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Abstract: In order to estimate the state of a dynamical system, we address the problem of
designing an observer for linear time-invariant (LTI) dynamical systems including a time-delay.
Sufficient conditions for the existence of the proposed observer are given using partial placement
of the poles for the error. Namely, we exploit the multiplicity-induced-dominance property of the
characteristic function corresponding to the system’s error. The effectiveness of the proposed
observer design is shown in both state lag and input lag respectively through the problems of
Mach number control in a wind tunnel and stabilization of the inverted pendulum on a cart by
using the delay.

Keywords: Time delay, linear system, observer design, frequency-domain, spectral abscissa,
partial pole placement

1. INTRODUCTION

The presence of a delay in a dynamical system may al-
ter the latter’s performances and may be a source of
instability. However, if such a delay is soundly taken into
account, it may bring a few advantages in control design
(stabilizing oscillations, wait-and-act strategy, etc.), see,
for instance, Richard (2003) Sipahi et al. (2011) and the
references therein. The main difficulty in the analysis of
the asymptotic behavior of systems with delays is that,
contrarily to systems governed by ordinary differential
equations (ODEs), the corresponding characteristic func-
tion admits infinitely many roots. In fact, in all generality,
the problem of characterizing the domain in the space of
the equation’s parameters that guarantee the exponential
stability of solutions is a question of ongoing interest, see
e.g. Michiels and Niculescu (2007b).

In control theory, to the best of the authors’ knowledge,
the first pole placement paradigm for continuous-time
delay systems, called finite pole placement (FPP), was
introduced in the late 1970s in Olbrot (1972); Manitius
and Olbrot (1979), where a prediction of the state over
a delay interval is set to counteract the effect of the
delay, hence reducing the closed-loop system to a finite-
dimensional plant. However, from a practical point of view,
the corresponding controller implementation is subject to
a discretization which may induce the loss of stability
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of the closed-loop system, see e.g., Mondié and Michiels
(2003).

A more recent pole placement analytical paradigm, called
Partial Poles Placement (PPP), has been introduced
in Mazanti et al. (2021a). It derives from two prop-
erties called respectively multiplicity-induced-dominancy
(MID) and coexistent-real-roots-inducing-dominancy (CR-
RID), see for instance Boussaada et al. (2020). Indeed,
some recent works have shown that, in both retarded and
neutral delay systems described by DDEs, a real root
of maximal multiplicity is necessarily the rightmost root,
which corresponds to the generic MID, see for instance
Boussaada et al. (2020, 2022); Mazanti et al. (2021a). In
this context, it should be noted that the multiplicity of a
root itself is not essential as such but its connection with
the dominancy of this root is a meaningful tool for control
synthesis. Recently, in Amrane et al. (2018); Bedouhene
et al. (2020), it is shown that, under appropriate con-
ditions, the coexistence of distinct negative zeros of a
quasipolynomial may guarantee the exponential stability
of the zero solution of the corresponding time-delay sys-
tem.

However, observer design is a major topic in the study of
dynamical time-delay systems since it is usually applied in
order to have an estimation of the unknown states when
they are not accessible.

Early works on the design of observers were devoted to
linear systems Luenberger (1966, 1971); Trinh (1999).
Since, this research area has become an active field, and
the underlying ideas and methods were extended to many



classes of systems. Several approaches have been developed
to ensure the observer convergence.

In the literature, methods developed with the spectral
observability assumption or, at least, the ν-detectability
assumption Ramos and Pearson (1995); Pearson and Fi-
agbedzi (1989) exist. Unfortunately, in some cases, these
methods may lead to cumbersome numerical problems. In
Fattouh et al. (1999), the authors addressed the problem of
designing an observer for linear systems with time-delays
using the property that the estimated error converges to
zero with a pre-specified decay rate; their work is based
on a modification of the criterion proposed in Mori et al.
(1982).

The main contribution of the paper is to extend the use
of the PPP for observer design in two configurations:
delay in the state and in the input. In both cases, the
exponential stability of the trivial solution to the error
equation is performed using the PPP method based on a
control oriented MID property as developed and described
in Boussaada et al. (2020); Balogh et al. (2021). To the best
of the authors’ knowledge, such a construction represents
a novelty in the open literature.

The rest of this paper is as follows. We start by the problem
formulation and some prerequisites in section 2. In section
3, we give the main results, i.e. conditions of existence
and stability of the proposed observer. The feasibility and
effectiveness of our approach are illustrated by simulation
results in section 4 where two well-known applications are
addressed: control of transonic flow in a wind tunnel and
the control of an inverted pendulum by delayed feedback.
Some remarks conclude the paper.

