Claudia Faggian

Giulio Guerrieri

Strategies for Asymptotic Normalization

Keywords: 2012 ACM Subject Classification Theory of computation → Models of computation; Theory of computation → Equational logic Keywords and phrases rewriting, strategies, normalization, lambda calculus, probabilistic rewriting Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.17

We present an abstract technique to study normalizing strategies when termination is asymptotic, that is, it appears as a limit. Asymptotic termination occurs in several settings, such as effectful, and in particular probabilistic computation -where the limits are distributions over the possible outputs -or infinitary lambda-calculi -where the limits are infinitary terms such as Böhm trees.

As a concrete application, we obtain a result which is of independent interest: a normalization theorem for Call-by-Value (and -in a uniform way -for Call-by-Name) probabilistic lambda-calculus.

Introduction

Probabilistic computation is an example of computational paradigm where the notion of termination is asymptotic, that is, it appears as a limit, as opposed to reaching a normal form in a finite number of steps. Streams, infinitary λ-calculus, algebraic rewriting systems, effectful computation, are other examples: the notion of asymptotic computation is pervasive. Here, we investigate asymptotic normalization, and propose a technique to prove that a strategy is guaranteed to produce a maximal or -ideally -the best possible result. Our technique is abstract (in the sense of Abstract Rewriting Systems) and so of general application.

Rewriting is a foundation for the operational theory of formal calculi and programming languagesλ-calculus being the paradigmatic example where rewriting is an abstract form of program execution. Even if a programming language is usually defined by a specific evaluation strategy, to have a general rewriting theory allows for program transformations, optimizations, parallel/distributed implementations, and provides a base on which to reason about program equivalence. The λ-calculus has a rich theory that studies the properties of reductions. Asymptotic computation is much less understood from a rewriting point of view, with the notable exception of infinitary λ-calculus, whose rewriting theory, pioneered in [START_REF] Berarducci | Church-Rosser λ-theories, infinite λ-calculus and consistency problems[END_REF][START_REF] Kennaway | Transfinite Reductions in Orthogonal Term Rewriting Systems[END_REF][START_REF] Kennaway | Infinitary lambda calculus[END_REF], has been extensively studied.

The process of rewriting describes the computation of a result. Normal forms, head normal forms, values, may or must termination, are all possible notions of result. For concreteness, let us focus on normal forms. Operationally, key questions about a system are the existence and uniqueness of normal forms, but also how the result is computed. In a finitary setting we would ask: may a computation produce a result (Existence of normal forms)? If so, is the result unique? Do different computations on the same input lead to the same result (Uniqueness of normal forms)? How to compute a result? Is there a reduction strategy that is guaranteed to output a result, if any exists (Normalizing strategy)? In the asymptotic case, such questions are still relevant, but need to be opportunely formulated. To answer On the workflow (and the limits of confluence). The λ-calculus has two fundamental syntactical results: confluence, which implies uniqueness of normal forms, and the standardization theorem, which implies normalization, namely that a normal form (if any) can be reached by a computable strategy, which is a standard reduction (typically, left-to-right). Uniqueness guarantees that the notion of result is well defined, normalization provides a method to actually compute it.

A common workflow when studying λ-calculi is to first prove uniqueness of normal forms (via confluence), then normalization (via standardization). However, in an asymptotic setting confluence does not directly imply that the set of limits has a greatest element, but only that it has a least upper bound. So, even if confluence is established, one still needs to prove that the lub is itself a limit, which may be a non-trivial task. For example, in the probabilistic λ-calculus [START_REF] Faggian | Probabilistic Rewriting: Normalization, Termination, and Unique Normal Forms[END_REF][START_REF] Faggian | Probabilistic Rewriting and Asymptotic Behaviour: on Termination and Unique Normal Forms[END_REF][START_REF] Faggian | Lambda Calculus and Probabilistic Computation[END_REF], such a proof relies on (technical) properties of probability distributions.

In this paper, we reverse the workflow, and focus on normalization. In the finitary setting, if a rewriting relation → has a strategy → e ⊂ → that satisfies a suitable completeness hypothesis and uniqueness of normal forms, so does → (see [START_REF] Roel | Conditional linearization[END_REF]). With opportune definitions, this lifts well to the asymptotic setting. Forgoing confluence and focusing on normalization yields an efficient and uniform method which is easy to apply and which provides simultaneously (1.) existence and uniqueness of maximal limits, and (2.) a strategy to compute it.

Content and contributions.

We start by illustrating asymptotic computation with examples (Sect. 1.1). Instances of asymptotic computation are quite diverse, and the syntax of each system may be rather complex. To study rewriting abstractly, in the spirit of Abstract Rewriting Systems (ARS), makes possible to analyze asymptotic properties in a way independent of a particular syntax, and to develop general proof techniques. In Sect. 2 we present the setting of Quantitative Abstract Rewriting Systems (QARS) [START_REF] Faggian | Probabilistic Rewriting and Asymptotic Behaviour: on Termination and Unique Normal Forms[END_REF], which are ARS enriched with a notion of observation. QARS are a natural refinement of ARSI [START_REF] Ariola | Skew confluence and the lambda calculus with letrec[END_REF].

Our first original contribution, and the heart of this paper, is Sect. 3, which proposes a proof technique to study asymptotic reduction strategies, and properties of the limits. We first introduce asymptotic normalization, which gives at the same time a tool to establish the existence of maximal limits -or of a greatest one -and a way to compute it. It formalizes the intuition that a normalizing strategy gradually computes (in a finite or infinite number of steps) the/a maximal amount of information that an element t can produce. We then show (Sect. 3.1) that asymptotic normalization can be established by proving that a strategy is asymptotically complete and has a unique limit. Remarkably, such infinitary properties reduce to a finitary one, factorization (a simple form of standardization) and to some local, elementary tests, yielding a practical and versatile proof-technique.

We then apply our method to some representative case studies based on λ-calculus. In order to do so, we first revisit normalization for λ-calculus -uniformly for Call-by-Value and Call-by-Name -so as to have a (novel) normalizing strategy (Sect. 4.2) which is well-suited to asymptotic normalization, and to deal with (CbV and CbN) probabilistic λ-calculi. The application of our method to probabilistic λ-calculus yields a result of independent interest, which was left as open question in [START_REF] Faggian | Lambda Calculus and Probabilistic Computation[END_REF] (Remark 27 there), namely a theorem of asymptotic normalization for Call-by-Value probabilistic λ-calculus. We develop the CbV case explicitly in Sect. 5.1 -the same results hold in a uniform way for Call-by-Name. The same technique applies to other monadic calculi such as calculi with output (as we sketch in Sect. 6), but also to the asymptotic computation of Böhm trees, which can be obtained as the limit of a normalizing strategy (we leave this case to Appendix D.2).

Three examples of Asymptotic Computation

We illustrate three diverse examples of asymptotic computation, where the result of the computation is the limit of an infinitary process. All three examples are built on λ-calculus.

Probabilistic computation.

A probabilistic program P is a stochastic model generating a distribution over all possible outputs of P . Even if the termination probability is 1 (almost sure termination), that degree of certitude is typically not reached in a finite number of steps, but as a limit. A standard example is a term M that reduces to either a normal form or F S C D 2 0 2 2 17:4

Strategies for Asymptotic Normalization

M itself, with equal probability 1/2. After n steps, M is in normal form with probability

1 2 + 1 2 2 + • • • + 1 2 n .
Only at the limit this computation terminates with probability 1. A direct way to model higher-order probabilistic computation is to endow the untyped λ-calculus with a binary operator ⊕ which models fair, binary probabilistic choice: M 1 ⊕ M 2 reduces to either M 1 or M 2 with equal probability 1/2; we write this as

M 1 ⊕ M 2 → [1 2 M 1 , 1 2 M 2].
Intuitively, the result of evaluating a probabilistic term is a distribution on its possible outputs.

