominant in the evolution of the mag-
netic field (see below).

4.2. Solar wind total pressure

The total pressure in the SW, Pt, has two main components: the
plasma and the magnetic pressure.

Since the solar wind speed is radial and almost independent
of solar distance, D, various investigations found a plasma den-
sity decreasing as D−2 (e.g., Issautier et al. 1998; Gazis et al.
2006), in agreement with mass conservation. A wider variety of
results are found for the electron temperature. The data are clas-
sically fit with a power-law T ∝ D−nT . nT is found to be typically
in the range [0.3, 1] (see Fig. 1 in Issautier et al. 1999). Recent
estimations of nT are typically around 0.7, e.g. nT = 0.64 ± 0.03
(Issautier et al. 1998) and nT = 0.78 ± 0.03 (Gazis et al. 2006).
The estimated values of nT are a function of the type of SW
considered (slow/fast), of the removal or not of the ICMEs from
the processed data, and of the range of distance considered. nT is

typically observed to be lower in the fast SW and at larger D val-
ues, a tendency well reproduced by a kinetic collision-less SW
model (Meyer-Vernet & Issautier 1998).

The mean SW magnetic field is well described by the Parker
model (Parker 1958) in most of the interplanetary space be-
tween 0.3 to 5 AU (Forsyth et al. 1996, and references therein).
Most of the observed deviations occur at high latitude where the
Ulysses spacecraft found a slightly under wound magnetic field
by ≈10−200, see Zurbuchen (2007) for a review. Then the SW
magnetic field strength is approximately

B = Br,o

√
D̃−4 + (Ṽ D̃)−2, (38)

where Br,o is the radial field value at 1 AU, D̃ = D/Do is the
distance normalized at Do = 1 AU, and Ṽ = VSW/(ΩDo cos θ)
with θ the latitude and Ω the angular velocity of the Sun (Ω ≈
2.8 × 10−6 s−1). At 1 AU in the ecliptic plane, Ṽ ≈ 1, since
typically VSW ≈ 400 km s−1.

Following the above results, the total SW pressure is written
in the undimensional form

Pt =
Pt,o

1 + βo

(
D̃−4 + (Ṽ D̃)−2

1 + Ṽ−2
+ βoD̃−2−nT

)
, (39)

where Pt,o and βo are the total SW pressure and the plasma β at
Do = 1 AU.

Equation (39) provides the boundary condition, Pt, for the
flux rope expansion (Eq. (6)). In the above model, Pt(D) is a key
function for the evolution of both the magnetic field strength,
B, and the flux rope radius, R, (Eqs. (7), (16)). In Sect. 4.4, we
compare the results of the model to studies of MCs/ICMEs that
derived the evolution of both B and R with D from statistical
analysis of a wide set of events observed at different D. All these
studies fit the observed results with power law of D. Then, below
we consider an approximation of Eq. (39) with a power law

Pt,a = Pt,oD̃−nP . (40)

With this approach, we can also compare the above models to
observations of expansion velocity measured at 1 AU (Sect. 4.5)
if we derive the exponent nP at 1 AU.

The logarithmic derivative d ln Pt/d ln D, called n, defines
the local decrease of Pt (i.e. a local approximation of Pt is Pt,a
with nP = n). For D̃ � 1, n ≈ 4 since the radial component of
the SW magnetic field provides the dominant pressure close to
the Sun. At the opposite extreme, for D̃ � 1, n ≈ 2. In between
these two extremes, n varies between ≈3.5 to 2.5 for D varying
from 0.3 to 3 AU.

At 1 AU, the radial and azimuthal magnetic field components
are comparable in the slow SW present at low latitude (Ṽ ≈ 1).
Then, the magnetic pressure alone implies n ≈ 3 at 1 AU. The
plasma pressure alone implies n ≈ 2 + nT ≈ 2.7 with the recent
results summarized above. Then, around 1 AU the value of n
is weakly dependent on the plasma β since the magnetic and
plasma pressure provides similar n values. With Ṽ ≈ 1, we get
n = 2.8 ± 0.2 for βo in the range [0.3, 3]. Figure 3 shows that
Pt,a (Eq. (40)), with nP = 2.8 is a good approximation of Pt
(Eq. (39)) within a relatively wide range of solar distances in the
slow SW. Finally, this value of n is only increased to 3.2 ± 0.4
for a fast SW (≈800 km s−1) and at high latitude (≈60◦), so for
Ṽ ≈ 4, since the radial component of the magnetic field is then
more dominant at 1 AU.
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Fig. 3. Log-log plots showing the evolution of the SW total pres-
sure (Eq. (39)) normalized at 1 AU, and a power-law approximation
(Eq. (40) with nP = 2.8) as a function of the solar distance D (in AU).
βo is the plasma β in the SW at 1 AU, and nT define the SW temperature
dependence with D (T ∝ D−nT ). In both panels Ṽ = 1, a typical value
for the slow SW at 1 AU and low latitude (A color version is available
in the electronic version).

4.3. Expected evolution of flux ropes

With Eqs. ((37), (40)), (19) is rewritten as

s̃ = D̃1−nP/4. (41)

With nP = 2.8, s̃ = D̃0.3, so s̃ has a moderate variation with
D̃. For example, for Do = 1 AU and D ranging from 0.1 to
10 AU, log10 s̃ is in the interval [−0.3, 0.3]. It corresponds to
a narrow central portion of Fig. 2, so to very moderate variations
of both R̃ and B̃c (≈D̃−0.07 and ≈D̃−0.2, respectively, in the vicin-
ity of D̃ = 1). This contrasts with the major contribution of SW
total pressure (P̃t) in R and Bc in Eq. (16), as D̃0.7 and D̃−1.4,
respectively.

