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In order to estimate the state of a dynamical system, we address the problem of designing an observer for linear time-invariant (LTI) dynamical systems including a time-delay. Sufficient conditions for the existence of the proposed observer are given using partial placement of the poles for the error. Namely, we exploit the multiplicity-induced-dominance property of the characteristic function corresponding to the system's error. The effectiveness of the proposed observer design is shown in both state lag and input lag respectively through the problems of Mach number control in a wind tunnel and stabilization of the inverted pendulum on a cart by using the delay.

INTRODUCTION

The presence of a delay in a dynamical system may alter the latter's performances and may be a source of instability. However, if such a delay is soundly taken into account, it may bring a few advantages in control design (stabilizing oscillations, wait-and-act strategy, etc.), see, for instance, [START_REF] Richard | Time-delay systems : An overview of some recent advances and open problems[END_REF] [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF] and the references therein. The main difficulty in the analysis of the asymptotic behavior of systems with delays is that, contrarily to systems governed by ordinary differential equations (ODEs), the corresponding characteristic function admits infinitely many roots. In fact, in all generality, the problem of characterizing the domain in the space of the equation's parameters that guarantee the exponential stability of solutions is a question of ongoing interest, see e.g. [START_REF] Michiels | Stability and stabilization of time-delay systems: An eigenvaluebased approach, volume 12 of Advances in Design and Control[END_REF].

In control theory, to the best of the authors' knowledge, the first pole placement paradigm for continuous-time delay systems, called finite pole placement (FPP), was introduced in the late 1970s in [START_REF] Olbrot | On controllability of linear systems with time delays in control[END_REF]; Manitius and Olbrot (1979), where a prediction of the state over a delay interval is set to counteract the effect of the delay, hence reducing the closed-loop system to a finitedimensional plant. However, from a practical point of view, the corresponding controller implementation is subject to a discretization which may induce the loss of stability ⋆ This work is supported by a grant overseen by the French National Research Agency (ANR) as part of the "Investissement d'Avenir" program, through the iCODE project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

of the closed-loop system, see e.g., [START_REF] Mondié | Finite spectrum assignment of unstable time-delay systems with a safe implementation[END_REF].

A more recent pole placement analytical paradigm, called Partial Poles Placement (PPP), has been introduced in Mazanti et al. (2021a). It derives from two properties called respectively multiplicity-induced-dominancy (MID) and coexistent-real-roots-inducing-dominancy (CR-RID), see for instance [START_REF] Boussaada | Multiplicity-induceddominancy in parametric second-order delay differential equations: Analysis and application in control design[END_REF]. Indeed, some recent works have shown that, in both retarded and neutral delay systems described by DDEs, a real root of maximal multiplicity is necessarily the rightmost root, which corresponds to the generic MID, see for instance [START_REF] Boussaada | Multiplicity-induceddominancy in parametric second-order delay differential equations: Analysis and application in control design[END_REF][START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delay-differential equations: When delay-systems characteristics meet the zeros of Kummer functions[END_REF]; Mazanti et al. (2021a). In this context, it should be noted that the multiplicity of a root itself is not essential as such but its connection with the dominancy of this root is a meaningful tool for control synthesis. Recently, in [START_REF] Amrane | On qualitative properties of low-degree quasipolynomials: Further remarks on the spectral abscissa and rightmost-roots assignment[END_REF]; [START_REF] Bedouhene | Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay[END_REF], it is shown that, under appropriate conditions, the coexistence of distinct negative zeros of a quasipolynomial may guarantee the exponential stability of the zero solution of the corresponding time-delay system.

However, observer design is a major topic in the study of dynamical time-delay systems since it is usually applied in order to have an estimation of the unknown states when they are not accessible.

Early works on the design of observers were devoted to linear systems [START_REF] Luenberger | Observers for multivariable systems[END_REF][START_REF] Luenberger | An introduction to observers[END_REF][START_REF] Trinh | Linear functional state observer for timedelay systems[END_REF]. Since, this research area has become an active field, and the underlying ideas and methods were extended to many classes of systems. Several approaches have been developed to ensure the observer convergence.