▶ Example 1. Let ∆ ⊕ = λx.I ⊕ (xx), where I = λx.x. The term M := ∆ ⊕ ∆ ⊕ has the behavior we have described above, and evaluates to I with probability 1 only at the limit.

Computations with output. Consider a program that can print an output. Following [START_REF] Gavazzo | Coinductive Equivalences and Metrics for Higher-order Languages with Algebraic Effects[END_REF], we can represent this with a pair s : M , where s is a string over an alphabet A, and M is a term of the λ-calculus extended with a set of operators out = {out c | c ∈ A}. The term out c (P) outputs c, adding it to the string, and continues as P . That is, ⟨s : out c (P)⟩ → ⟨c.s : P ⟩.

▶ Example 2. Let A = {0, 1}, and ∆ 0 := λx.out 0 (xx). The computation from ⟨ϵ : ∆ 0 ∆ 0 ⟩ (with ϵ the empty string) produces a stream: a string of 0's whose length tends to infinity. [START_REF] Berarducci | Church-Rosser λ-theories, infinite λ-calculus and consistency problems[END_REF][START_REF] Kennaway | Transfinite Reductions in Orthogonal Term Rewriting Systems[END_REF][START_REF] Kennaway | Infinitary lambda calculus[END_REF] model infinite structures in λ-calculi. Terms and reduction sequences need not be finite. An infinite reduction sequence is strongly convergent if the depth of the contracted redex tends to infinity. Based on different depth measures, in [START_REF] Kennaway | Infinitary lambda calculus[END_REF] eight different infinitary λ-calculi are developed. If the calculus is confluent, the infinite normal form of a term N is unique, and it is the meaning of N . Infinite normal forms are well-known in λ-calculus in the form of Böhm trees [START_REF] Pieter | The Lambda Calculus -Its Syntax and Semantics, volume 103 of Studies in logic and the foundations of mathematics[END_REF] or Lévy-Longo trees [START_REF] Lévy | Réductions correctes et optimales dans le lambda calcul[END_REF].

Infinite Normal Forms. Infinitary λ-calculi

▶ Example 3. Let ∆ z := λx.z(xx). In the (infinite) reduction sequence ∆ z ∆ z → β z(∆ z ∆ z) → β z(z(∆ z ∆ z)) → β z(z(z(∆ z ∆ z))) . . . ,

Motivations, and necessity, for non-deterministic evaluation

In this paper we are concerned with evaluation towards a limit. We allow the evaluation → e (the normalizing strategy) to be non-deterministic. Let us discuss the motivations.

A programming language which is built on a λ-calculus implements a specific evaluation strategy → e of the general reduction →. The evaluation strategy → e may or may not be deterministic, as long as all choices eventually yield the same result. Non-deterministic evaluation (written NDE) is a useful feature, which for example allows for parallel implementations, but in some cases is also a necessity and a key reasoning tool, as we discuss.

NDE subsumes different evaluation policies. A good illustration of this is in Plotkin's

Call-by-Value λ-calculus, whose general reduction is → βv . Weak evaluation (which does not reduce in the body of a function) evaluates closed terms to values. There are three main weak schemes (see Sect. 4.1): reducing left-to-right, as defined by Plotkin [START_REF] Plotkin | Call-by-Name, Call-by-Value and the lambda-Calculus[END_REF], rightto-left, as in Leroy's ZINC abstract machine [START_REF] Leroy | The ZINC experiment: an economical implementation of the ML language[END_REF], or in an arbitrary order. While left and right reduction are deterministic, weak reduction in arbitrary order is non-deterministic and subsumes both. 2. NDE supports parallel/distributed implementation. Non-deterministic evaluation does not define an abstract machine, but it includes all possible parallel implementations.

A reduction → e is a one-step (resp. multi-step) strategy for → if → e ⊆ → (resp. → e ⊆ → +), and it has the same normal forms as →. It is a normalizing strategy for → if, moreover, whenever t has a →-normal form, then every maximal → e -sequence from t ends in a →-normal form. Note that → may not have the property of unique normal forms. ▶ Remark 4. A familiar example of calculus where terms may not have a unique normal form is Call-by-Name Weak λ-calculus (weak means no reduction under λ), studied by Abramsky and Ong [START_REF] Abramsky | Full Abstraction in the Lazy Lambda Calculus[END_REF]. The term M = (λxy.x)(II) has two distinct normal forms, N 1 = λy.II and N 2 = λy.I. Weak head reduction is a normalizing strategy for it. However the strategy is not complete, in the sense that it produces the normal form N 1 , but it cannot reach N 2 .

A normalizing strategy → e need not be deterministic (a reduction → is deterministic if for all t ∈ A there is at most one s ∈ A such that t → s). However, → e is required to be uniformly normalizing, i.e., all reduction sequences from the same t have the same behavior.

A property of → e which guarantees uniform normalization is Newman's Random Descent (RD) [START_REF] Maxwell | On Theories with a Combinatorial Definition of Equivalence[END_REF]: for each t ∈ A, all maximal sequences from t have the same length and -if it is finite -they all end in the same element. The following property suffices to establish it.

▶

QARS

Ariola and Blom [START_REF] Ariola | Skew confluence and the lambda calculus with letrec[END_REF] have introduced the notion of Abstract Rewrite Systems with Information content (ARSI); a rewrite system is associated with a partial order that expresses the "information content" of the elements. ARSI however are tailored to infinite normal forms in the sense of Böhm and Levy-Longo trees: limits are there given by the ideal completion [3, Prop. 1.1.21] of the partial order. QARS [START_REF] Faggian | Probabilistic Rewriting and Asymptotic Behaviour: on Termination and Unique Normal Forms[END_REF] move from partial orders to ω-complete partial orders (ω-cpos) -this is enough to capture also effectful computation, such as the probabilistic one. We illustrate the key notions with several examples, including the calculi from Sect. 1.1.

Computation is a process that produces a result by gradually increasing the amount of available information -the standard structure to express a result in terms of partial information is that of an ω-cpo. Recall that a partially ordered set S = (S, ≤) is an ωcomplete partial order (ω-cpo) if every ω-chain s 0 ≤ s 1 ≤ . . . has a supremum. We assume that ≤ has a least element ⊥. The elements of S are denoted by bold letters s, p, q.

Let (A, →) be an ARS. With each t ∈ A is associated a notion of (partial) information, called observation, by means of a function from A to an ω-cpo. Def. 6 formalizes this idea.

▶ Definition 6 (QARS). A quantitative ARS (QARS) is an ARS (A, →) with a function obs

: A → S (where S is an ω-cpo) such that for all t, s ∈ A, if t → s then obs(t) ≤ obs(s).
Intuitively, the function obs observes a specific property of interest about t ∈ A, and indicates how much stable information t delivers: the information content is monotonically increasing during computation. Notice that obs may take numerical values, but needs not.

▶ Example 7. 1. λ-calculus: let S = {0 < 1} and obs n (t) = 1 if t is normal, 0 otherwise. 2. Probabilistic λ-calculus: take S = ([0, 1], ≤ R)
, and for obs the probability to be in normal form (we will formalize this in Sect. 5 , see obs pn (m) in Fig. 4.) 3. Infinitary λ-calculus: take S = N ∞ = N ∪ {∞} with the usual order, and for obs the function which associates with any term t the minimal depth k of any redex in t.

▶ Example 8 (Non-numerical obs).

1. λ-calculus: take for S the flat order on normal forms, and define obs N (u) = u if u is normal, obs N (u) = ⊥ otherwise. 2. Probabilistic λ-calculus: take for S the ω-cpo of the subdistributions on normal forms D(N) (we will formalize this in Sect. 5, see Fig. 4). 3. Infinitary λ-calculus: take the ω-cpo of the partial normal forms that are associated with λ-terms (see [START_REF] Amadio | Domains and Lambda-Calculi[END_REF] page 52, and Appendix D.2).