More generally, with Eqs. (40), (16) implies

R = Ro (D̃)nP/4 R̃(nP, D̃),

Bc = Bc,o (D̃)−nP/2 B̃c(nP, D̃). (42)

Figure 4 shows typical cases of observed MCs with Fratio =
2. All the three models considered above have a central field
strength decreasing only slightly faster with solar distance than
the D−nP/2 scaling law. The radius of the flux rope increases
with D slightly less than DnP/4 since the correction to the scaling
law is even smaller than for Bc. The slope difference becomes
slightly more important as the flux rope becomes more twisted
(larger Fratio, for example Fratio = 5 in the right panels of Fig. 4).

The magnetic profile evolves with solar distance according to
the results of Sect. 3. The core region expands more with increas-
ing D than the periphery (panels of Bz and Bθ in Fig. 5 and panels
of r(ro) in Fig. 6). This is because the SW total pressure does not
decrease fast enough (less than D−4) to allow a true self-similar
expansion of the flux rope. Indeed, the peripheral region is domi-
nated by the azimuthal component. Its magnitude is mainly fixed

by the total pressure Pt present in the surrounding SW. The ex-
tension in length, L ∝ D, and the flux conservation restrict the
radial expansion. As D increases, the field strength profile be-
comes flatter with the azimuthal component getting weaker than
the axial component in most of the flux rope.

4.4. Comparison to previous studies

We compare below our results with previous studies of MCs and
ICMEs.

Chen (1989) developed a toroidal model of a flux rope
ejected from the Sun. The governing equations for the flux rope
center and radius are deduced from MHD equations by approx-
imately averaging the magnetic and plasma force over the flux
rope cross section. Then, the deduced ordinary differential equa-
tions are solved starting from an initial unstable equilibrium in
the corona. Chen (1996) extended the model to study the flux
rope evolution in the interplanetary space using a SW model
similar to the one described in Sect. 4.2. The initially stable flux
rope in the corona is forced to erupt by imposing a strong in-
crease of the azimuthal flux. However, while important for the
physics of CMEs, the precise mechanism leading to the ejection
should have a weak effect on the propagation of the interplan-
etary flux rope (for the same flux rope having the same global
velocity).

The flux rope model of Chen (1996) keeps the inertial term
and the plasma pressure in the internal dynamics while it only
includes an approximate description of the magnetic forces. The
model finally uses a spatial average of the force balance across
the flux tube. Rather, we suppose that a force-free equilibrium is
achieved at all times, and we analyze the internal force balance
with several spatial profiles of the magnetic field. Despite these
differences, the diameter of the flux rope has a similar depen-
dence on the solar distance D (Table 2). This is so because the
inertial term, the plasma pressure and the magnetic profile have
only a weak effect on the diameter evolution. Most of the evo-
lution is imposed by the dependence of Pt(D) in the surround-
ing SW.

Kumar & Rust (1996) developed a flux rope model based
on the conservation of axial magnetic flux and magnetic helic-
ity, supposing that the flux rope field stays linear force-free (see
Sect. 5). They also analyzed a set of MCs previously fit to a LU
field (see Sect. 3.3) by various authors.

Bothmer & Schwenn (1998) analyzed a set of ≈50 MCs. The
size S is defined by the product of the MC duration and the mean
measured velocity (so they determine the apparent size of the
MC along the spacecraft trajectory). Leitner et al. (2007) ex-
tended the analysis to 130 MCs, and they fit the magnetic field
observations with the LU field (see Sect. 3.3), then they found
the impact parameter and the orientation of the MC axis to esti-
mate the diameter, d, of the MCs.

In all these studies, the evolution of the MC radius (or size) is
described by a power law, ∝De, in some range of distance, D, to
the Sun. The above studies and ours agree on a larger exponent e
in the internal heliosphere than outward. Indeed, the general ten-
dency is e ≈ 1 for D < 1 AU, so that the expansion is close
to self-similar, while e ≈ 0.7 for D > 1 AU (Table 2). Around
1 AU, we find a power law exponent closer to the one of Leitner
et al. when the full range of D is considered ([0.3, 7] AU).

We also compare our results with ICME studies (contain-
ing a subset of MCs). Liu et al. (2005) did a statistical study
of about 220 ICMEs observed in situ from 0.3 to 5.4 AU. They
combined two criteria to localize ICMEs: an enhanced alpha-
to-proton density ratio (greater than 0.08) and a low proton
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Fig. 4. Log-log plots of the central magnetic field strength, Bc, and radius, R, as a function of the distance from the Sun, D. We set the typical values
Bc = 20 nT and R = 0.1 AU at D = 1 AU, and nP = 2.8 (Eq. (40), Fig. 3). Three cases, the Gold and Hoyle (GH, Eq. (22)), “split” (SP, Eq. (30)),
and linear force-free field (LU, Eq. (35)), suppose an ideal-MHD evolution with reference fields defined at D = Do. The fourth case (ME) always
has the minimum magnetic energy keeping the magnetic helicity preserved. The straight lines labeled “scaling” have the slopes −nP/4 and nP/2
for Bc and R, respectively (Eq. (42)). The ratio of the azimuthal to the axial flux, Fratio, is computed with a length Lo = 2πRo (A color version is
available in the electronic version).
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Table 2. Summary of results on MCs and ICMEs.