In the literature, methods developed with the spectral observability assumption or, at least, the ν-detectability assumption [START_REF] Ramos | An asymptotic modal observer for linear autonomous time lag systems[END_REF]; [START_REF] Pearson | An observer for time lag systems[END_REF] exist. Unfortunately, in some cases, these methods may lead to cumbersome numerical problems. In [START_REF] Fattouh | α-decay rate observer design for linear systems with delayed state[END_REF], the authors addressed the problem of designing an observer for linear systems with time-delays using the property that the estimated error converges to zero with a pre-specified decay rate; their work is based on a modification of the criterion proposed in [START_REF] Mori | On an estimate of the decay rate for stable linear delay systems[END_REF].

The main contribution of the paper is to extend the use of the PPP for observer design in two configurations: delay in the state and in the input. In both cases, the exponential stability of the trivial solution to the error equation is performed using the PPP method based on a control oriented MID property as developed and described in [START_REF] Boussaada | Multiplicity-induceddominancy in parametric second-order delay differential equations: Analysis and application in control design[END_REF]; [START_REF] Balogh | Conditions for stabilizability of time-delay systems withreal-rooted plant[END_REF]. To the best of the authors' knowledge, such a construction represents a novelty in the open literature.

The rest of this paper is as follows. We start by the problem formulation and some prerequisites in section 2. In section 3, we give the main results, i.e. conditions of existence and stability of the proposed observer. The feasibility and effectiveness of our approach are illustrated by simulation results in section 4 where two well-known applications are addressed: control of transonic flow in a wind tunnel and the control of an inverted pendulum by delayed feedback. Some remarks conclude the paper.

PREREQUISITES AND PROBLEM STATEMENT

Consider a generic dynamical system with a single delay described by the DDE:

ξ(t) = Aξ(t) + A d ξ(t -τ ), (1) 
under appropriate initial conditions, where ξ ∈ R n is the state vector, τ is a positive constant delay. Matrices A ∈ R n×n and A d ∈ R n×n are known constant matrices.

It is well-known that the asymptotic behavior of the solutions of (1) is determined from its spectrum (see, e.g. [START_REF] Bellman | Differentialdifference equations[END_REF]), that is, the set of the (characteristic) roots of the associated characteristic function (denoted by ∆(s, τ ) in the sequel).

The characteristic function ∆ :

C×R + → C corresponding to (1) reads as follows ∆(s, τ ) = det(sI n -A -A d e -τ s ). (2) 
A generic result on the location of spectral values corresponding to (2) is given by the following proposition. Proposition 1. Michiels and Niculescu (2007a) If s is a characteristic root of system (1), then it satisfies

|s| ≤ ||A + A d e -τ s || 2 .
This result combined with the triangular inequality provides a generic envelope curve around the characteristic roots of system (1).

In the sequel, we are interested by the study of a class of LTI delay systems characterized by the quasipolynomial function of the following form. ∆(s, τ ) = P 0 (s) + P 1 (s)e -τ p , (3) where deg(P 0 ) > deg(P 1 ). Note that the problem of the analytical characterization of its rightmost root will be an essential ingredient in deriving our results.

Partial pole placement in delay systems

One of the most natural and classical way to stabilize a dynamical LTI delay system is to select the free parameters of the controller in order to choose the location of finitely many roots while also guaranteeing that the dominant root 1 is among the chosen ones. This has been the subject of several recent works, such as [START_REF] Bedouhene | Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay[END_REF]; [START_REF] Boussaada | Multiplicity-induceddominancy in parametric second-order delay differential equations: Analysis and application in control design[END_REF]; Mazanti et al. (2021a); [START_REF] Ramirez | Design of proportional-integral-retarded (pir) controllers for second-order lti systems[END_REF]. Contrarily to the strategy of FPP used, e.g., in Manitius and Olbrot (1979), the controllers designed using these techniques do not render the closed-loop system finite-dimensional, but instead control its rightmost spectral value. These methods also extend to some partial differential equations, as detailed, for example, in [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differentialalgebraic systems: the lossless propagation case[END_REF]. In particular, in this work, we shall use the MID property as described in [START_REF] Balogh | Conditions for stabilizability of time-delay systems withreal-rooted plant[END_REF].