Limits as Results

. From now on, let Q = ((A, →), obs) be an arbitrary but fixed QARS. By definition, given a →-sequence ⟨t n ⟩ n , its limit sup n {obs(t n)} with respect to obs always exists, because S is an ω-cpo. If → is deterministic -hence any t has a unique maximal →sequence -it is standard to interpret the limit as the meaning of t. In a QARS, t has several possible reduction sequences, and so can produce several outcomes (limits). Following [START_REF] Faggian | Probabilistic Rewriting: Normalization, Termination, and Unique Normal Forms[END_REF]:

▶ Definition 9 (obs-limits). Let t ∈ A. We write t → ∞ obs p, if there exists a →-sequence ⟨t n ⟩ n from t whose limit sup n {obs(t n)} = p; Lim obs (t, →) is the set {p | t → ∞
obs p} of limits from t; t denotes the greatest element of Lim obs (t, →), if it exists.

The notations omit the subscript obs when the function obs is clear from the context. Intuitively, t is well defined if different reduction sequences from t do not produce essentially different results: if q ̸ = p then they both approximate a same result r (i.e., q, p ≤ r).

Thinking of usual rewriting, consider obs N as in Example 8, point 1: here to have a greatest limit exactly corresponds to uniqueness of normal forms.

m = [I ⊕ ∆∆] ⇒ [1 2 I, 1 2 ∆∆] ⇒ [1 2 I, 1 2 ∆∆] ⇒ Here Lim obspn (m, ⇒) = { 1 2 }.

3.

Infinitary λ-calculus: consider the reduction sequence in Example 3. The depth of the redex (∆ z ∆ z) tends to ∞, which is the limit.

Note that maximal elements of Lim obs (t, →) need not be maximal elements of S. For instance, in Example 10.2, the term I ⊕ (∆∆) converges with probability 1 2 (rather than 1). As a consequence, the set of limits may or may not have maximal elements. The fact that Lim obs (t, →) may have a lub but not a maximum -similarly to N in N ∞ or the real interval [0, 1) -is also easy to realize.

Even if Lim obs (t, →) has maximal elements, a greatest limit does not necessarily exist: different reduction sequences may lead to different limits. The probabilistic λ-calculus and the λ-calculus with output provide several natural examples. Point 2 in Example 11 below shows moreover that the set of limits is -in general -uncountable.

▶ Example 11 (Output λ-calculus). Consider the calculus sketched in Example 2. Let Out

A = (A * × Λ out , → w)
, where reduction is CbV and weak, with the obvious definitions. Let S be the ω-cpo of strings, and let obs(⟨s : M ⟩) = s. Clearly, (Out A , obs) is a QARS. 1. Let m = ⟨ϵ : out 0 (I)out 1 (I)⟩. Lim obs (m, → w) contains two limits, 10 and 01, both maximal, because m → w ⟨0 : Iout 1 (I)⟩ → w ⟨10 : II⟩, but also m → w ⟨1 : out 0 (I)I⟩ → w ⟨01 : II⟩.

Let m

′ = ⟨ϵ : M ′ ⟩ for M ′ = (∆ 0 ∆ 0)(∆ 1 ∆ 1)
. This produces all possible sequences on the alphabet {0, 1}. So Lim obs (m ′ , → w) has uncountable many elements, all maximal.

F S C D 2 0 2 2 17:8

Strategies for Asymptotic Normalization

We are interested in the case when a greatest limit exists. The reason is that if Lim obs (t, →) has a sup s ∈ S which does not belong to Lim obs (t, →), no reduction sequence converges to s; that is, we cannot compute s internally to the calculus.

Strategies and Asymptotic Normalization

The question of whether the result t of computing an element t is well defined is natural.

Equally natural is to wonder if there is a strategy that is guaranteed to compute t . These two questions are at the core of this section. The existence of unique normal forms is independent of that of a normalizing strategy (see Remark 4). However, the computationally interesting case is (often) when both hold, so we will focus on this case. We say that a reduction → e ⊆→ is (asymptotically) normalizing if each → e -sequence from a given t converges maximally. We decompose this property in two properties: completeness and uniformity, which we discuss after the formal definition.

▶ Definition 12 (Asymptotic properties). Given a QARS (A, →), obs , a subreduction → e ⊆ → is asymptotically normalizing for → (or obs-normalizing) if it is both asymptotically complete and uniform, where 1. → e is asymptotically complete (or obs-complete) if

(∀t ∈ A) : t → ∞ obs q implies t→ e ∞
obs p for some p such that q ≤ p;

2. → e is asymptotically uniform (or obs-uniform) if (∀t ∈ A) : all elements in Lim obs (t, → e) are maximal in Lim obs (t, → e).

All definitions adapt to → e multistep subreduction of →.

Let us discuss all components, comparing with their ARS analog.

Completeness guarantees that the strategy → e is as good as → in the amount of information it produces.

Completeness is not enough: an asymptotically complete strategy is not guaranteed to find a/the "best" result: in Sect. 5.1 we will study a reduction ⇒ e which is complete, but need not converge to the greatest limit (Remark 25). Let us first see a classical example.

▶ Example 13. In the usual λ-calculus (as in Example 10.1), the term M = (λx.I)(∆∆) has a → β -sequence which reaches I, and a diverging one. The leftmost-outermost strategy always produces I (it is complete and normalizing). Notice that → β is trivially a complete strategy for → β , but it is not normalizing, because M has a diverging → β -sequence. Indeed, → β is complete, but not uniform.

Asymptotic uniformity expresses that all → e -sequences from a term behave the same way. This corresponds to the ARS notion of uniform normalization: the reduction sequences from a term either all diverge, or all terminate (not necessarily in the same normal form).

Normalizing strategies. If we consider usual ARS, and assume obs as in Example 7.1, expressing whether t is or is not normal, then a strategy for → that is obs-normalizing is exactly a normalizing strategy for → in the usual sense.

If → e ⊆→ is obs-complete, then Lim obs (t, →) has maximal elements (resp. a greatest element) if and only if Lim obs (t, → e) does. So we can reduce testing such properties for →, to testing the same properties for → e , which is often simpler to study. In particular, if we are able to find a reduction → e ⊆→ which is complete and moreover has a unique limit, then necessarily → has a greatest limit. That is, we can simultaneously answer both of our questions: whether t is well defined, and if some strategy is guaranteed to compute it.

▶ Proposition 14 (Main, abstractly). If the following hold i. → e is asymptotically complete for →;

ii. Lim obs (t, → e) contains a unique element (i.e. Lim obs (t, → e) = {p}, for some p).

Then: (1.) t is defined, and (2.) t→ e ∞ obs t , for each → e -sequence. Notice that condition (ii.) means that all → e -sequences from the term t have the same limit.

▶ Remark 15 (Asymptotically normalizing strategies). If a QARS is such that t is defined for each t, then the two notions -to be an obs-normalizing strategy and to satisfy the conditions in Prop. 14 -coincide. Indeed, any obs-normalizing strategy for →, if it exists, is forced to have a unique limit, that is, Lim obs (t, → e) = { t }.

A proof technique for Asymptotic Normalization

The two conditions in Prop. 14 give a method to prove normalization. The crucial step is to prove asymptotic completeness. Remarkably, as we show in this section, this can be reduced to prove a finitary property (factorization) and an elementary one-step test (neutrality).

The other condition in Prop. 14, namely uniqueness of limits, is trivial if the strategy is deterministic. Otherwise, random descent (opportunely formulated [START_REF] Faggian | Probabilistic Rewriting and Asymptotic Behaviour: on Termination and Unique Normal Forms[END_REF]) is a property that guarantees it, and that can also be established via a local test, as we recall below. While it is only a sufficient criterion, it often suffices to deal with non-deterministic evaluation strategies in λ-calculus, and in particular it suffices to deal with strategies in probabilistic λ-calculus.

Asymptotic Completeness via Factorization. The following theorem assumes a partition of the →-steps into two classes: essential steps → e and internal steps → ¬e . Point (i) states that every sequence → * factorizes into a → e -sequence followed by a → ¬e -sequence. Point (ii) states that the internal steps → ¬e do not increase the information content.