Quantitya Object D rangeb c c e Ref.d

d model 0.3, 2 1 1
d model 0.3, 5 0.88 1
d model 2, 5 0.71 1
d model 1 2
d MC 0.3, 4. 0.3 0.97 2
S MC 0.3, 4.2 0.24 ± 0.01 0.78 ± 0.10 3
d MC 0.3, 1 0.23 ± 0.05 1.14 ± 0.44 4
d MC 0.3, 7 0.20 ± 0.02 0.61 ± 0.09 4
S ICME 0.3, 5.4 0.25 ± 0.01 0.92 ± 0.07 5
S ICME 0.3, 5.4 0.19 0.61 6
d model 0.3, 3 0.2 0.64 ± 0.05 7
Bc model −2 2
Bc MC 0.3, 4. 18 −1.8 2
Bc MC 0.3, 1 18 ± 4 −1.64 ± 0.40 4
Bc MC 0.3, 7 19 ± 1 −1.30 ± 0.09 4
B̄ ICME 0.3, 5.4 7 ± 0.4 −1.40 ± 0.08 5
B̄ ICME 0.3, 5.4 8.3 −1.52 6
Bc model 0.3, 3 20 −1.60 ± 0.10 7

a The physical quantities studied are: the diameter of the flux rope d,
the size, S (estimated along the spacecraft trajectory), the central field
strength Bc (estimated from a fitted magnetic model to the data for
MCs), and the average field strength, B̄, along the spacecraft trajectory.
b The range of solar distance, D, is in AU. c The data are fitted with a
power law c(D/Do)e with Do = 1 AU. c is in AU for the diameter/size
and in nT for the magnetic field strength. e is dimensionless. d The re-
sults are from: 1: Chen (1996), 2: Kumar & Rust (1996), 3: Bothmer
& Schwenn (1998), 4: Leitner et al. (2007), 5: Liu et al. (2006), 6:
Wang et al. (2005), 7: present work. The comparison of consecutive
lines with the same reference indicate the variation of the results (c, e)
with the range of D selected or the difference between a model and
observations.

temperature (lower than half the value expected in the solar wind
with the same speed). Wang et al. (2005) did a similar analysis
on a wider set of 600 possible ICMEs defined only by using the
low temperature criteria. The size S is defined as for Bothmer
& Schwenn (1998). These two similar studies have surprisingly
different exponents for the power law fits (Table 2). Our result
best agree with Wang et al. (2005), who found the same expo-
nent as Leitner et al. (2007).

The same comparison is done for the magnetic field strength
(with the exception of Chen (1996) who did not wrote this re-
sult). Our exponent is closer to the results of Leitner et al. (2007)
within the inner heliosphere (while for the diameter, the agree-
ment is best for the full range of D, Table 2). Our results are also
compatible with both ICME studies within the uncertainties of
the exponents (however, we do not compute a mean field, as for
ICME studies).

We conclude that, taking into account the uncertainties, the
field strength versus the distance predicted by our model is in
good agreement with the observations. We also find that the re-
lation for the flux rope diameter, and for the field strength, versus
solar distance is not strictly a power-law (Fig. 4). This could be
the main reason for the different results reported in Table 2 since
the computed exponents dependent on the distribution of the an-
alyzed events with solar distance in the different data sets.

4.5. Expansion velocity

Since the time evolution of the flux rope is ideal we compute the
plasma velocity by deriving r(ro) with time, keeping ro fixed (so
following the same blob of plasma). With Eqs. ((16), (40)) we
find

v =
dr
dt

∣∣∣∣∣
ro

=

[
d ln r̃(ro,D)

d ln D

∣∣∣∣∣
ro

+
nP

4

]
Vc r
D
, (43)

where Vc = dD/dt is the velocity of the flux rope center.
From the results of Sect. 3 and with s̃ written as a function

of D̃ (Eq. (41)), we find that d ln r̃/d ln D is small compare to
nP/4, so that the velocity inside the flux rope is approximately
proportional to r (Fig. 6). A small correction to this is due to
a weaker expansion of the flux-rope periphery (Sect. 4.3). This
implies a smaller velocity there (than if the whole flux rope had
a self-similar expansion).

The velocity profile becomes a linear function of r with in-
creasing D since the dominated axial field region extends to a
larger fraction of the flux rope (Fig. 5). Moreover, the expansion
speed decreases with distance because r increases less rapidly
than D. The expansion speed decreases by about a factor of two
with a factor of ten increase in distance. Another effect to take
into account for a wide range of D is the decrease of nP with D
when the full Pt(D) is used (Eq. (39)), but here this weaker effect
is not taken into account since we use Eq. (40) with nP = 2.8.
This effect is at most a factor of 2 from D � 1 AU to D � 1 AU)
since n = d ln Pt/d ln D evolves at most from 4 close to the Sun
to 2 at very large distances (Sect. 4.2).

Next, it is remarkable that “GH” and “LU” fields have such
similar velocities. Only the “SP” field, with its separation of field
components into distinct regions, has a slightly different pro-
file. We conclude that the velocity profiles measured in MCs
are expected to be almost independent of the magnetic profile
observed.