Problem formulation

Motivated by the control of a transonic flow in a wind tunnel and a friction-free inverted pendulum where the state is not fully accessible, we propose a PPP observer design. The first example includes a constant (pointwise) delay in the state vector and the second one is controlled by a delayed input.

Delay in the state

Consider the system with delayed state described by the following state space model.

ẋ(t) = Ax(t) + A d x(t -τ ) + Bu(t) (4a) y(t) = Cx(t) (4b) x(t) = ϕ(t) t ∈ [-τ, 0] (4c) where x ∈ R n , u ∈ R m , y ∈ R p are,
respectively, the state vector, the control input and the measurements vector. The non-negative scalar τ is a known constant delay. Finally, ϕ(t) is a continuous function defined as the initial condition.

Matrices A ∈ R n×n , A d ∈ R n×n , B ∈ R n×m and C ∈ R p×n are known constant matrices.
For system (4), we propose to design a standard observer, allowing to estimate the states x(t) and described by:

ẋ(t) = Ax(t) + A d x(t -τ ) + Bu(t) + L(y(t) -C x(t)) + T (y(t -τ ) -C x(t -τ ))
(5) where x ∈ R n denotes the estimates of x. Matrices L and T are unknown and shall be determined so that the estimation of the states x converges to its real values x.

Delay in the input Now, we consider a system with a known time delay in the input as follows ẋ(t) = Ax(t) + Bu(t -τ ), (6a)

y(t) = Cx(t), (6b) 
and for which, we propose the following observer dynamics.

ẋ(t) = Ax(t) + Bu(t -τ ) + L(y(t) -C x(t)) + T (y(t -τ ) -C x(t -τ )) (7)
The error equation Let us denote by e(t) = x(t) -x(t) the estimation error vector. In both cases, the dynamic of the estimation error is described by the following system. ė(t) = (A -LC)e(t)

+ (A d -T C)e(t -τ ). ( 8 
)
Notice that such an error equation applies in both cases, input-delay or state-delay. In the sequel, we shall use the notations A = A -LC and

A d = A d -T C.
Proposition 1. The dynamical system (5) (system ( 7)) represents an observer for the time-delay system described by (4) (system ( 6)) if, and only if, the dynamic error system given by ( 8) is asymptotically stable.

Proof. Computing the dynamics of the estimation error ė(t) = ẋ(t) -ẋ(t), one obtains the system given by (8) (with A d = 0 for the second case). This system needs to be stable, to ensure the convergence of the estimation error e(t) to zero. □

MAIN RESULTS

Let us consider system (8) written in the following form.

ė(t) -Ae(t) -A d e(t -τ ) = 0. (9) Its characteristic function is ∆ : C × R + → C is given by ∆(s, τ ) = |sI n -A -A d e -τ s |
(10) Hence, the error system is characterised by the quasipolynomial function with the form of equation (3) where the polynomial P 0 is given by: P 0 (s) = |sI n -A| = a n s n + a n-1 s n-1 + . . . + a 1 s + a 0

The following assumptions are considered: Assumption 1. rank(A d ) = 1. Assumption 2. The polynomial P 0 is real-rooted. Remark 2. Under the above assumptions we are able to investigate the stability of the estimation error. Notice that Assumption 1 is a sufficient condition to guarantee that the quasipolynomial ∆ involves a single delay. The assumption 2 is requested since we shall apply Theorem 1 in [START_REF] Balogh | Conditions for stabilizability of time-delay systems withreal-rooted plant[END_REF].