▶ Theorem 16 (Asymptotic completeness criterion). Given ((A, →), obs) a QARS, and a subrelation → e ⊆→, assume : i. e-factorization:

if t - → * u then t → e * • → ¬e * u;
ii. ¬e-neutrality: t → ¬e s implies obs(t) = obs(s). Then: t → ∞ obs p implies t → e ∞ obs p. Proof. Let ⟨t n ⟩ n be a →-sequence such that t = t 0 and sup n {obs(t n)} = p. From t, we inductively build a → e -sequence ⟨s n ⟩ n with s 0 = t and such that, for every k ∈ N, there is an 1. obs-RD: for each pair of → e -sequences ⟨r n ⟩ n , ⟨s n ⟩ n from t, obs(r n) = obs(s n) for all n.

2. obs-diamond: → e satisfies RD-diamond, and if t ← e m → e s then obs(s) = obs(t).

▶ Proposition 18 ([14]). With the same notation as in Def. 17

(II)(Ix) → w I(Ix) → w Ix → w x and (II)(Ix) → w (II)x → w Ix → w x.
The observations of interest are values. Let obs v : Λ -→ {0, 1} be 1 if the term is a value (i.e. a variable or an abstraction), 0 otherwise. Through the lenses of obs v , both sequences appear as ⟨0, 0, 0, 1⟩.

Normalization in CbV and CbN λ-calculi

In the rest of the paper, we study asymptotic normalization in the setting of λ-calculi -in particular we are interested in probabilistic λ-calculus (Sect. 5).

In this section, after recalling the general syntax of λ-calculus, we define a novel, flexible normalizing strategy, which is uniformly defined for Call-by-name (CbN) and Call-by-Value (CbV) λ-calculi. Its features -in particular the fact that it support breadth-first reductionmake it suitable to then be extended to asymptotic normalization, in different settings.

Call-by-Name and Call-by-Value (applied) λ-calculus

We recall the basics of λ-calculus. Our syntax admits operator symbols [START_REF] Jones | Introduction to Combinators and Lambda-Calculus[END_REF][START_REF] Plotkin | Call-by-Name, Call-by-Value and the lambda-Calculus[END_REF], i.e. constants with a fixed arity for their arguments. Terms and values are defined by the grammars below.

M ::= x | λx.M | M M | o(M, . . . , M) (Terms, Λ O) V ::= x | λx.M (Values, V)
where CbN and CbV Calculi. The (pure) Call-by-Name calculus Λ cbn = (Λ, → β) is the set of terms equipped with the contextual closure of the β-rule, as described e.g. in [START_REF] Pieter | The Lambda Calculus -Its Syntax and Semantics, volume 103 of Studies in logic and the foundations of mathematics[END_REF]. The (pure) Call-by-Value calculus Λ cbv = (Λ, → βv) is the same set equipped with the contextual closure of the β v -rule: (λx.M)V → βv M {V /x} where V ∈ V, as introduced by Plotkin [START_REF] Plotkin | Call-by-Name, Call-by-Value and the lambda-Calculus[END_REF].

CbN and CbV applied calculi are obtained by associating to operators (the contextual closure of) a family of rules of the form o(M 1 , . . . , M k) → o N . This is a standard way to enrich λ-calculus with new computational features, such as probabilistic choice or output.

Weak reductions in CbV. In CbV λ-calculus, various restrictions of → βv are studied. If the result of interest are values, the reduction is weak, that is, it does not reduce in the body of a function. There are three main weak schemes: left, right and in arbitrary order. Left contexts L, right contexts R, and (arbitrary order) weak contexts W are defined by

L ::= | LM | V L R ::= | M R | RV W ::= | WM | M W Given a rule → on Λ, weak reduction → w is the closure of → under context W. A step T → S
is non-weak, noted T → ¬w S if it is not weak. Similarly for left (→ l and → ¬l), and right (→ r and → ¬r). Left and right reduction are deterministic. Reduction → w βv subsumes both. The choice of a redex is non-deterministic, but irrelevant w.r.t. reaching a value and the number of steps to do so, because → w βv is RD-diamond (Fact 5). We can fire any arbitrary redex in weak position -or all of them in parallel. A parallel variant can easily be defined.

Weak factorization holds for the three reductions: → βv * ⊆ → s βv * • → ¬s βv * , for s ∈ {w, l, r}.

Head reduction in CbN. Head reduction [START_REF] Pieter | The Lambda Calculus -Its Syntax and Semantics, volume 103 of Studies in logic and the foundations of mathematics[END_REF]

A strategy for finitary normalization in CbV and CbN λ-calculus

We revisit normalization for λ-calculus -uniformly for CbV and CbN -and define a strategy which is well-suited to be extended to probabilistic λ-calculi, and to asymptotic normalization. It supports non-deterministic head and weak reduction (as needed in the probabilistic case) and breadth-first evaluation of redexes (as needed to deal with infinitary reduction graphs). We call surface reduction weak reduction in CbV and head reduction in CbN, because they only fire redexes at depth 0, where in CbV the depth of a redex R is the number of abstractions in which R is nested, and in CbN is the number of arguments. Normal forms for β and β v can be computed by iterating surface reduction in a suitable way, as we show below.

F S C D 2 0 2 2

A parallel variant. Once a term is → s -normal, the process can be iterated in any arbitrary order, or in parallel. Parallel (multi-step) reduction → //u is easily defined (Appendix B.1).

Probabilistic λ-calculi and Asymptotic Normalization

A standard way to model probabilistic choice (a fair coin) is by means of a binary operator ⊕. We write M ⊕ N for ⊕(M, N). Intuitively, M ⊕ N reduces to either M or N , with equal probability 1 2 . Reduction is then defined not simply on terms but on (monadic) structures representing probability distributions over terms. Here we follow [START_REF] Faggian | Lambda Calculus and Probabilistic Computation[END_REF], which defines both a CbV and a CbN calculus Λ cbv ⊕ and Λ cbn ⊕ , where β or β v reduction are "as usual", so if a term contains no probabilistic operator, it behaves the same as in the usual λ-calculus (i.e. the extension is conservative). Probabilistic reduction instead needs to be constrained in order to have good properties such as confluence (see [START_REF] Faggian | Lambda Calculus and Probabilistic Computation[END_REF], and [START_REF] De | Non Deterministic Extensions of Untyped Lambda-Calculus[END_REF][START_REF] Dal | Probabilistic operational semantics for the lambda calculus[END_REF] for a discussion of the issues).

Discrete Probability Distributions. Given a countable set Ω, a function µ : Ω -→ [0, 1] is a probability subdistribution if ∥µ∥ := ω∈Ω µ(ω) ≤ 1 (a distribution if ∥µ∥ = 1). Subdistributions allow us to deal with partial results. We write D(Ω) for the set of subdistributions on Ω, equipped with the pointwise order on functions: µ ≤ ρ if µ(ω) ≤ ρ(ω) for all ω ∈ Ω. D(Ω) has a bottom element (the subdistribution 0) and maximal elements (all distributions).

Multi-distributions.

We use multi-distributions [START_REF] Avanzini | On probabilistic term rewriting[END_REF] to syntactically represent distributions, A multi-distribution m = [p i M i] i∈I on the set of terms Λ O is a finite multiset of pairs of the form pM , with p ∈]0, 1], M ∈ Λ O , and i p i ≤ 1. The set of all multi-distributions on Λ O is M(Λ O). The sum of multi-distributions is noted +. The product q • m of a scalar q and a multi-distribution m is defined pointwise q

[p i M i] i∈I := [(qp i)M i] i∈I . We write [M] for [1M].
Syntax. Terms (Λ ⊕) and values are as in Sect. 4.1, with the operator o being here ⊕.

