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Abstract
Large pre-trained language models (LLM) have shown remark-
able Zero-Shot Learning performances in many Natural Lan-
guage Processing tasks. However, designing effective prompts
is still very difficult for some tasks, in particular for dialogue
act recognition. We propose an alternative way to leverage pre-
trained LLM for such tasks that replace manual prompts with
simple rules, which are more intuitive and easier to design for
some tasks. We demonstrate this approach on the question type
recognition task, and show that our zero-shot model obtains
competitive performances both with a supervised LSTM trained
on the full training corpus, and another supervised model from
previously published works on the MRDA corpus. We further
analyze the limits of the proposed approach, which can not
be applied on any task, but may advantageously complement
prompt programming for specific classes.
Index Terms: Question Types Classification, Zero-shot, Dia-
logue Acts, BART

1. Introduction
Large pre-trained language models (LLM1) have shown re-
markable Zero-Shot Learning (ZSL) performances in many
Natural Language Processing (NLP) tasks [1], thanks to their
ability to accumulate various types of information in their pa-
rameters and retrieve the correct piece of knowledge when given
an input prompt that describes the target task. However, this
generic prompt programming approach may be difficult to use
with some tasks for which no obvious and efficient prompt ex-
ists. We focus in this work on such an NLP task: dialogue act
(DA) recognition, and more specifically on question type clas-
sification, which is a subtask of DA recognition.

Dialogue act recognition is an important NLP task for au-
tomatic dialogue systems and conversational agents: it consists
in tagging every spoken dialogue turn with its function in the
dialogue, for example with tags such as Request, Statement,
Backchannel and Question [2]. Several types of questions are
often considered in DA tag sets, such as Yes-no question, Wh
question and Or question. We have observed in preliminary
experiments that directly using simple prompts with state-of-
the-art LLMs, e.g.: “Is the following sentence a yes-no ques-
tion ?”, fails for this task. We also tried simple few-shot strate-
gies by presenting one example of the target question type in the

1We call LLM any large pretrained NLP embeddings model, even
when it is not strictly a language model that predicts the next word.

prompt, and searched the literature for related works that would
propose adequate prompts for this task, without success. There-
fore, we might probably need to rely on more advanced prompt
programming strategies to solve the task of question type classi-
fication with zero of few-shot learning, which limits the interest
of this paradigm for real use case application practitioners.

We thus propose an alternative approach that still lever-
ages the ZSL capabilities of LLMs but replaces the difficult
prompt designing process by intuitive and easy-to-write rules,
and apply it on the question type classification task. Our pro-
posed approach is evaluated on the meeting recorder dialogue
act (MRDA) corpus [3] and its performances are compared with
those of a supervised LSTM model. We further analyze the
types of errors and propose future directions of research.

2. Proposed Approach
We propose to exploit a state-of-the-art pretrained LLM that
is fine-tuned to perform Natural Language Inference. More
specifically, we use a pretrained BART [4] model 2 finetuned
on the multi-genre natural language inference (MNLI) [5] task.
BART (bidirectional and auto-regressive transformer) is a de-
noising sequence-to-sequence autoencoder. It is trained by cor-
rupting documents and optimizing a reconstruction loss [4].
BART has been evaluated on several tasks and can be used for a
wide spectrum of downstream applications, including Question
Answering (SQuAD) [6], text summarization [7, 8] and MNLI.
The MNLI corpus is a collection of sentence pairs with textual
entailment annotations. Given a premise sentence and a hypoth-
esis sentence, the task is to predict whether the premise entails
the hypothesis (entailment), contradicts the hypothesis (contra-
diction), or neither (neutral). The premise sentences are gath-
ered from ten different sources, including transcribed speech,
fiction, and government reports [9].