The magnitude of the expansion is directly proportional to
the global velocity of the MC (Vc), so that the results of Fig. 6
are scaled by Vc (Eq. (43)). In fact Vc has an even stronger ef-
fect on the observed velocity profiles since they are function of
time, t, not of r, as follows. Let us just consider here the simplest
case where the spacecraft crosses the center of the flux rope nose
moving at a constant velocity Vc, then the position observed by
the spacecraft is r = Vc(t − tc) with tc being the time when the
spacecraft crosses the flux rope center. Then, Eq. (43) rewritten
in function of the observed time (t) is

v(t) =

[
d ln r̃(ro,D)

d ln D

∣∣∣∣∣
ro

+
nP

4

]
V2

c (t − tc)

D
· (44)

This implies that the magnitude of the observed expansion veloc-
ity scales as V2

c . This effect needs to be taken into account when
comparing the difference between the front and back boundary
velocities of various MCs. Fast and/or big MCs have faster ap-
parent expansion velocity due to this effect. For example this
is the case of the “monster” MC observed on 29 Oct. 2003
(Mandrini et al. 2007). While the observed expansion speed is
as large as 200 km s−1, they found that this MC has the typ-
ical expansion rate obtained for more classical MCs when the
normalized expansion rate is considered (i.e. a similar slope of
v(t)DV−2

c ).
The generalization of the above results to all possible types

of spacecraft/MC crossing can be derived following the same
logic than as Démoulin et al. (2008). They consider self-similar
expansion of a magnetic configurations with possible different
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Fig. 6. Evolution of a flux rope for the three ideal-MHD cases shown in Fig. 5 (D= (0.1, 1, 10) AU in the top, middle, bottom panels, respectively).
r is the radial coordinate of the flux rope, with ro being its value in the reference field taken at Do = 1 AU (with the flux rope radius Ro = 0.1 AU).
v is the radial plasma velocity. vD/(rVc) is the normalized expansion velocity (Sect. 4.5). We set Fratio = 2, nP = 2.8, and Vc = 600 km −1 (Vc is the
global velocity of the flux rope away from the Sun). The horizontal line in the right panels has an ordinate of nP/4 (A color version is available in
the electronic version).

expansion coefficients, l,m, n in three orthogonal directions (i.e.,
along the axial direction z(t) = zo(D(t)/Do)n, and similar ex-
pressions in the x, y directions). Otherwise any orientation of the
flux rope, any impact parameter and any radial motion of the
flux rope away from the Sun can be selected. Redoing the anal-
ysis with the above flux ropes, we get the same equations for the
velocity components at the spacecraft location, except that n = 1
(from Eq. (37)) and l = m = vD/(rVc) = d ln r̃/d ln D|ro + nP/4.
Then l,m are no longer constant across the flux rope. Still,
nP/4 is the dominant term and only weak variations are present
(Fig. 6, right panels). As expected from Figs. 2, 4, the core ex-
pands slightly more rapidly than the periphery of the flux rope.

Finally, the above theoretical results on the expansion rate
are compared to the expansion rate found in 26 typical MCs ob-
served at 1 AU (Démoulin et al. 2008). They fit the observed
main velocity component (anti-solar direction) with a linear
function of time. The observed slope, dVx,GS E/dt, normalized
by V2

c /D provides an estimation, called ζ, of the exponent l,
since the MCs are observed close to their noses. They found
ζ = 0.8±0.2. This is indeed in close agreement with our theoret-
ical expectations since we find l = vD/(rVc) = 0.75 ± 0.1 across
all the theoretical flux ropes at 1 AU (Fig. 6, recalling that the
“SP” case is far from observed MCs). We conclude that the ex-
pansion of MCs is dominantly controlled by the decrease of the
total SW pressure with solar distance.

5. Evolution of flux ropes with energy minimization

In previous sections we have studied the evolution of flux ropes
supposing an ideal MHD evolution, so preserving both the el-
ementary axial and azimuthal magnetic fluxes. Here we inves-
tigate another extreme limit where the flux rope evolves with
all the necessary reconnections to minimize its magnetic energy,
keeping constant its magnetic helicity. The purpose is to check

if the results of previous sections are robust enough. The true
evolution of MCs is in between these two extreme limits.

5.1. Linear force-free state

In a resistive MHD evolution, for systems with low resistivity
as the solar wind, the magnetic field cannot relax to its abso-
lute minimum energy since its magnetic helicity, H, is almost
conserved (on a time-scale less than the global diffusion time-
scale, that is typically many orders of magnitude above the evo-
lution time scales, Matthaeus & Goldstein 1982; Berger 1984).
If there is enough dissipation (e.g., via magnetic reconnection or
turbulent dissipation) to remove all the free magnetic energy, the
magnetic field relaxes to a linear force-free field (Taylor 1974).
We assume such minimization of the magnetic energy under the
constraint of a fixed H in present section (this is just an extreme
possibility, we are not claiming that this energy minimization is
fully achieved in MCs). This implies that the magnetic field stays
a Lundquist’s field in the flux rope (r < R)

Bz = Bc J0(αr),

Bθ = Bc J1(αr), (45)

where Bc, α and R are evolving parameters with distance to the
Sun. Such field is labeled “ME”.

Our approach is similar to the one of Kumar & Rust (1996).
A main difference is that we do not set an external curl-free mag-
netic field around the flux rope. Indeed, in situ observations do
not show evidence of this purely azimuthal field around MCs but
rather the presence of the SW (with its variable magnetic field).
This difference of treatment of the region outside the flux rope
is at the primary differences between Kumar & Rust (1996) and
our results (the scaling with solar distance, Table 2, as well as
the evolution of the magnetic field profile, Fig. 5).
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5.2. Formal solution of the evolution

The magnetic helicity contained in a cylindrical flux rope of
length L is (Berger 1999)

H = 4πL
∫ R

0
Aθ(r) Bθ(r) r dr, (46)

where Aθ is the azimuthal component of the vector potential of
B. For the Lundquist’s field, the magnetic helicity is (Dasso et al.
2003)

H = 2πL B2
cR3 J2

1(U) − J0(U) J2(U)

U
≡ 2πL B2

cR3 fH(U), (47)

with U = αR, Jn is the ordinary Bessel function of order n, and
fH(U) defines a function of U alone.