Call-by-Value. The calculus Λ cbv

⊕ is the rewrite system (M(Λ ⊕), ⇒) where M(Λ ⊕) is the set of multi-distributions on Λ ⊕ and the relation ⇒⊆ M(Λ ⊕) × M(Λ ⊕) is defined in Fig. 1 and Fig. 2. First, define one-step reductions from terms to multi-distributions -so for example,

M ⊕ N → [1 2 M, 1 2 N].
Then, lift the definition of reduction to a binary relation on M(Λ ⊕), in the natural way -for instance

[1 2 (λx.x)z, 1 2 (M ⊕ N)] ⇒ [1 2 z, 1 4 M, 1 4 N]. Precisely: 1. The reductions → βv , → ⊕ ⊆ Λ ⊕ ×M(Λ ⊕)
are defined in Fig. 1. Contexts C and W are as in Sect. 4.1. Note that β v is closed under arbitrary context, while the ⊕ rule -probabilistic choice -is closed under weak contexts W (no reduction in the scope of λ or ⊕). We write → s βv for the closure of

β v under context W. The relation → is → βv ∪ → ⊕ . Surface reduction is → s = → s βv ∪ → ⊕ . A →-step which is not surface is noted → ¬s .
2. The lifting of a relation → r ⊆ Λ ⊕ × M(Λ ⊕) to a reduction on multi-distributions is defined in Fig. 2. In particular, →, → βv , → ⊕ , → s , → ¬s lift to ⇒, ⇒ βv , ⇒ ⊕ , ⇒ s , ⇒ ¬s . A term M is →-normal if there is no m such that M → m. We also write M ̸ →. We denote by N v the set of the normal forms of → = (→ βv ∪ → ⊕).

Call-by-Name. The calculus Λ cbn

⊕ is defined in a similar way, by replacing β v with β and weak contexts with head contexts H (as defined in Sect. 4.1). Observations on multi-distributions. In CbV, events of interest are the set V of values and the set N v of →-normal forms (for → = → βv ∪ → ⊕). Focusing on N v , we can define:

F S C D 2 0 2 2 17:14 Strategies for Asymptotic Normalization

C (λx.M)V → βv [C M {V /x}] W M ⊕ N →⊕ [1 2 W M , 1 2 W N] → := → βv ∪ →⊕ → s := → s βv ∪ →⊕ Figure 1 →-steps for the calculus Λ cbv ⊕ . [M] ⇒ [M] M → m [M] ⇒ m ([M i] ⇒ m i) i∈I [p i M i | i ∈ I] ⇒ i∈I p i • m i Figure 2 Lifting of →. M ̸ → [M] ⇒ [M] M → m [M] ⇒ m ([M i] ⇒ m i) i∈I [p i M i | i ∈ I] ⇒ i∈I p i • m i
obs N extracts from m = [p i M i] i∈I a subdistribution µ over normal forms. For example, if m = [1 4 T, 1 8 T, 1 4 F, 1 4 II], obs N (m) is the subdistribution {T 3 8 , F 1 4 }, i.e. µ(T) = 3 8 , µ(F) = 1 4
. obs pn observes the probability that m has reached a normal form. For example, with m as above, obs pn (m) = 5 8 . In CbN, events of interest are the set of normal forms (w.r.t. → β ∪ → ⊕), and the set H of head normal forms. The corresponding observations are defined in the obvious way.

Asymptotic Normalization for Probabilistic λ-Calculi

We can now revisit the probabilistic calculi Λ cbv ⊕ and Λ cbn ⊕ as QARS, and define for them an asymptotically normalizing strategy. We develop explicitly only the CbV case, but similar definitions and results hold for CbN, taking into account that → βv is replaced by → β and surface reduction is → h . Method and proofs are exactly the same. The QARS framework allows us to express and analyze the asymptotic behaviour of the calculus Λ cbv ⊕ = (M(Λ ⊕), ⇒). Here we are interested in obs N : M(Λ ⊕) -→ D(N) as defined in Fig. 4. It is immediate that m → m ′ implies obs N (m) ≤ obs N (m ′). So, Λ cbv ⊕ , obs N is a QARS. We prove (Thm. 31) that Λ cbv ⊕ satisfies the following properties: (1) the result m of computing m is well defined; (2) there exists a strategy that is guaranteed to produce m .

Beyond the surface. We define a reduction → e ⊆ Λ ⊕ × M(Λ ⊕) which performs surface steps (→ s = → s βv ∪ → ⊕ , see Sect. 5) as much as possible, and then iterates the process on the subterms. There are two subtleties here. First: M ̸ → s if and only if (M ̸ → s βv and M ̸ → s ⊕). Second: an occurrence of ⊕-redex can only be fired when it is a surface redex. By keeping this into account, Def. 20 updates as follows. We denote by S the set of → s -normal forms.

▶ Definition 24 (Unbiased evaluation ⇒ e , ⇒ e).

The relation →

e ⊆ Λ ⊕ × M(Λ ⊕) is defined by the following rules, depending if M ̸ ∈ S or M ∈ S. The relation → u βv is as in Def. 20. M → s m M → e m (M ̸ ∈S) M ̸ → s M → u βv M ′ M → e [M ′] (M ∈S) ⇒ e , ⇒ e ⊆ M(Λ ⊕) × M(Λ ⊕)
are respectively the lifting and full lifting of → e (Figs. 2 and3).

Clearly, → e ⊆→, and moreover → and → e have the same normal forms.

▶ Remark 25. ⇒ e is obs N -complete, but not obs N -normalizing for ⇒. Indeed, the sequence We are now ready to prove that, in Λ cbv ⊕ , obs N , the reduction ⇒ e ⊆⇒ (i.e., the full lifting of → e) is guaranteed to compute the best possible result from each m ∈ M(Λ ⊕).

m = [II ⊕ ∆∆] ⇒ e [1 2 II, 1 2 ∆∆] ⇒ e [1 2 II,
Asymptotic Completeness. We have that ⇒ e is asymptotically complete for ⇒, because it satisfies the conditions of Thm. 16 (by Prop. 26).

▶ Lemma 28. If m ⇒ ∞ r then m ⇒ e ∞ r.
In turn, ⇒ e is asymptotically complete for ⇒ e (immediate). So via Lemma 28 we have: Asymptotic Normalization. By Prop. 14, the main result follows from Thm. 29 and 30.

▶ Theorem 29. ⇒ e is asymptotically complete for ⇒: if m ⇒ ∞ r then m ⇒
▶ Theorem 31 (Main, probabilistic CbV). For each m ∈ M(Λ ⊕):

1. m is defined; 2. m ⇒ e ∞ r if and only if r = m .
Hence ⇒ e is an obs N -normalizing strategy for ⇒ (see Remark 15).

Some simple examples will help to see how the normalizing strategy works, and how it differs from surface reduction.

▶ Example 32. Recall that β v -reduction is unrestricted, so for example M = λz.(Iz) → βv λz.z. Instead, λz.(Iz) ̸ → s , because surface reduction cannot fire under abstraction. So surface reduction is not a complete strategy w.r.t. β v -normal forms.

A direct consequence is that surface reduction is not informative about normalization, as it produces "false positive". For example, N = λz.∆∆ is diverging w.r.t. β v -reduction, but it is a surface normal form. Let us now incept probability (with the terms M and N as above).