Let us note s 0 a real root with multiplicity at least n of the characteristic function (3). It is known that if s 0 < 0 is the corresponding rightmost root then the zero solution of system ( 9) is asymptotically stable and consequently the estimation error is stable. The following proposition from [START_REF] Balogh | Conditions for stabilizability of time-delay systems withreal-rooted plant[END_REF] gives explicitly the integral representation of the quasipolynomial. Proposition 2. If the quasipolynomial (3) has a real root s 0 with multiplicity at least n then it can be written as

∆(s) = (s -s 0 ) n a n + 1 0 e -(s-s0)τ t τ R n-1 (s 0 , τ t) (n -1)! dt ,
where the family of polynomials R k (s, τ ) is defined as

R k (s, τ ) = k i=0 k i P (i) (s)τ k-i , k ∈ N * . ( 11 
)
The following proposition, also from [START_REF] Balogh | Conditions for stabilizability of time-delay systems withreal-rooted plant[END_REF], provides sufficient conditions for the dominance of the multiple spectral value. Proposition 3. Let P (s) be real-rooted and s a be the average of its roots. Then system (3) is γ-stabilizable with γ ≤ s a if, and only if, τ ∈]0, τ γ [, where τ γ is the smallest positive root of R n (γ, τ ) for τ .

Now we are able to formulate and prove the following result.

Theorem 3. Consider that Assumptions 1 and 2 hold and the quasipolynomial (10) admits a root at some complex number s 0 with multiplicity n + 1. Then, s 0 is necessarily algebraic and the corresponding characteristic polynomial denoted P (called in the sequel Elimination-produced polynomial ) is real-rooted. Moreover, if P is the minimaldegree polynomial such that P(s 0 ) = 0 and that s 0 is the spectral abscissa of P, then s 0 is the spectral abscissa of (10). Furthermore, if P is Hurwitz then the estimation error described by ( 8) is exponentially stable with s 0 as decay rate and the estimation states vector converges to its real value (in both cases).

Proof. The vanishing of the characteristic function ∆ is equivalent to exp(-sτ ) = -P 0 (s)/P 1 (s). Then, one considers the algebraic system of n equations ∆ ′ (s) = 0, • • • , ∆ (n) (s) = 0. First, owing to the linearity of the system, one has ∆ ′ (s) = 0, • • • , ∆ (n-1) (s) = 0 with respect to the coefficients of P 1 , then one proceeds by eliminating them order by order. Next, the values of these coefficients are substituted in the remaining equation ∆ (n) (s) = 0 which gives P the so-called eliminationproduced polynomial in the variable s, the delay τ and the coefficients of P 0 . Next, by assuming that assumptions 1 and 2 hold, the proof of the theorem is based on proposition 3 since the quasipolynomial associated to the error system ( 8) is given by equation (3). □

ILLUSTRATIVE EXAMPLE

In this section, we provide some illustrative examples in both cases: input-delay and state-delay.

System with state delay

We revisit in this section the problem of control of a transonic flow in a wind tunnel discussed in [START_REF] Manitius | Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation[END_REF]. The analysis of transonic flows is a challenging problem in compressible fluid dynamics, since a full model of the flow would involve the Navier-Stokes equations in a three-dimensional domain and boundary controls for temperature and pressure regulation. A further simplified model was presented in [START_REF] Armstrong | An application of multivariable design techniques to the control of the National Transonic Facility[END_REF] in order to analyze the response of the Mach number of the flow to changes in the guide vane angle. Instead of using partial differential equations, propagation phenomena are modeled in [START_REF] Armstrong | An application of multivariable design techniques to the control of the National Transonic Facility[END_REF] through a timedelay, leading to the time-delay system

κm ′ (t) + m(t) = kϑ(t -τ 0 ), ϑ ′′ (t) + 2ζωϑ ′ (t) + ω 2 ϑ(t) = ω 2 u(t), (12) 
in which m, ϑ, and u represent, respectively, perturbations of the Mach number of the flow, the guide vane angle, and the input of the guide vane actuator, with respect to steady-state values. The parameters κ and k depend on the steady-state operating point and are assumed to be constant as long as m, ϑ, and u remain small, and satisfying κ > 0 and k < 0. The parameters ζ ∈ (0, 1) and ω > 0 come from the design of the guide vane angle actuator and are thus independent from the operating point. The time-delay τ 0 is assumed to depend only on the temperature of the flow. In the absence of control (u(t) = 0), the open-loop system ( 12) is exponentially stable.