We next suppose that there is no reconnection with the solar
wind magnetic field. Then, the flux rope stays attached to the
Sun, and the total axial magnetic flux, Fz is conserved, where Fz

can be written as

Fz = 2π BcR
2 J1(U)/U

≡ 2π BcR
2 fF (U). (48)

If the flux rope partly reconnects with the overtaken solar wind
magnetic field, being partially peeled, as observed in some cases
(Dasso et al. 2006, 2007), the present derivation could be applied
only to the un-reconnected central part of the flux rope.

The pressure equilibrium at the boundary (Eq. (6)) is writ-
ten as

�(D) Pt(D) = B2
c/(2μ0) (J2

0(U) + J2
1(U))

≡ B2
c/(2μ0) fP(U). (49)

There are three unknowns, Bc, R and U (or equivalently α), and
three Eqs. ((47)–(49)) that define the evolution of the flux rope.
With the normalization of B and R defined by Eq. (16), the three
equations write

s̃ R̃3 B̃2
c fH(U) = fH(Uo),

R̃2 B̃c fF (U) = fF (Uo), (50)

B̃2
c fP(U) = fP(Uo).

As in Sect. 2.4, the normalized field strength, B̃c, and radius R̃
only depends on s̃ = L̃ (P̃t)1/4. Defining the function f (U) as

f (U) ≡ f 3/2
F (U) f 1/4

P (U) / fH(U), (51)

the solution of the system of Eqs. (50) is

f (U) = s̃ f (Uo),

B̃c =

(
fP(U)
fP(Uo)

)−1/2

, (52)

R̃ =

(
fP(U)
fP(Uo)

)1/4 (
fF (U)
fF (Uo)

)−1/2

·

Bc and R are obtained by replacing the above results for B̃c and
R̃ in Eq. (16).

Fig. 7. The evolution of U = αR in function of log10(s̃) (Eq. (19)) for
different ratios of the azimuthal to axial flux (Fratio, Eq. (36)). The mag-
netic energy is supposed to be minimized with a preserved magnetic he-
licity, so the field stays a linear force-free field. The thick curves show
the solutions of the first equation in Eq. (52), while the thin curves are
for its approximation (Eq. (54)). (A color version is available in the
electronic version).

5.3. Evolution of flux ropes

As the flux rope gets farther from the Sun, its length L increases
and the total pressure in the surrounding solar wind, Pt, de-
creases. Both contribute to the evolution of s̃. For the case, en-
countered in the SW, where P̃t decreases less rapidly than L̃−4,
s̃ increases with distance from the Sun (see Eq. (19)). This evo-
lution of s̃ determines the evolution of U = αR (first equation
of (52)), and of the normalized profile of the field (it is function
only of αr = U r/R = U r̃/R̃). Then, Eq. (45) is rewritten as

Bz = Bc,o

√
P̃t B̃c J0(U r̃/R̃),

Bθ = Bc,o

√
P̃t B̃c J1(U r̃/R̃), (53)

for 0 < r̃ < R̃. B̃c, R̃ are provided by the two last equations
of (52).

We analyze first the evolution of U since it determines the
spatial behavior of the field components. Two values of U are
worth outlining. Let us call zJ0 and zJ1 the first zero of the Bessel
functions J0 and J1, respectively. For U = zJ0 the axial field Bz

vanishes (it frequently takes place near the observed flux rope
boundary), while for U = zJ1 , the axial magnetic flux Fz vanishes
(Eq. (48)). From the MC data fitted with the Lundquist field, the
value of U is typically found to be around zJ0 , while generally
U < zJ1 . Then, the range 0 < Uo < zJ1 includes the observed
MCs, and Fz(U) is a single-value and monotonically decreasing
function of U. This implies that U stays in the same interval as
Uo to keep Fz preserved.

The evolution of U is determined by the behavior of the func-
tion f (U) defined by Eq. (51). It is a monotonically decreasing
function of U for 0 < U < zJ1 , with the limits f (U) ≈ 2

√
2/U

for U � 1 and f (zJ1 ) = 0. A simple approximation, only
slightly underestimating f (U), is the function 2

√
2(1/U−1/zJ1).

Including this approximation in the first equation of (52), we get
the approximate solution, plotted in Fig. 7,

U ≈ zJ1

s̃ (zJ1/Uo − 1) + 1
· (54)
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In the SW case, s̃ is a growing function of the distance from
the Sun, so the above equation describes also the evolution of U
versus the solar distance. Starting from the reference field (with
s̃ = 1, U = Uo), U decreases with an increasing s̃ (Fig. 7), and
the Bz profile is progressively more restricted around the origin
of the function J0. This corresponds to a magnetic field more
dominated by the axial field. As expected, this effect is delayed
to larger s̃ values for a more twisted reference field (so with a
larger Fratio, Eq. (36), then a larger Uo).

For s̃ decreasing below 1, the opposite behavior is present,
i.e. the flux rope is more dominated by its azimuthal field for
lower s̃ values. Then, we found the same behavior as with an
ideal MHD evolution (Sect. 3.4). The limiting case, for s̃ small
enough, is U ≈ zJ1 , resulting in a flux rope with a significant re-
verse Bz flux around the core field. Starting close to the Sun with
this type of field, an evolution, that minimizes the energy, pro-
gressively removes the reverse Bz flux by reconnection to pro-
vide only an axial field, Bz, with a fixed sign within the flux rope
(as often observed at and beyond 1 AU in MCs). Later, this re-
laxation continues and creates an increasingly flatter Bz profile,
as well as a smaller Bθ contribution to the field strength.