1. Let R = (λx.M ⊕ xx)(λx.M ⊕ xx). Then [R] ⇒ e [M ⊕ R] ⇒ e [1 2 M, 1 2 R] ⇒ e [1 2 I, 1 2 M ⊕ R] ⇒ e [1 2 I, 1 4 M, 1 4 R] ⇒ e • • •
W P ⟩ M → w βv M ′ ⟨n : M ⟩ → w βv ⟨n : M ′ ⟩ M → βv M ′ ⟨n : M ⟩ → βv ⟨n : M ′ ⟩ Figure 5 Payoff reductions → w tick, → βv , → w βv ⊆ (N × Λtick). M → βv M ′ ⟨0 : M ⟩ → //w ⟨0 : M ′ ⟩ M → tick M ′ ⟨0 : M ⟩ → //w ⟨1 : M ′ ⟩ ⟨0 : V ⟩ → //w ⟨0 : V ⟩ ⟨0 : P 1 ⟩ → //w ⟨k 1 : P 1 ⟩ ⟨0 : P 2 ⟩ → //w ⟨k 2 : P 2 ⟩ ⟨0 : P 1 P 2 ⟩ → //w ⟨k 1 + k 2 : P 1 P 2 ⟩ n > 0 ⟨0 : M ⟩ → //w ⟨k : M ′ ⟩ ⟨n : M ⟩ → //w ⟨n + k : M ′ ⟩

Asymptotic Normalization: More Case Studies

Our method applies -uniformly -to the other examples in Sect. 1.1. In this section we consider a CbV λ-calculus extended with an output operator. For the sake of a compact presentation, we take as output not a string, but simply an integer (think of it as a string on a single character). Albeit simple, this case study allows us to illustrate the subtleties related to limits with output calculi, and the use of our method. In a similar way, one can revisit Böhm Trees as the limit of a specific asymptotic strategy -we leave this to Appendix D.2.

λ-calculus with output: the payoff calculus. The payoff λ-calculus (called cost λ-calculus in [START_REF] Gavazzo | A Relational Theory of Monadic Rewriting Systems, Part I[END_REF][START_REF] Dal | Effectful Normal Form Bisimulation[END_REF]) extends the λ-calculus with a ticking operation. Its intrinsic purpose is to facilitate an intensional analysis of programs, endowing terms with constructs to perform cost analysis. Let Λ tick denote the set of λ-terms extended with a unary operator tick. The elements of the payoff calculus are pairs m = ⟨n : M ⟩ of a counter n ∈ N and a closed term M ∈ Λ tick . Intuitively, the term tick(P) increments the counter by 1, and continues as P . Following [START_REF] Gavazzo | A Relational Theory of Monadic Rewriting Systems, Part I[END_REF], in (N × Λ tick) we define the full reduction → and the weak reduction → w as follows:

→ := → βv ∪ → w tick → w := → w βv ∪ → w tick
where → w tick ,→ βv , → w βv ⊆ (N × Λ tick) are given in Fig. 5. Note that weak effectful reduction → w tick is the closure under weak context W of the rule (tick.P) → tick P (effects are only allowed under weak context). Left and right reductions → l and → r can be defined similarly.

The pair (Λ tick , →), obs is a QARS where we observe the payoff, i.e. obs⟨n : M ⟩ = n. We now prove (using Thm. 16) that → w = → w βv ∪ → w tick is asymptotically complete for →.

▶ Lemma 34. For every pair

m = ⟨n : M ⟩, m → ∞ n implies m → w ∞ n, because w-factorization of →: if m → * n then m → w * • → ¬w * n; obs-neutrality : if m → ¬w m ′ then obs(m) = obs(m ′).
Weak reduction → w however does not have a unique limit, as Example 35 below illustrates.

An unsatisfactory solution would be to fix a deterministic evaluation order (left or right, as in point 1. below), making the limit easy to predict but also rather arbitrary. A way out is to proceed somehow similarly to Sect. 5.1. If we examine more closely the set of limits associated with → w , we realize that Lim obs (m, → w) does have a greatest element.

Thus m can naturally be defined as the best possible payoff from m. We prove that parallel reduction → //w (given in Fig. 6) is a (multistep) strategy which is guaranteed to compute m. Indeed, it is easy to verify that → λ-calculus with outputs. The calculus in Example 2 can be formalized in a similar way to the payoff calculus. We can define obs(⟨s : M ⟩) = s. As already noted, → w is not confluent, and given a pair m, the set of limits may contain uncountably many different elements. Still, the reduction has interesting properties, which appear when looking not directly at the string s itself, but at its length |s|. This way, one can transfer the results from the payoff calculus.

Conclusions

We propose a method to study completeness and normalization when the result of computation is asymptotic. Our techniques abstract from details specific to the calculus under studythey are therefore of general application. The robustness of the method is witnessed by its ability to deal with different settings and different notions of asymptotic computation.

The application to probabilistic λ-calculus yields a result of independent interest: a theorem of asymptotic normalization, both for CbV and CbN probabilistic λ-calculi. Remarkably, the same definitions and proof techniques apply uniformly to both. In the paper we prefer to give the details for the CbV calculus, which is arguably a more natural one in presence of effects. [START_REF] Faggian | Probabilistic Rewriting and Asymptotic Behaviour: on Termination and Unique Normal Forms[END_REF] in the setting of probabilistic rewriting, refine Ariola and Blom's ARSI [START_REF] Ariola | Skew confluence and the lambda calculus with letrec[END_REF]. The techniques in Sect. 3 are an original contribution of this paper. Our Thm. 16 generalizes an ARS technique for finitary normalization (studied in [START_REF] Accattoli | Factorization and Normalization, Essentially[END_REF][START_REF] Hirokawa | Leftmost Outermost Revisited[END_REF]33]) to asymptotic computation, refining it for arbitrary observations.

The study of reduction strategies in a probabilistic λ-calculus where the notion of reduction is general -rather than simply fixing a deterministic reduction -started in [START_REF] Faggian | Lambda Calculus and Probabilistic Computation[END_REF] (CbV and CbN) and [START_REF] Leventis | A deterministic rewrite system for the probabilistic λ-calculus[END_REF] (CbN). Asymptotic completeness is there established only for surface normal forms (values in closed CbV, hnf's in CbN). Strategies that are complete for full normal forms (which we treat and solve here) are more difficult to study than head or weak reduction, especially in the CbV setting. The question of defining such a strategy was left open in [START_REF] Faggian | Lambda Calculus and Probabilistic Computation[END_REF]Remark 27]. We stress that our technique would also yield a simpler proof of the results in [START_REF] Faggian | Lambda Calculus and Probabilistic Computation[END_REF][START_REF] Leventis | A deterministic rewrite system for the probabilistic λ-calculus[END_REF], where confluence is used to establish that a greatest limit exists. The (non-trivial) proofs there use properties that are specific to probability distributions. The method we propose here avoids technical issues, it is much simpler, and it is general, in that it can be applied to other settings.

Finally, we mention that forgoing confluence and studying uniqueness of normal forms via a complete subreduction is a route already employed in the context of infinitary λ-calculi [START_REF] Barendregt | Applications of infinitary lambda calculus[END_REF][START_REF] Berarducci | Church-Rosser λ-theories, infinite λ-calculus and consistency problems[END_REF] Then

i in m 1 = [p i M i] i and no M j in m 2 = [q j M j] j is →normal. Proof. If M is s-normal,
m 1 = [1 2 ∆(λz.Iz), 1 2 (∆∆)(λz.Iz)] ← ⊕ (∆ ⊕ ∆∆)(λz.Iz) → u βv [(∆ ⊕ ∆∆)(λz.z)] = m 2 .
The elements m 1 and m 2 cannot join, because no → u βv -step can fire the underlined (Iz).

Similarly in CbN, for the lifting of → u β ∪ → ⊕ . Consider (∆ ⊕ ∆∆)(x(Iz)).

D

Details for Sect. 6: more case studies

D.1 Asymptotic Normalization for a calculus with outputs

Proof of Lemma 34. The w-factorization of → is proved in [START_REF] Gavazzo | A Relational Theory of Monadic Rewriting Systems, Part I[END_REF], where it is called surface factorization, and proved in general for all CbV monadic calculi, including the payoff calculus which we discuss here. obs-neutrality is straightforward to verify, by case analysis.

D.2 Asymptotic Normalization and Böhm Trees

We show that the Böhm Tree of a term M is the (unique) limit of an asymptotically normalizing strategy, i.e. the limit of a single reduction sequence.

Böhm Trees and Partial Normal Forms. Following [START_REF] Amadio | Domains and Lambda-Calculi[END_REF], the Böhm Tree of a term M is (the downward closure of) the set of the partial normal forms of all reducts of M .