2. PREREQUISITES AND PROBLEM STATEMENT

Consider a generic dynamical system with a single delay
described by the DDE:

ξ̇(t) = Aξ(t) +Adξ(t− τ), (1)

under appropriate initial conditions, where ξ ∈ Rn is
the state vector, τ is a positive constant delay. Matrices
A ∈ Rn×n and Ad ∈ Rn×n are known constant matrices.

It is well-known that the asymptotic behavior of the so-
lutions of (1) is determined from its spectrum (see, e.g.
Bellman and Cooke (1963)), that is, the set of the (char-
acteristic) roots of the associated characteristic function
(denoted by ∆(s, τ) in the sequel).

The characteristic function ∆ : C×R+ → C corresponding
to (1) reads as follows

∆(s, τ) = det(sIn −A−Ade
−τs). (2)

A generic result on the location of spectral values corre-
sponding to (2) is given by the following proposition.

Proposition 1. Michiels and Niculescu (2007a) If s is a
characteristic root of system (1), then it satisfies

|s| ≤ ||A+Ade
−τs||2.

This result combined with the triangular inequality pro-
vides a generic envelope curve around the characteristic
roots of system (1).

In the sequel, we are interested by the study of a class of
LTI delay systems characterized by the quasipolynomial
function of the following form.

∆(s, τ) = P0(s) + P1(s)e
−τp, (3)

where deg(P0) > deg(P1). Note that the problem of the
analytical characterization of its rightmost root will be an
essential ingredient in deriving our results.

2.1 Partial pole placement in delay systems

One of the most natural and classical way to stabilize a
dynamical LTI delay system is to select the free parameters
of the controller in order to choose the location of finitely
many roots while also guaranteeing that the dominant
root 1 is among the chosen ones. This has been the subject
of several recent works, such as Bedouhene et al. (2020);
Boussaada et al. (2020); Mazanti et al. (2021a); Ramirez
et al. (2016). Contrarily to the strategy of FPP used, e.g.,
in Manitius and Olbrot (1979), the controllers designed
using these techniques do not render the closed-loop sys-
tem finite-dimensional, but instead control its rightmost
spectral value. These methods also extend to some partial
differential equations, as detailed, for example, in Mazanti
et al. (2021b). In particular, in this work, we shall use the
MID property as described in Balogh et al. (2021).

2.2 Problem formulation

Motivated by the control of a transonic flow in a wind
tunnel and a friction-free inverted pendulum where the
state is not fully accessible, we propose a PPP observer
design. The first example includes a constant (pointwise)
delay in the state vector and the second one is controlled
by a delayed input.

Delay in the state Consider the system with delayed
state described by the following state space model.

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t) (4a)

y(t) = Cx(t) (4b)

x(t) = ϕ(t) t ∈ [−τ, 0] (4c)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are, respectively, the state
vector, the control input and the measurements vector.
The non-negative scalar τ is a known constant delay.
Finally, ϕ(t) is a continuous function defined as the initial
condition. Matrices A ∈ Rn×n, Ad ∈ Rn×n, B ∈ Rn×m

and C ∈ Rp×n are known constant matrices.

For system (4), we propose to design a standard observer,
allowing to estimate the states x(t) and described by:

˙̂x(t) = Ax̂(t) +Adx̂(t− τ) +Bu(t) + L(y(t)− Cx̂(t))

+ T (y(t− τ)− Cx̂(t− τ)) (5)

where x̂ ∈ Rn denotes the estimates of x. Matrices L
and T are unknown and shall be determined so that the
estimation of the states x̂ converges to its real values x.

Delay in the input Now, we consider a system with a
known time delay in the input as follows

ẋ(t) = Ax(t) +Bu(t− τ), (6a)

y(t) = Cx(t), (6b)

1 the rightmost characteristic root in the complex plane



and for which, we propose the following observer dynamics.

˙̂x(t) = Ax̂(t) +Bu(t− τ) + L(y(t)− Cx̂(t))

+ T (y(t− τ)− Cx̂(t− τ)) (7)

The error equation Let us denote by e(t) = x(t) − x̂(t)
the estimation error vector. In both cases, the dynamic of
the estimation error is described by the following system.

ė(t) = (A− LC)e(t) + (Ad − TC)e(t− τ). (8)

Notice that such an error equation applies in both cases,
input-delay or state-delay. In the sequel, we shall use the
notations A = A− LC and Ad = Ad − TC.

Proposition 1. The dynamical system (5) (system (7))
represents an observer for the time-delay system described
by (4) (system (6)) if, and only if, the dynamic error
system given by (8) is asymptotically stable.