The evolution of B̃c is very limited in this energy minimiza-
tion case (Fig. 2, top panels), mostly because the field stays a
Lundquist’s field and so lacks any significant difference between
the field strength at the center and at the border of the flux rope.
Then, most of the field strength evolution at the center is in-
cluded in the (P̃t)1/2 term (Eq. (16)). Indeed, from Eq. (52), we
have |J0(zJ1)| < B̃c < 1, and at most only a change of a fac-
tor ≈2.5 is possible for B̃c (compare to orders of magnitude for
(P̃t)1/2). Then the energy minimization case follows very well
the simple scaling law Bc ≈ Bc,o

√
P̃t (Fig. 4, top panels).

The evolution of R̃ with s̃ is larger than with B̃c since R̃ in-
volves not only fP(U), but also fF (U) that has a broader variation
range. R̃(s̃) has a variation comparable to the ideal-MHD cases
analyzed in Sect. 3 (Fig. 2, bottom panels).

As for the ideal-MHD cases, the evolutions of both Bc and
R with the solar distance D are dominated by the Pt(D) contri-
butions in Eq. (16). Indeed, Fig. 4 summarizes a broad range
of evolutions ranging from ideal-MHD with very different twist
profiles to a fully resistive evolution. The evolution of MCs is
expected to be in between these cases, so their evolution of both
Bc and R are expected to be mainly due to Pt(D). The slight
differences between the above models is not expected to appear
in observations since these differences can easily be covered by
other effects not considered here, such as the non-circular cross
section of the flux rope, the dynamic SW pressure, the MC over-
pressure, the jump of pressure at shocks, the reconnection with
the SW, and the interaction with SW inhomogeneities (in partic-
ular overtaking flows).

6. Summary and conclusions

MCs are expanding flux ropes in the interplanetary space with
very different expansion properties than the SW, as derived from
the observed profiles of plasma velocity at fixed heliodistance,
but also from the plasma density and field strength evolution
with solar distance. Since the magnetic field energetically dom-
inates the plasma in MCs, the difference in expansion between
MC and SW is related to the special magnetic configuration of
MCs. Several questions about the main physical mechanisms
involved in their expansion remain unanswered in previous stud-
ies, e.g. how does their expansion depend on their magnetic

configuration? Is an internal over-pressure needed to explain the
observed expansion?

We investigate these problems by focusing on the main phys-
ical properties. As a local approximation for an elongated field
configuration, we consider a straight cylindrical flux rope ge-
ometry. Since the plasma β is low and the expansion velocity
frequently is below the local Alfvén speed in most of the MC
volume (Burlaga et al. 1982), we analyze the flux rope evolution
as a series of force-free equilibria in pressure balance with the
surrounding SW. We show that the presence of shocks or/and an
internal over pressure only has a weak effect compared to the
variation of the SW total pressure, Pt(D), with solar distance D.
We do not include the dynamic pressure of the SW (supposing
that the MC and the SW travel at sufficiently comparable ve-
locities). These simplifications permit us to tackle the problem
analytically in some cases, and more generally by solving a sys-
tem of ordinary differential equations (Eqs. (14)–(15)), allowing
us a broad survey of the possible magnetic configurations and
their evolution with solar distance.

The main dependence of the field strength and radius is de-
rived analytically in Sects. 3 and 5. We show that they mainly
depend on the product L P1/4

t , where L is the length of the flux
rope and Pt is the total pressure in the SW. Then, flux ropes with
a length evolving proportionally to P−1/4

t have a self-similar evo-
lution independently of the structure of their magnetic field (i.e.
field strength and spatial scales are simply multiplied by a global
factor, function of Pt(D), as D increases).

While a flux rope still attached to the Sun departs signifi-
cantly from Pt ∝ L−4 ∝ D−4 with the observed Pt(D) depen-
dence in the SW Pt ∝ D−2.8, we show that these flux ropes still
have a nearly self-similar radial expansion. More precisely, their
radius is mainly multiplied by P−1/4

t and their field strength by
P1/2

t as they travel away from the Sun (Sect. 3). This result is
obtained after investigating the evolution of the several spatial
distributions of magnetic field inside the flux rope. First, we an-
alyze the ideal MHD evolution of a Lundquist’s field, as well
as extreme twist distributions (uniform or concentrated at the
periphery of the flux rope, Sect. 4). Then, we consider the mini-
mization of the magnetic energy with constant helicity (Sect. 5).
The strongest departure from these laws, that still remains mod-
erate, is obtained for flux ropes much more twisted than actually
observed in MCs (Figs. 2, 4, right panels).

For a flux rope environment given by a magnetized medium
described by the Parker spiral of the SW, and values of plasma β
between 0.1 and 10, we found that the MC core expands slightly
faster than its periphery with increasing D. This evolution is due
to different constraints present on the axial field (dominant in
the core) and on the azimuthal field (dominant at the periphery).
This implies a flatter field strength profile with increasing D for
both ideal and resistive evolutions. This is a plausible origin of
the flattening tendency previously noticed in MCs observed at
various solar distances (e.g., Burlaga et al. 1998).