▶ Definition 49 (Partial Normal Forms and Böhm Trees). The set N ω of partial normal forms is defined as follows;

Ω ∈ N ω A 1 ∈ N ω . . . A n ∈ N ω λx 1 . . . x n .xA 1 . . . A n ∈ N ω
N ω is a subset of the set of partial λ-terms, defined by P := Ω | x | P P | λx.P , and inherits its order ≤, which is generated by the following rules: Lemma 50 guarantees that ((Λ, → β), obs) is a QARS where obs : Λ -→ N ∞ ω is defined as obs(M) =↓ {ω(M)}.

Ω ≤ P P 1 ≤ P ′
Asymptotic Normalization. Let us define obs : Λ -→ N ∞ ω as obs(M) =↓ {ω(M)}. It is easily checked that (Λ, → β), obs is a QARS. We show that the Böhm Tree of a term M can be obtained by asymptotic normalization, as the limit a → //u β reduction sequence, which is an obs-normalizing strategy for → β (Thm. 54).

The obs-limit of a reduction sequence ⟨M n ⟩ n is then sup i {obs(M i)} = i ↓ {ω(M i)}. BT(M) is clearly the sup of the set Lim obs (M, → β). We show that BT(M) belongs to that set, by proving that Lim obs (M, → β) has a greatest element M ; this necessarily is BT(M).

We first show that → u β is obs-complete for → β (Point 1 in Prop. 52 below). Reduction → u β is not obs-normalizing for → β (for example, it admits the sequence x(∆∆)(Iz) → u 1. Factorization is that for → u β (details of the proof are in [START_REF] Faggian | Strategies for Asymptotic Normalization (long version)[END_REF]). obs-neutrality is immediate consequence of Lemma 51. 2. It follows by Lemma 41, and the fact that obs is monotonic. ◀ ▶ Remark 53 (Unique Limit). If we take for head reduction the standard one (as in [START_REF] Pieter | The Lambda Calculus -Its Syntax and Semantics, volume 103 of Studies in logic and the foundations of mathematics[END_REF]), then → //u is deterministic. Otherwise, if we take → h β as defined in Sect.

 the depth of the redex ∆ z ∆ z tends to infinity. It is intuitively clear that ∆ z ∆ z has an infinite normal form z(z(z . . .)). Notation. From now on, we use the following standard notations: I = λx.x, ∆ = λx.xx, together with: ∆ ⊕ = λx.I ⊕ (xx), ∆ c := λx.out c (xx), ∆ z := λx.z(xx).

▶ Example 10 . 2 .

 102 Let us revisit Example 7 pointwise, using the same notations. 1. λ-calculus: consider t = (λx.z)(∆∆). This term has infinite possible → β -sequences. The set of limits w.r.t. obs n contains two elements: Lim obsn (t, → β) = {0, 1} Probabilistic λ-calculus: consider the term I ⊕ ∆∆. It has only one reduction sequence

 : (obs-diamond) ⇒ (obs-RD) ⇒ Lim obs (t, → e) contains a unique element. ▶ Example 19 (CbV Weak reduction). Let us consider Call-by-Value λ-calculus with weak reduction → w , where weak means no reduction in the scope of λ-abstractions. The following are two different → w -sequences from the term (II)(Ix):

 x ranges over a countable set of variables, and o over a disjoint (possibly empty) set O of operator symbols. If O is empty, the calculus is pure and we set Λ := Λ O . Terms are identified up to renaming of bound variables, where λx is the only binder constructor. P {Q/x} is the capture-avoiding substitution of Q for the free occurrences of x in P .Contexts (with an hole) are defined by the grammar below. C N stands for the term obtained from C by replacing the hole with N (possibly capturing the free variables of N).C ::= | M C | CM | λx.C | o(M,. . . , C, . . . , M) (Contexts) Rules and Reductions. A rule ρ is a binary relation on Λ O , which we also denote → ρ , writing R → ρ R ′ . R is called a ρ-redex. The best known rule is β: (λx.M)N → β M {N/x}. A reduction step → ρ is the closure under context C of ρ.

Figure 3 Figure 4

 34 Figure 3 Full lifting of →.

1 2.▶ 2 .▶

 12 ∆∆] ⇒ e . . . never fires II. The solution is to move to ⇒ e , which forces all non-normal terms to reduce. Note that ⇒ e does not factorize ⇒. We show that ⇒ e is an obs N -normalizing strategy for ⇒. The pillars of our construction are e-factorization and weighted Random Descent. The former holds for ⇒ e , the latter for ⇒ e Proposition 26 (Factorization and obs N -neutrality). 1. e-factorization: m ⇒ * n implies m ⇒ e * • ⇒ ¬e * n. obs N -neutrality: m ⇒ ¬e n implies obs N (m) = obs N (n). Proposition 27 (Diamond). ⇒ e is obs N -diamond.

e∞▶ Theorem 30 .

 30 s and r ≤ s. Unique Result. All ⇒ e -sequences from m converge to the same limit, by Prop. 18 and 27. Lim obs N (m, ⇒ e) contains a unique element.

F S C D 2 0 2 2 17: 16

 216 . At the limit, R converges with probability 1 to I, as wanted. Strategies for Asymptotic Normalization ⟨n : W tick.P ⟩ → w tick ⟨n + 1 :

Figure 6 2 . 0 . 3 .▶

 6203 Figure 6 Parallel weak reduction in the payoff calculus.

▶ 1 . 2 .

 12 Example 35. Consider M = (∆∆)(∆ √ ∆ √), where ∆ √ = λx.tick(xx), and let m = ⟨0 : M ⟩. By fixing left (resp. right) evaluation, Lim obs (m, → l) = {0} (resp. Lim obs (m, → r) = {∞}). By choosing a redex in unspecified order, we have an uncountable number of → w -sequences, leading to Lim obs (m, → w) = {0, 1, . . . ∞} = N ∞ .

1 . 2 .

 12 is asymptotically complete for → w . By composing with Lemma 34 we have that → //w is asymptotically complete for → (point 1. below).▶ Lemma 36. Asymptotic Completeness. If ⟨k : M ⟩ → w ∞ n then ⟨k : M ⟩ → //w ∞ n ′ and n ≤ n ′ . That is, → //w is asymptotically complete for → w and (by Lemma 34) for →. Unique Limit. The reduction → //w is deterministic. Since (by points 1. and 2. in Lemma 36) both conditions of Prop. 14 are verified, we have: ▶ Theorem 37 (Main, payoff). Given the QARS (N × Λ tick , →), obs , for each pair m = ⟨k : M ⟩, m is defined, and m → //w ∞ m . Hence, multistep reduction → //w is asymptotically normalizing for → w and for → (Remark 15).

F S C D 2 0 2 2 17: 18

 218 Strategies for Asymptotic Normalization Related work. QARS, proposed in

1 P 2 ≤ P ′ 2 P 1 ′ 2 P 1 . 2 .

 1221212 P 2 ≤ P ′ 1 P ≤ P ′ λx.P ≤ λx.P ′ The elements of the ideal completion N ∞ ω of N ω are called Böhm Trees. Precisely: The function ω : Λ → N ω associates to each term M ∈ Λ its partial normal form ω(M):ω(M) = Ω if M ̸ ∈ H λ⃗ x.xω(M 1) . . . ω(M p) if M = λ⃗ x.xM 1 ...M p The Böhm Tree of M is defined as below For a set S, ↓ S = {Q ∈ N ω | Q ≤ S ∈ S}. BT(M) := M → * N ↓ {ω(N)} =↓ {ω(N) | M → * N }The following property is standard and easy-to-check (see[3, Lemma 2.3.2].) ▶ Lemma 50. Let M, M ′ ∈ Λ. If M → β M ′ then ω(M) ≤ ω(M ′).