BART-MNLI is a model that may be used in ZSL for vari-
ous NLP tasks [10], by converting every class label into a nat-
ural language sentence that describes the label. It is then pos-
sible to infer an unknown class label according to whether the
input entails the label description or not. For instance, com-
puting the BART-MNLI entailment scores between the hypoth-
esis “this text is positive” vs. “this text is negative” and the
target paragraph as a premise gives competitive accuracy on
sentiment analysis. We chose the BART-MNLI model because
related works have previously shown the dependency between
the sentiment analysis and DA recognition tasks [11], and we

2https://huggingface.co/facebook/bart-large-mnli



thus expected this model to also contain relevant information
for DA recognition. However, as mentioned before, it is much
more difficult to devise working hypothesis for question type
classification, and we therefore rather propose to encode the
following intuitive “rules” to leverage the ZSL capabilities of
BART-MNLI:

• R1: Yes-no questions are commonly followed by the an-
swer “yes” or “no”.

• R2: Or-Clause questions usually start with “or”. Note
that this rule is directly derived from the target corpus
annotation guide.

• R3: In Or-questions, such as “do you prefer A or B ?”,
A and B often represent competing alternatives.

• R4: Wh-questions usually start with a Wh-word.

Our claim is that the simple and intuitive R1-4 rules may ad-
vantageously replace the difficult-to-design prompts to achieve
ZSL for question type recognition. However, the proposed ap-
proach also has its limits, as there exists no such intuitive rule to
characterize Open-ended and Rhetorical questions. This fact is
supported by the target corpus annotation manual, which states
that Open-ended questions might be also Wh-questions or Yes-
questions under a condition when a specific answer is not seek,
and Rhetorical questions are defined as question where no an-
swer is expected. We thus let for a future work the challenge
of handling both types of questions, which may require yet an-
other ZSL paradigm beyond prompt-programming and simple
rules writing given the current status of LLMs.

Our global recognition approach simply consists in apply-
ing each rule R1, R2, R3 and R4 one after the other in this order.
Of course, our main contribution is not in the design of these
four rules, which are excessively simple and can be written in
a few minutes by any application developer, but in the proposal
to exploit a powerful LLM in a zero-shot way in order to make
these rules much easier to implement than with standard pro-
gramming languages. In other words, thanks to their inherent
semantics capabilities, LLMs enable application developers to
express more abstract and high-level rules than with traditional
rule-based methods. More specifically, we propose to exploit
the BART-MNLI model in two ways:

1. Next word prediction
The model generates the most likely following word.
This generation mode is used in R1: we let the BART
model generates the most probable word candidates that
may follow our target question: If either yes, no or yeah
are present among the predicted word candidates, then
we label this question with the Yes-no question tag.

2. Entailment score prediction
This configuration predicts an entailment score based on
the input pair of sequences (premise and hypothesis).
The model takes the input and provides an output vector
with 3 scores: contradiction, neutral and entailment.
This entailment mode is used in R3: If “or” occurs af-
ter the beginning of an utterance, we split the utterance
in two parts according to the position of “or” and check
whether both parts are in contradiction. For this, we use
the BART-MNLI model as illustrated in Figure 1. The
first part of the utterance is considered as the premise
and the second part is the hypothesis. The BART-MNLI
model then predicts the scores for contradiction, neutral-
ity and entailment (CNE scores) and if the contradiction
score is high enough (softmaxed score above 75%), the

utterance is classified as Or question. The global pro-
cess and the 75% contradiction threshold were designed
based on prior knowledge and a few manual tests on ut-
terances from the validation corpus.

3. Related Work
LLMs have the nice property to be able to solve various NLP
tasks in a Zero-Shot way, i.e., without fine-tuning them on the
target task. This is classically achieved by prefixing the input
with well-designed prompts that contextualize the LLM towards
the target task [1]. Advanced prompting strategies include de-
composing the task-specific reasoning into several steps with
chain of thoughts [12] and training soft prompts [13]. However
this strategy seems to fail for some tasks, such as dialogue act
recognition, mainly because of the difficulty to design relevant
prompts. We thus propose a complementary approach that ex-
ploits frozen LLMs into programming scripts for such tasks.