The expansion velocity is found to be almost proportional
to the distance from the flux rope axis. While the expansion of
the flux rope core (dominated by the axial field) is almost self-
similar, the periphery (dominated by the azimuthal field) is ex-
panding at a slightly lower rate for a typical twist value found
in MCs. The velocity profile is almost the same for all the cases
considered (varying the spatial distribution of the magnetic field
and the dissipation law permitted in the MHD system). These
results explain the origin of a nearly linear velocity profile ob-
served generically in MCs.
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Moreover, the expansion velocity rate found in the models
described here is in full agreement with the values observed in
MCs (Démoulin et al. 2008). Simulating the crossing of a MC
orthogonally to its axis by a fixed spacecraft, we find a plasma
velocity equal to Vc − l V2

c t/D, where t is the time (= 0 at the
MC axis), Vc is the velocity of the flux rope center, and l is an
approximately constant coefficient (i.e. independent of the posi-
tion within the flux rope and of the magnetic field configuration).
We previously found the same functional form by analyzing a set
of MCs observed at 1 AU (Démoulin et al. 2008). Furthermore,
with a dependence of the SW total pressure as Pt ∝ D−nP , we
find l ≈ nP/4 in present analysis. The typical decay of the SW
pressure corresponds to nP ≈ 2.8, providing l ≈ 0.7, in agree-
ment with our previous results l ≈ 0.8 ± 0.2 in a set of MCs.

The theoretical profile found, Vc − l V2
c t/D, also implies that

the velocity profile observed in a MC by a spacecraft, with a
given position in space, is strongly dependent on the mean ve-
locity, Vc of the observed MC. Indeed, faster MCs need to ex-
pand faster to reach an approximate pressure balance with the
surrounding SW at a given distance from the Sun. Also, bigger
MCs have a larger velocity difference between their front and
back simply because they are larger (and the expansion is al-
most self-similar). Our theoretical results further justify the use
of a normalized expansion rate, rather than simply the differ-
ence between the front and back velocities, in order to quantify
whether a MC is over-expanding or not.

Finally, we found that the magnetic field strength evolves
mostly as D−nP/2 and the MC radius as DnP/4. Both dependences
predicted under general conditions by our model are in agree-
ment with several statistical studies of MCs and ICMEs observed
between 0.3 and 5 AU, taking into account the typical SW pres-
sure dependence on solar distance.

We conclude that MCs and ICMEs are expanding magnetic
structures mostly because they encounter a strongly decreasing
total pressure in the surrounding SW as they travel away from
the Sun. MCs are 3D expanding structures, with approximately
a self-similar expansion along and across their axis, but with
slightly different rate in these directions (in our model the expan-
sion velocity across their axis is a factor ≈nP/4 lower than along
their axis). This contrasts with the almost 2D expansion of the
surrounding SW. The main differences between the typical ex-
pansion profiles of MCs and the SW are due to the different force
balances involved. The MC expansion is the combined result of
the internal magnetic force balance, its length extension and the
pressure evolution at its boundary. However, the volume expo-
nents are not so different in MCs and the SW (≈1 + nP/2 ≈ 2.4
and ≈2, respectively). This implies, as observed, only a slightly
more rapid decrease of the plasma density with solar distance in
MCs than in the SW.

Acknowledgements. We thank Lidia van Driel-Gesztelyi and the referee for
reading carefully, and, so improving the manuscript. The authors acknowledge
financial support from ECOS-Sud through their cooperative science program
(No. A08U01). This work was partially supported by the Argentinean grants:
UBACyT X425, PICTs 2005-03-33370 and 2007-03-00856 (ANPCyT). S.D. is
member of the Carrera del Investigador Científico, CONICET.

References
Berdichevsky, D. B., Lepping, R. P., & Farrugia, C. J. 2003, Phys. Rev. E, 67,

036405
Berger, M. A. 1984, Geophys. Astrophys. Fluid. Dyn., 30, 79
Berger, M. A. 1999, in Magnetic Helicity in Space and Laboratory Plasmas, 1
Bothmer, V., & Schwenn, R. 1998, Annales Geophysicae, 16, 1
Burlaga, L. F. 1988, J. Geophys. Res., 93, 7217

Burlaga, L. F. 1995, Interplanetary magnetohydrodynamics (New York: Oxford
University Press)

Burlaga, L. F., & Behannon, K. W. 1982, Sol. Phys., 81, 181
Burlaga, L. F., Klein, L., Sheeley, Jr., N. R., et al. 1982, Geophys. Res. Lett., 9,

1317
Burlaga, L., Fitzenreiter, R., Lepping, R., et al. 1998, J. Geophys. Res., 103,

277
Cane, H. V., & Richardson, I. G. 2003, J. Geophys. Res., 108, 1156
Cargill, P. J., & Schmidt, J. M. 2002, Annales Geophysicae, 20, 879
Cargill, P. J., Schmidt, J., Spicer, D. S., & Zalesak, S. T. 2000, J. Geophys. Res.,

105, 7509
Chané, E., Van der Holst, B., Jacobs, C., Poedts, S., & Kimpe, D. 2006, A&A,

447, 727
Chen, J. 1989, ApJ, 338, 453
Chen, J. 1996, J. Geophys. Res., 101, 27499
Cid, C., Hidalgo, M. A., Nieves-Chinchilla, T., Sequeiros, J., & Viñas, A. F.