Proof. Computing the dynamics of the estimation error
ė(t) = ẋ(t) − ˙̂x(t), one obtains the system given by (8)
(with Ad = 0 for the second case). This system needs to
be stable, to ensure the convergence of the estimation error
e(t) to zero. □

3. MAIN RESULTS

Let us consider system (8) written in the following form.

ė(t)−Ae(t)−Ade(t− τ) = 0. (9)

Its characteristic function is ∆ : C× R+ → C is given by

∆(s, τ) = |sIn −A−Ade
−τs| (10)

Hence, the error system is characterised by the quasipoly-
nomial function with the form of equation (3) where the
polynomial P0 is given by:

P0(s) = |sIn −A| = ans
n + an−1s

n−1 + . . .+ a1s+ a0

The following assumptions are considered:

Assumption 1. rank(Ad) = 1.

Assumption 2. The polynomial P0 is real-rooted.

Remark 2. Under the above assumptions we are able to
investigate the stability of the estimation error. Notice
that Assumption 1 is a sufficient condition to guarantee
that the quasipolynomial ∆ involves a single delay. The
assumption 2 is requested since we shall apply Theorem 1
in Balogh et al. (2021).

Let us note s0 a real root with multiplicity at least n of
the characteristic function (3). It is known that if s0 < 0
is the corresponding rightmost root then the zero solution
of system (9) is asymptotically stable and consequently
the estimation error is stable. The following proposition
from Balogh et al. (2021) gives explicitly the integral
representation of the quasipolynomial.

Proposition 2. If the quasipolynomial (3) has a real root
s0 with multiplicity at least n then it can be written as

∆(s) = (s− s0)
n

(
an +

∫ 1

0

e−(s−s0)τt
τRn−1(s0, τ t)

(n− 1)!
dt

)
,

where the family of polynomials Rk(s, τ) is defined as

Rk(s, τ) =

k∑
i=0

(
k

i

)
P (i)(s)τk−i, k ∈ N∗ . (11)

The following proposition, also from Balogh et al. (2021),
provides sufficient conditions for the dominance of the
multiple spectral value.

Proposition 3. Let P (s) be real-rooted and sa be the
average of its roots. Then system (3) is γ-stabilizable with
γ ≤ sa if, and only if, τ ∈]0, τγ [, where τγ is the smallest
positive root of Rn(γ, τ) for τ .

Now we are able to formulate and prove the following
result.

Theorem 3. Consider that Assumptions 1 and 2 hold and
the quasipolynomial (10) admits a root at some complex
number s0 with multiplicity n+ 1. Then, s0 is necessarily
algebraic and the corresponding characteristic polynomial
denoted P (called in the sequel Elimination-produced poly-
nomial) is real-rooted. Moreover, if P is the minimal-
degree polynomial such that P(s0) = 0 and that s0 is
the spectral abscissa of P, then s0 is the spectral abscissa
of (10). Furthermore, if P is Hurwitz then the estimation
error described by (8) is exponentially stable with s0 as
decay rate and the estimation states vector converges to
its real value (in both cases).

Proof. The vanishing of the characteristic function ∆
is equivalent to exp(−sτ) = −P0(s)/P1(s). Then, one
considers the algebraic system of n equations ∆′(s) =
0, · · · ,∆(n)(s) = 0. First, owing to the linearity of the
system, one has ∆′(s) = 0, · · · ,∆(n−1)(s) = 0 with
respect to the coefficients of P1, then one proceeds by
eliminating them order by order. Next, the values of
these coefficients are substituted in the remaining equation
∆(n)(s) = 0 which gives P the so-called elimination-
produced polynomial in the variable s, the delay τ and
the coefficients of P0. Next, by assuming that assumptions
1 and 2 hold, the proof of the theorem is based on
proposition 3 since the quasipolynomial associated to the
error system (8) is given by equation (3). □

4. ILLUSTRATIVE EXAMPLE

In this section, we provide some illustrative examples in
both cases: input-delay and state-delay.