The performance of supervised dialogue act recognition has
significantly improved with the development of pre-trained lan-
guage models and transformers. Colombo et al. [14] inves-
tigated the usage of seq2seq deep models inspired by neural
machine translation with the attention mechanism. The exper-
iments were conducted on MRDA and Switchboard (SwDA)
[15] corpora with excellent results. Raheja and Tetreault [16]
proposed a DA recognition model where the key components
are context-aware self-attention and bidirectional GRU [17].
The input features were created by a combination of pre-trained
ELMo [18] and Glove [19] word embeddings with good results
on the MRDA and SwDA corpora. The more specific question
type recognition task is often carried out on the TREC corpus,
for instance in [20, 21]. However, the question types in TREC
focus on whether a question should be answered with a per-
son name, or a location, etc., while we focus in this work on
question types that are more related to dialogue acts. In this
context, a reference work has been done by Margolis and Os-
tendorf [22], who investigated supervised question detection on
MRDA using a combination of lexical and prosodic features.

4. Application on the MRDA Corpus
The Meeting Recorder Dialogue Act (MRDA) corpus contains
three levels of annotations: basic label, general label and spe-
cific label. The basic level of DA annotation includes five
main categories, namely: Statement, BackChannel, Disruption,
FloorGrabber and Question. In our task, we use general la-
bels (12 labels in total). Additional information about disrup-
tion forms (indecipherable, abandoned, or interrupted) are also
given if necessary. More details about the dataset and its tax-
onomy can be found in Meeting recorder project: Dialog act
labeling guide [23]. The six types of questions in MRDA are
shown in Table 1, along with the corresponding labels and num-
ber of sentences.

Question Type Label Counts
Yes-no Question qy 804 (67.4 %)
Wh-Question qw 259 (21.7 %)
Or-Clause qrr 24 (2.0 %)
Or-Question qr 28 (2.3 %)
Open-ended Question qo 27 (2.3 %)
Rhetorical Question qh 51 (4.3 %)

Table 1: Question types information in MRDA test dataset



These six types of questions are also explored by Margolis
and Ostendorf in their work [22]. Questions constitute ≈ 6.5%
of all utterances in the MRDA corpus and the most frequent
question type is Yes-no question.

4.1. Question Detection

Our first step consists in filtering out non-question turns from
the MRDA corpus. In this corpus, every question ends with a
question mark; so we first simply filter out every dialogue turn
that does not end with a question mark. Then, based on the
observations from [22] we further exclude the following types
of sentences, which are not considered as real questions:

• Hold Before Answer/Agreement→ h;

• Floor Holder→ fh;

• Floor Grabber→ fg.

This filtering pre-processing is applied similarly to the three
MRDA sub-corpora (train, test, val) before passing them to the
Question Type Classification stage.

4.2. Question Type Classification

We leverage BART-MNLI to detect whether the target sentence
is a Yes-no question. Note that we do not access the actual fol-
lowing answer, but we just ask BART-MNLI whether this sen-
tence may be followed by a yes-no answer. So writing a sim-
ple and intuitive rule such as R1 is only possible thanks to the
rich information present in BART-MNLI. For R2, we search
for the key word “or”. According to the MRDA manual, the
class Or-Clause is determined by the fact that it follows Yes-no
questions and always starts with “or” (e.g. “or Saturday?”, “or
something?”). So a simple pattern matching rule detects the Or-
Clauses. For R3, we again rely on the semantics information
encoded in BART-MNLI to assess whether the two parts of the
question separated by “or” are indeed alternatives.

to add or to delete?Utterance that
contains "or"

to add? to delete?Two parts

BART-MNLI Zero-Shot
Classification

High Contradiction score

Figure 1: Example of an Or-question

The last remaining category is the Wh-question. We simply
search for one of the Wh words3. If at least one of them is found
at the beginning of an utterance (first three words), we predict
the Wh question label.

4.3. Supervised LSTM-based Model

Our baseline is a supervised model trained on features com-
puted by the same BART-MNLI model as described above. This
allows us to compare two types of transfer learning from BART-
MNLI: either as a ZSL model or with supervised fine-tuning.
Every question is tokenized and processed by the BART-MNLI

3how, why, whose, whom, who, which, where, when, what

model, without any classification nor generation head, result-
ing into feature vectors with 1024 dimensions. These vectors
are then fed into two uni-directional LSTMs layers. A softmax
layer outputs the most probable question type category.