Equation ( 12) may be written under a state space model as follows

Ẋ(t) = AX(t) + A d X(t -τ ) + Bu(t), (13) 
where X(t) = [ θ(t) ϑ(t) m(t)] T , matrices A, A d and B are given by

A =    -2ξω -ω 2 0 1 0 0 0 0 -1 κ    , A d =    0 0 0 0 0 0 0 k κ 0    and B =   ω 2 0 0   .
The available measurement vector is described by

y(t) = CX(t) = 0 1 0 0 0 1 X(t).
As the obtained system fits with system (4), in order to estimate the corresponding state vector X(t), we consider an observer in the form (5). In this example, the error dynamics obey to system (8). By choosing the observer matrices in the following fashion

L = α 1,1 α 1,2 0 0 1 α 3,2 and T =    0 β 1,2 0 β 2,2 k κ β 3,2   
the rank condition (Assumption 1) is satisfied and the associated characteristic function ( 3) is defined by

P 0 (s) =s 3 + 2ξω + α 3,2 κ + 1 κ s 2 + ω 2 + (2κξα 3,2 + 2ξ) ω κ + α 1,1 s + (α 3,2 κ + 1) ω 2 κ + κα 1,1 α 3,2 -κα 1,2 + α 1,1 κ , (14a) P 1 (s) =β 3,2 s 2 + (2ωβ 3,2 ξ -β 2,2 ) s + ω 2 β 3,2 -2ωβ 2,2 ξ + α 1,1 β 3,2 -β 1,2 .
(14b) By forcing the multiplicity, one obtains the remaining parameters β i,j and concludes that s 0 is a root with multiplicity n + 1 = 4 if, and only if, s 0 is a root of the elimination-produced polynomial

P(s) = κ s 3 τ 3 + (1 + (2ξω + α 3,2 ) κ) τ 3 + 9κ τ 2 s 2 + 2ωξα 3,2 + ω 2 + α 1,1 κ + 2ξω τ 3 s + (6 + (12ξω + 6α 3,2 ) κ) τ 2 + 18κτ s + α 3,2 ω 2 + α 3,2 α 1,1 -α 1,2 κ + ω 2 + α 1,1 τ 3 + 6ωξα 3,2 + 3ω 2 + 3α 1,1 κ + 6ξω τ 2 + (6 + (12ξω + 6α 3,2 ) κ) τ + 6κ
. Now, considering the system (12) with parameter values as the ones proposed in [START_REF] Manitius | Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation[END_REF] where κ = 2 s, k = -0.67036 rad -1 , ξ = 1/3, ω = 5 rad/s and τ 0 = 1/3, one obtains α 1,1 = 316 9 , α 1,2 = 2294 27 , α 3,2 = -5 6 guaranteeing the realrootedness of P 0 as well as that of polynomial P.

In particular, such a choice of α i,j leads to the following observer matrices 

L =     316 

Systems with input delay

In this section, we shall give an example to show the efficiency and the feasibility of the results obtained in this paper. Indeed, let us consider a dynamical system modeling a friction-free inverted pendulum on a cart.

M u θ m

The model adopted here was discussed in [START_REF] Sieber | Extending the permissible control loop latency for the controlled inverted pendulum[END_REF]. The dynamics of the inverted pendulum on a cart can be modelled by a second-order differential equation for the angular displacement θ of the tip of the pendulum

1 - 3m 4(m + M ) cos 2 (θ) θ + 3m 8(m + M ) θ2 sin(2θ) + sin θ + u cos θ = 0, ( 15 
)
where M is the mass of the cart, m is the mass of the pendulum, and u represents the control law, which is the horizontal driving force.