▶F

 x(∆∆)(Iz) → u . . .) but its parallel version → //u (Appendix B.1) is.We proceed similarly to Sect. 5.1 (think ⇒ e vs ⇒ e). We consider the reduction → //u (the explicit definition is in Appendix B.1) which has obs-Random Descent (trivially) and is asymptotically complete for → u (Point 2 in Prop. 52 below), and so for → β .▶ Lemma 51. If M → ¬u β M ′ then ω(M) = ω(M ′). Proof. First, observe that M → ¬h β M ′ , because → ¬u β ⊆ → ¬h β . If M is not h-normal (M ̸ ∈ H), neither is M ′ , by (Lemma 39). Therefore, ω(M) = Ω = ω(M ′). Otherwise, M is h-normal, that is, M = λ⃗ x.xM 1 . . . M p . As M → ¬h β M ′ , necessarily M ′ = λ⃗ x.xM 1 . . . M ′ i . . . M p (which is head normal) and M i → β M ′ i for some 1 ≤ i ≤ p. It is impossible that M i → u β M ′ i , otherwise M → u β M ′ according to the definition of → u β (Def. 20). Therefore, M i → ¬u β M ′ i and so, by i.h., ω(M i) = ω(M ′ i). Thus, ω(M) = λ⃗ x.xω(M 1) . . . ω(M i) . . . ω(M p) = λ⃗ x.xω(M 1) . . . ω(M ′ i) . . . ω(M p) = ω(M ′). Proposition 52 (Asymptotic Completeness). 1. M → β ∞ r implies M → u ∞ r, because u-Factorization of → β : M → β * N implies M → u * • → ¬u * N obs-neutrality : M → ¬u M ′ then obsM = obsM ′ . 2. M → u ∞ r implies (M → //u∞ s and r ≤ s) ◀

4 . 1 ,

 41 it is easily verified that → //u has the obs-diamond property. → //u is obs-complete for → β (by Points 1. and 2.). Hence we conclude by Thm. 16: ▶ Theorem 54 (Main, Böhm Trees). → //u is a (multi-step) obs-normalizing strategy for → β , and M → //u ∞ BT(M).

 Fact 5 (Newman). If reduction → e is RD-diamond, then it has Random Descent, where RD-diamond: (t 1 ← e t → e t 2) implies (t 1 = t 2 or ∃u. t 1 → e u ← e t 2).

.

 Rule 2. makes the relation reflexive on normal forms and only on normal forms -this is a harmless shortcut in order to give a compact and neat formulation.The (multistep) reduction → //u b is guaranteed to reach the → b -nf , if any exists.

	▶ Lemma 41. Let b ∈ {β, β v }	
	1. If M → //u	b N then M → u b	* N . Therefore, M → //u	b
	which proves the claim.		◀
	▶ Proposition 46 (neutrality). If m ⇒	

¬e n then obs N (m) = obs N (n). Proof. Consequence of the fact that if U → ¬u βv N , then N is not β v -normal (Lemma 40). Indeed → ¬e ⊆ → ¬s and so M → ¬e r iff (M → ¬u βv M ′ with r = [M ′]). ◀ F S C D 2

0 2 2 17:22 Strategies for Asymptotic Normalization Diamonds.

 Prop. 27 (the relation ⇒ e is obs N -diamond) follows from the following key lemma. Notice that Point (2.) implies that obs N (m 1) = obs N (m 2). ▶ Lemma 47 (Pointed Diamond). Let α, γ ∈ {β v , ⊕}. Assume M has two distinct redexes, such that M → e α m 1 and M → e γ m 2 . Then 1. exists t such that m 1 ⇒

	e	γ t and m 2 ⇒ e	α t.
	2. Moreover, no M		

 then by definition of → e , M → u βv m 1 and M → u βv m 2 , and we conclude by using Fact 43 and Prop. 22, point 1. If M is s-reducible, then by definition of → e , M → s βv m 1 and M → s βv m 2 . We easily conclude by case analysis.◀ ▶ Remark 48 (→ e ̸ = → u b ∪ → ⊕). It is useful to notice that → e ̸ = → u βv ∪ → ⊕ . Such a relation is neither diamond nor confluent.The lifting of → u βv ∪ → ⊕ is neither diamond nor confluent. Consider (∆ ⊕ ∆∆)(λz.Iz).

One could also define t as the lub of the set of limits, but this opens the question if there is a strategy that asymptotically computes t , internally to the calculus. Since our focus is developing an operational theory, we require that t is itself a limit -it is a result that can be (asymptotically) computed.

Funding Work supported by the ANR project PPS: ANR-19-CE48-0014.

Normalizing strategies. In Λ cbn , a paradigmatic normalizing strategy is leftmost-outermost reduction. It can be described as: first apply head reduction → h β until hnf , and then iterate the process, in left-to-right order. Normalization in Λ cbv is less established: one can iterate → l βv left to right (as in Plotkin's standard reduction [START_REF] Plotkin | Call-by-Name, Call-by-Value and the lambda-Calculus[END_REF]), but also iterate → r βv right to left, as in Grégoire and Leroy's implementation [START_REF] Grégoire | A compiled implementation of strong reduction[END_REF]. In all cases, once a head or weak normal form is reached (think of xM 1 . . . M k in CbN) no interaction is possible among the subterms M i , . . . , M k , so in fact the process can be iterated in any arbitrary order.

We define a rather liberal normalizing strategy, uniformly for CbN and CbV, and parametrically in the choice of surface reduction. Unlike leftmost-outermost reduction, which is sequential and inherently depth-first, the unbiased reduction → u is non-deterministic in the choice of the outermost redex, and can support a breadth-first reduction policy. It persistently performs surface steps, as long as it is possible, and then iterates the process in the subterms, in arbitrary order.

▶ Definition 20 (Unbiased iteration of surface reduction). Given (Λ O , →), where → is the contextual closure of a rule b ∈ {β, β v }, let → s ⊆ → be as follows:

The relation → u ⊆ → is inductively defined as follows:

The same definition of

of the rule → b extended with some other rule → ρ on Λ O .

We study → u b . It is RD-diamond (see Fact 5) and is a normalizing strategy for both CbN and CbV λ-calculi. Note that in CbN, → u β subsumes usual leftmost-outermost reduction.

Normalization for both CbN and CbV follows from the points above.

Depth-first vs Breadth-first. Leftmost-outermost reduction fires redexes in a depth-first way. Instead, → u evaluates in a breadth-first style, which is more suitable to deal with possibly infinitary reductions. For example, in CbN think of z(∆∆)(∆ z ∆ z). Leftmost-outermost reduction never leaves the redex ∆∆, while → u can also fire (∆ z ∆ z) yielding z(z(z . . .)).

F S C

APPENDIX

We include some proofs and details that have been omitted in the article.

One more example. Lim obs (t, →) may have a lub but not a maximum -similarly to N.

▶ Example 38 (Sect. 2, QARS). We revisit Example 11, allowing full reduction → βv . Let obs p (⟨s :

The pair m = ⟨ϵ : (λz.I)(λz.∆ 0 ∆ 0)⟩ has countably many limits, but not a greatest one, because all strings in Lim obsp (m, → βv) are finite.

Surface reduction. Everywhere in the appendix, we fix surface reduction to be as follows.

CbN (b = β): s = h (the contextual closure of H).

CbV (b = β v): s = w (the contextual closure of W).

A Properties of surface normal forms

We will use extensively the following easy fact.

▶ Lemma 39 (Surface normal forms). M is w-normal

B Sect. 4.2: properties of unbiased reduction

The properties of → u (Prop. 21, Prop. 22, Thm. 23, and those stted here) are proved in [START_REF] Faggian | Strategies for Asymptotic Normalization (long version)[END_REF].

B.1 A parallel variant of unbiased reduction

Given (Λ, → b) and → s as in Def. 20, a parallel version → //u b is easily defined. The idea here is that once a term is → s -normal, iteration of the reduction process can be performed in any arbitrary order, or in parallel. Recall that here (b, s) ∈ {(β, h), (β v , w)}.