Note that the BART-MNLI feature vectors are contextual,
and so, it is not really required to use a recurrent model: it is also
possible to use a single feature vector to represent the whole
sentence, or to pool all feature vectors by, e.g., averaging. Our
preliminary experiments suggested that the LSTM was slightly
better, and this is why we have chosen it next. For comparison,
the baseline performance obtained when always answering the
most frequent class, which is Yes-no Question, is also reported
in our experiments (Majority Classifier).

The hidden state dimension is set to 500 in both LSTM lay-
ers. The model is trained with the Adam optimizer and the
learning rate is set to 0.001. 20 training epochs are realized.
These hyper-parameters have been tuned on the validation data.

5. Experiments
We present and discuss next the overall performance as well as
the accuracy, precision, recall and F1-score per question type.

5.1. 4-class classification results

Maj. Class LSTM Zero-shot
Precision (macro) 12.0 44.4 56.8
Recall (macro) 16.7 40.8 54.1
F1 (macro) 13.9 42.2 54.9
Accuracy 67.4 89.1 88.8

Table 2: Performances of the proposed model and baselines on
MRDA-test (4 class) [in %]

We can see in Table 2 that our proposed ZSL approach
outperforms the majority-class baseline by a large margin, and
compares favorably with our supervised model, which has been
trained on the full labeled training corpus. The difference be-
tween the accuracy and F1 metrics is due to the fact that the test
labels are largely unbalanced. This result confirms that the pro-
posed ZSL approach is adapted to the question type recognition
task, as it successfully exploits relevant information stored in
the large pretrained language model.

qy qw qrr qr
Majority class baseline

Precision 67.4 0.0 0.0 0.0
Recall 100.0 0.0 0.0 0.0
F1 80.5 0.0 0.0 0.0

LSTM baseline
Precision 94.5 79.8 75.0 28.3
Recall 90.3 91.5 87.5 53.6
F1 92.4 85.3 80.8 37.0

Proposed model
Precision 88.6 93.2 88.5 70.4
Recall 97.6 63.3 95.8 67.9
F1 92.9 75.4 92.0 69.1

Table 3: Comparison of the models per class [in %]

Table 3 further shows that the R1 rule performs particularly
well, with high recall and F1 metrics for detecting yes-no ques-



tions; F1 is also comparable between the ZSL and supervised
models. This confirms that BART-MNLI is a model that can
correctly predict when yes-no answers are expected. Although
it performs worse in absolute value when asked to detect contra-
dictions in Or-Questions (qr), it still outperforms the supervised
LSTM on the R3 rule.

qy 769 24 4 7

qw 48 207 0 2

qrr 9 0 14 1

qr 19

qy

2

qw

4

qrr

3

qr

Tr
ue

L
ab
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Pred LSTM Label

785 10 1 8

94 164 1 0

1 0 23 0

6

qy

2

qw

1

qrr

19

qr
Pred ZSL Label

Figure 2: Confusion matrices (4-class)

5.2. Extension to the 6 question types

Our proposed ZSL approach is not designed to support all 6
question types in MRDA. However, for fair comparison, we
also report next the performances of our model when the Open-
ended and Rhetorical questions are included. Our proposed ap-
proach can never predict both classes.

Table 4 shows the averaged performances of all approaches
on the MRDA test data (all 6 classes included).