We assume that the system is controlled by a delayed input u(t -τ ). For small θ, we can write sin(θ) = θ and cos(θ) = 1. Also dropping all non-linear components ( θ2 = 0), equation ( 15) may be rewritten as

1 - 3m 4(m + M ) θ(t) + θ(t) + u(t -τ ) = 0. ( 16 
)
Next, We denote by X(t) = θ θ T , so system (16) may be rewritten in the following state space model

Ẋ(t) = 0 -a 1 0 X(t) + -a 0 u(t -τ ) (17) 
where a = 1 -3m 4(m+M )

-1

. The available measurement is given by y(t) = [0 1]X(t).

In this case the rank condition (Assumption 1) is satisfied and the associated characteristic quasipolynomial is given by: ∆(s) = (sβ 2,1 + β 1,1 ) e -sτ + s 2 + sα 2,1 + a + α 1,1 . (18) Next, the realrootedness of the corresponding P 0 (Assumption 2) is guaranteed by the positivity of its discriminant, that is, δ = α 2 2,1 -4a -4α 1,1 . As shown in [START_REF] Boussaada | Multiplicity-induceddominancy in parametric second-order delay differential equations: Analysis and application in control design[END_REF], if the discriminant δ ≥ 0, then the multiplicity of any given root of the quasipolynomial function ( 18) is bounded by 3. For an arbitrary positive delay τ , the quasipolynomial (18) admits a real spectral value at s = s ± with algebraic multiplicity 3 if, and only if,

s ± = -τ α 2,1 -4 ± √ 8 + τ 2 δ 2 τ ,
and the system parameters satisfy

       β 1,1 = (α 2,1 s ± + α 2,1 2 2 - δ 2 + 6 α 2,1 + 10 s ± τ + 6 τ 2 )e τ s± , β 2,1 = 2 s 0 + α 2,1 + 2 τ e τ s± .
(⋆ ± ) If (⋆ + ) is satisfied then s = s + is the spectral abscissa corresponding to (18). Furthermore, the trivial solution is asymptotically stable if, and only if, τ satisfies the following conditions

   τ ∈]0, τ -[ when α 1,1 < -a, or τ ∈]0, τ -[∪]τ + , ∞[ when α 1,1 > -a and α 2,1 < 0, where τ ± = -α2,1± √ δ+2 α1,1+a α1,1+a
.

For instance, choosing α 1,1 = -a -1 and α 2,1 = 1, we define the rightmost root of (3) as a function of the delay τ as illustrated in figure 3. The initial conditions are given by X(0) = [0 0.5] T . Figure 4 shows the convergence of the estimation state vector to its real values.

CONCLUDING REMARKS

In this paper, a Luenberger-type observer for linear time delay systems has been developed. Two types of delayed systems have been considered, systems with delayed states and systems with delayed inputs. Under sufficient conditions, the stability of the estimation error systems has been proved in both cases using partial placement of the poles for the error, namely the MID property. The practical use of the proposed observers has been demonstrated experimentally for a transonic flow in a wind tunnel which is modeled by a delayed state model and the inverted pendulum system which is described by a delayed input system. A root location of the quasipolynomials was accessed using numerical techniques and the observer matrices were deduced to allow a suitable estimation of the systems states.

A generalization of the observer design and an observer based control will be studied in future work. 
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 22 Figure2provides the evolution of the Mach number m(t), the guide vane position ϑ(t), its derivative and their estimation, in the case where the initial conditions are given by m(t) = -0.1, ϑ(0) = m(0) k = 0.15rad, and θ(t) = 0.
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 3 Fig. 3. The spectral abscissa of (3) as a function of the delay τ where α 1,1 = -a -1 and α 2,1 = 1. For further discussions on the MID property in secondorder delay, the reader may consider Boussaada et al. (2020). As a numerical example, we choose m = 0.5 Kg and M = 5 Kg and a time delay τ = 0.1s. By setting the observer matrices to the latter computation, we obtain L = -2.0732 1 and T = 10.803 4.453
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 4 Fig. 4. Evolution of the state vector X(t) (-) and its estimation X(t) (--) with τ = 0.1s.