4.1 System with state delay

We revisit in this section the problem of control of a
transonic flow in a wind tunnel discussed in Manitius
(1984). The analysis of transonic flows is a challenging
problem in compressible fluid dynamics, since a full model
of the flow would involve the Navier–Stokes equations in
a three-dimensional domain and boundary controls for
temperature and pressure regulation. A further simplified
model was presented in Armstrong and Tripp (1981) in
order to analyze the response of the Mach number of the
flow to changes in the guide vane angle. Instead of using
partial differential equations, propagation phenomena are
modeled in Armstrong and Tripp (1981) through a time-
delay, leading to the time-delay system{

κm′(t) +m(t) = kϑ(t− τ0),

ϑ′′(t) + 2ζωϑ′(t) + ω2ϑ(t) = ω2u(t),
(12)

in which m, ϑ, and u represent, respectively, perturbations
of the Mach number of the flow, the guide vane angle,



and the input of the guide vane actuator, with respect
to steady-state values. The parameters κ and k depend
on the steady-state operating point and are assumed to
be constant as long as m, ϑ, and u remain small, and
satisfying κ > 0 and k < 0. The parameters ζ ∈ (0, 1)
and ω > 0 come from the design of the guide vane angle
actuator and are thus independent from the operating
point. The time-delay τ0 is assumed to depend only on
the temperature of the flow. In the absence of control
(u(t) = 0), the open-loop system (12) is exponentially
stable.

Equation (12) may be written under a state space model
as follows

Ẋ(t) = AX(t) +AdX(t− τ) +Bu(t), (13)

where X(t) = [ϑ̇(t) ϑ(t) m(t)]T , matrices A, Ad and B are
given by

A =

−2ξω −ω2 0
1 0 0

0 0
−1

κ

 , Ad =

0 0 0
0 0 0

0
k

κ
0

 and B =

ω2

0
0

 .

The available measurement vector is described by

y(t) = CX(t) =

[
0 1 0
0 0 1

]
X(t).

As the obtained system fits with system (4), in order to
estimate the corresponding state vector X(t), we consider
an observer in the form (5). In this example, the error
dynamics obey to system (8). By choosing the observer
matrices in the following fashion

L =

[
α1,1 α1,2

0 0
1 α3,2

]
and T =

 0 β1,2

0 β2,2
k

κ
β3,2


the rank condition (Assumption 1) is satisfied and the
associated characteristic function (3) is defined by

P0(s) =s3 +

(
2ξω +

α3,2κ+ 1

κ

)
s2

+

(
ω2 +

(2κξα3,2 + 2ξ)ω

κ
+ α1,1

)
s

+
(α3,2κ+ 1)ω2

κ
+

κα1,1α3,2 − κα1,2 + α1,1

κ
,

(14a)

P1(s) =β3,2s
2 + (2ωβ3,2ξ − β2,2) s+ ω2β3,2 − 2ωβ2,2ξ

+ α1,1β3,2 − β1,2. (14b)

By forcing the multiplicity, one obtains the remaining
parameters βi,j and concludes that s0 is a root with
multiplicity n + 1 = 4 if, and only if, s0 is a root of the
elimination-produced polynomial

P(s) = κ s3τ3 +
(
(1 + (2ξω + α3,2)κ) τ

3 + 9κ τ2
)
s2

+
(((

2ωξα3,2 + ω2 + α1,1

)
κ+ 2ξω

)
τ3
)
s

+
(
(6 + (12ξω + 6α3,2)κ) τ

2 + 18κτ
)
s

+
((
α3,2ω

2 + α3,2α1,1 − α1,2

)
κ+ ω2 + α1,1

)
τ3

+
((
6ωξα3,2 + 3ω2 + 3α1,1

)
κ+ 6ξω

)
τ2

+ (6 + (12ξω + 6α3,2)κ) τ + 6κ.

Now, considering the system (12) with parameter values
as the ones proposed in Manitius (1984) where κ = 2
s, k = −0.67036 rad−1, ξ = 1/3, ω = 5 rad/s and

τ0 = 1/3, one obtains α1,1 = 316
9 , α1,2 = 2294

27 , α3,2 = − 5
6

guaranteeing the realrootedness of P0 as well as that of
polynomial P.

In particular, such a choice of αi,j leads to the following
observer matrices

L =


316

9

2294

27
0 0

1 −5

6

 and T =


0 −3536 e−

5
3

9

0 −554 e−
5
3

9
k

κ

7 e−
5
3

3

 ,

which guarantees that the assignable rightmost multiple
root can be achieved at s0 = −5 as illustrated through
Figure 1.

Fig. 1. The spectrum distribution of the quasipolynomial
(3) with polynomials P0 and P1 defined in (14).

Figure 2 provides the evolution of the Mach number
m(t), the guide vane position ϑ(t), its derivative and their
estimation, in the case where the initial conditions are

given by m(t) = −0.1, ϑ(0) = m(0)
k = 0.15rad, and

ϑ̇(t) = 0.

0 1 2 3 4 5 6 7
-5

0

5

0 1 2 3 4 5 6 7
0

1

2

3

0 1 2 3 4 5 6 7

-1

-0.5

0

Fig. 2. Evolution of the state vector X(t) (—) and its estimation
X̂(t) (–).