Maj. Class LSTM Zero-shot
Precision (macro) 11.2 57.7 54.7
Recall (macro) 16.7 61.3 52.7
F1 (macro) 13.4 58.3 51.8
Accuracy 67.4 85.0 93.1

Table 4: Performances on MRDA-test (6 classes) [in %]

Conversely to Table 2, our proposed approach is now worse
than the supervised LSTM on the detection metrics, which re-
sults from the fact that, by design, it does not detect any sample
of the two additional classes. In terms of classification accu-
racy, it was comparable with the LSTM in Table 2, while it is
now significantly better, which is due to the fact that the two
new question types occur rarely in the corpus; when the LSTM
predicts them, its classification error rate is larger for them than
on the less difficult 4 previous classes, as can be seen by com-
paring the confusion matrices in Figures 3 and 2.

qy 726 30 3 29 7 9

qw 11 237 0 3 1 7

qrr 1 1 21 0 0 1

qr 9 1 1 15 0 2

qo 3 10 0 2 9 3

qh 18
qy
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3
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qw 31 227 1 0 0 0

qrr 1 0 23 0 0 0

qr 15 2 1 10 0 0

qo 11 16 0 0 0 0

qh 22
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4
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1
qr

0
qo

0
qh

Pred ZSL Label

Figure 3: Confusion matrices (6-class)

Table 5 shows the performances per class, and further com-
pares them with the only work we have found that reports re-
sults on the same subtask [22]: we used Informedness [24] for

qy qw qrr qr qo qh
Majority class baseline

Precision 67.4 0.0 0.0 0.0 0.0 0.0
Recall 100.0 0.0 0.0 0.0 0.0 0.0
F1 80.5 0.0 0.0 0.0 0.0 0.0

LSTM baseline
Precision 94.5 79.8 75.0 28.3 47.4 21.4
Recall 90.3 91.5 87.5 53.6 33.3 11.8
Selectivity 89.2 93.6 99.4 96.7 99.1 98.1
F1 92.4 85.3 80.8 37.0 39.1 15.2

Proposed model
F1 93.6 82.2 85.2 50.0 0.0 0.0
Precision 90.7 77.5 76.7 83.3 0.0 0.0
Recall 96.8 87.6 95.8 35.7 0.0 0.0
Selectivity 79.4 92.9 99.4 99.8 100 100
Informedness 76.2 80.6 95.2 35.5 0 0

Margolis & Ostendorf [22]
Informedness 69.4 76.3 83.3 80.2 75.3 74.0
Recall 86.1 93.0 100 96.9 92.0 90.7
Selectivity 83.3 83.3 83.3 83.3 83.3 83.3

Table 5: Comparison of the models per class [in %]

the latter comparison, because [22] only reports recall for a con-
stant selectivity, so we can not compute more common global
metrics from these published figures. We can see that the pro-
posed zero-shot approach gives comparable F1 results than the
supervised LSTM, and comparable Informedness results than
the supervised model in [22] except for qr.

6. Conclusions
Exploiting large pretrained language models for zero-shot
learning has been successfully proposed for many NLP tasks
before, as listed for instance in [1]. However, the zero-shot
learning paradigm is difficult to apply in some tasks, for which
prompts are hard to design or fail to characterise precisely
enough the target task. This is the case for dialogue act recog-
nition, and more specifically the question type classification
task. Therefore, we propose another ZSL paradigm that does
not rely on prompts but on simple and intuitive rules, which
are easier to design. We validate this approach with four sim-
ple rules to detect four common question types in the MRDA
corpus. Two of these four rules exploit two different ZSL ca-
pabilities of the BART-MNLI model: generating the following
word, and detecting contradiction between two clauses. We
show that this approach, which does not involve training any
supervised model, gives competitive performances with a super-
vised LSTM trained on the full MRDA training corpus. How-
ever, just like with prompt programming, the proposed ZSL ap-
proach is limited by its fundamental design assumption, i.e.,
that there exists some intuitive and simple rule that may bene-
fit from the ZSL capabilities of LLMs to characterize the tar-
get class. Hence, we could not recognize two question types:
open-ended and rhetorical questions. Solving this challenge
may either require inventing a new ZSL paradigm, or waiting
for LLMs to improve and become powerful enough to be able
to directly answer such a prompt. In the meantime, the proposed
ZSL paradigm described in this work may help to exploit LLMs
in new unsupervised tasks that they could not solve so far with
the standard prompt programming approach.
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