2002, Sol. Phys., 207, 187
Crank, J. 1984, Free and moving boundary problems (New York: Oxford

University Press)
Crooker, N. U., & Horbury, T. S. 2006, Space Sci. Rev., 123, 93109
Crooker, N. U., Forsyth, R., Rees, A., Gosling, J. T., & Kahler, S. W. 2004,

J. Geophys. Res., 109, A06110
Dasso, S., Mandrini, C. H., Démoulin, P., & Farrugia, C. J. 2003,

J. Geophys. Res., 108, 1362
Dasso, S., Mandrini, C. H., Démoulin, P., Luoni, M. L., & Gulisano, A. M. 2005,

Adv. Spa. Res., 35, 711
Dasso, S., Mandrini, C. H., Démoulin, P., & Luoni, M. L. 2006, A&A, 455,

349
Dasso, S., Nakwacki, M. S., Démoulin, P., & Mandrini, C. H. 2007, Sol. Phys.,

244, 115
Démoulin, P., Nakwacki, M. S., Dasso, S., & Mandrini, C. H. 2008, Sol. Phys.,

250, 347
Farrugia, C. J., Burlaga, L. F., Osherovich, V. A., et al. 1993, J. Geophys. Res.,

98, 7621
Farrugia, C. J., Osherovich, V. A., & Burlaga, L. F. 1997, Annales Geophysicae,

15, 152
Farrugia, C. J., Janoo, L. A., Torbert, R. B., et al. 1999, in Solar Wind Nine, ed.

S. R. Habbal, R. Esser, J. V. Hollweg, & P. A. Isenberg, AIP Conf. Proc., 471,
745

Feng, H. Q., Wu, D. J., & Chao, J. K. 2007, J. Geophys. Res., 112, A02102
Forbes, T. G., Linker, J. A., Chen, J., et al. 2006, Space Sci. Rev., 123, 251302
Forsyth, R. J., Balogh, A., Smith, E. J., Erdös, G., & McComas, D. J. 1996,

J. Geophys. Res., 101, 395
Gazis, P. R., Balogh, A., Dalla, S., et al. 2006, Space Sci. Rev., 123, 417451
Gold, T., & Hoyle, F. 1960, MNRAS, 120, 89
Gosling, J. T., Baker, D. N., Bame, S. J., Feldman, W. C., & Zwickl, R. D. 1987,

J. Geophys. Res., 92, 8519, 8535
Gosling, J. T., Riley, P., McComas, D. J., & Pizzo, V. J. 1998, J. Geophys. Res.,

103, 1941
Gosling, J. T., Skoug, R. M., McComas, D. J., & Smith, C. W. 2005,

J. Geophys. Res., 110, A01107
Hidalgo, M. A. 2003, J. Geophys. Res., 108, 1320
Hidalgo, M. A., Cid, C., Vinas, A. F., & Sequeiros, J. 2002, J. Geophys. Res.,

107, 1002
Hu, Q., & Sonnerup, B. U. Ö. 2002, J. Geophys. Res., 107, 1142
Hu, Q., Smith, C. W., Ness, N. F., & Skoug, R. M. 2005, J. Geophys. Res., 110,

A09S03
Issautier, K., Meyer-Vernet, N., Moncuquet, M., & Hoang, S. 1998,

J. Geophys. Res., 103, 1969
Issautier, K., Meyer-Vernet, N., Moncuquet, M., & Hoang, S. 1999, ed. S. R.

Habbal, R. Esser, J. V. Hollweg, & P. A. Isenberg, AIP Conf. Ser., 471, 581
Jian, L., Russell, C. T., Luhmann, J. G., & Skoug, R. M. 2006, Sol. Phys., 239,

393
Kumar, A., & Rust, D. M. 1996, J. Geophys. Res., 101, 15677
Leitner, M., Farrugia, C. J., Möstl, C., et al. 2007, J. Geophys. Res., 112, A06113
Lepping, R. P., Burlaga, L. F., & Jones, J. A. 1990, J. Geophys. Res., 95, 11957
Lepping, R. P., Berdichevsky, D. B., Szabo, A., Arqueros, C., & Lazarus, A. J.

2003, Sol. Phys., 212, 425
Liu, Y., Richardson, J. D., & Belcher, J. W. 2005, Planet. Space Sci., 53, 3
Liu, Y., Richardson, J. D., Belcher, J. W., et al. 2006, J. Geophys. Res., 111,

A12S03
Lundquist, S. 1950, Ark. Fys., 2, 361
Lynch, B. J., Zurbuchen, T. H., Fisk, L. A., & Antiochos, S. K. 2003,

J. Geophys. Res., 108, 1239
Manchester, W. B. I., Gombosi, T. I., Roussev, I., et al. 2004, J. Geophys. Res.,

109, A02107
Mandrini, C. H., Nakwacki, M., Attrill, G., et al. 2007, Sol. Phys., 244, 25
Matthaeus, W. H., & Goldstein, M. L. 1982, J. Geophys. Res., 87, 6011



566 P. Démoulin and S. Dasso: Causes and consequences of magnetic cloud expansion

Meyer-Vernet, N., & Issautier, K. 1998, J. Geophys. Res., 103, 29705
Mulligan, T., Russell, C. T., Anderson, B. J., et al. 1999, in Solar Wind Nine, ed.

S. R. Habbal, R. Esser, J. V. Hollweg, & P. A. Isenberg, AIP Conf. Proc., 471,
689

Nakwacki, M., Dasso, S., Mandrini, C., & Demoulin, P. 2008, Journal of
Atmospheric and Solar-Terrestrial Physics, 70, 1318

Osherovich, V. A., Farrugia, C. J., & Burlaga, L. F. 1993, J. Geophys. Res., 98,
13225

Parker, E. N. 1958, ApJ, 128, 664
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,

Numerical Recipes (Cambridge University Press)
Richardson, I. G., & Cane, H. V. 2004, J. Geophys. Res., 109, A09104
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