4.2 Systems with input delay

In this section, we shall give an example to show the
efficiency and the feasibility of the results obtained in
this paper. Indeed, let us consider a dynamical system
modeling a friction-free inverted pendulum on a cart.

M
u

θ

m

The model adopted here was discussed in Sieber and
Krauskopf (2005). The dynamics of the inverted pendulum
on a cart can be modelled by a second-order differential
equation for the angular displacement θ of the tip of the
pendulum(

1− 3m

4(m+M)
cos2(θ)

)
θ̈

+
3m

8(m+M)
θ̇2 sin(2θ) + sin θ + u cos θ = 0, (15)

where M is the mass of the cart, m is the mass of the
pendulum, and u represents the control law, which is the
horizontal driving force.

We assume that the system is controlled by a delayed
input u(t − τ). For small θ, we can write sin(θ) = θ
and cos(θ) = 1. Also dropping all non-linear components

(θ̇2 = 0), equation (15) may be rewritten as(
1− 3m

4(m+M)

)
θ̈(t) + θ(t) + u(t− τ) = 0. (16)

Next, We denote by X(t) =
[
θ̇ θ

]T
, so system (16) may

be rewritten in the following state space model

Ẋ(t) =

(
0 −a
1 0

)
X(t) +

[
−a
0

]
u(t− τ) (17)

where a =
(
1− 3m

4(m+M)

)−1

. The available measurement

is given by y(t) = [0 1]X(t).

In this case the rank condition (Assumption 1) is satisfied
and the associated characteristic quasipolynomial is given
by:

∆(s) = (sβ2,1 + β1,1) e
−sτ + s2 + sα2,1 + a+ α1,1. (18)

Next, the realrootedness of the corresponding P0 (Assump-
tion 2) is guaranteed by the positivity of its discriminant,
that is, δ = α2

2,1 − 4a − 4α1,1. As shown in Boussaada
et al. (2020), if the discriminant δ ≥ 0, then the multi-
plicity of any given root of the quasipolynomial function
(18) is bounded by 3. For an arbitrary positive delay τ ,
the quasipolynomial (18) admits a real spectral value at
s = s± with algebraic multiplicity 3 if, and only if,

s± =
−τ α2,1 − 4±

√
8 + τ2δ

2 τ
,

and the system parameters satisfy


β1,1 = (α2,1s± +

α2,1
2

2
− δ

2
+

6α2,1 + 10 s±
τ

+
6

τ2
)eτs± ,

β2,1 =

(
2 s0 + α2,1 +

2

τ

)
eτs± .

(⋆±)
If (⋆+) is satisfied then s = s+ is the spectral abscissa
corresponding to (18). Furthermore, the trivial solution
is asymptotically stable if, and only if, τ satisfies the
following conditions

τ ∈]0, τ−[ when α1,1 < −a,

or

τ ∈]0, τ−[∪]τ+, ∞[ when α1,1 > −a and α2,1 < 0,

where τ± =
−α2,1±

√
δ+2α1,1+a

α1,1+a .

For instance, choosing α1,1 = −a − 1 and α2,1 = 1, we
define the rightmost root of (3) as a function of the delay
τ as illustrated in figure 3.

Fig. 3. The spectral abscissa of (3) as a function of the
delay τ where α1,1 = −a− 1 and α2,1 = 1.

For further discussions on the MID property in second-
order delay, the reader may consider Boussaada et al.
(2020).

As a numerical example, we choosem = 0.5 Kg andM = 5
Kg and a time delay τ = 0.1s. By setting the observer
matrices to the latter computation, we obtain

L =

[
−2.0732

1

]
and T =

[
10.803
4.453

]
The initial conditions are given by X(0) = [0 0.5]T . Figure
4 shows the convergence of the estimation state vector to
its real values.

5. CONCLUDING REMARKS

In this paper, a Luenberger-type observer for linear time
delay systems has been developed. Two types of delayed
systems have been considered, systems with delayed states
and systems with delayed inputs. Under sufficient condi-
tions, the stability of the estimation error systems has been
proved in both cases using partial placement of the poles
for the error, namely the MID property. The practical use
of the proposed observers has been demonstrated exper-
imentally for a transonic flow in a wind tunnel which is
modeled by a delayed state model and the inverted pendu-
lum system which is described by a delayed input system.
A root location of the quasipolynomials was accessed using
numerical techniques and the observer matrices were de-
duced to allow a suitable estimation of the systems states.
A generalization of the observer design and an observer
based control will be studied in future work.
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Fig. 4. Evolution of the state vector X(t) (—) and its estimation
X̂(t) (- -) with τ = 0.1s.
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