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ABSTRACT
Elliptical galaxies are modelled with a four-component model: Sérsic stars, �-cold dark matter
(�CDM), a β-model for the hot gas and a central black hole, with the aim of establishing how
accurately can one measure the total mass within their virial radii.

Dark matter (DM) is negligible in the inner regions, which are dominated by stars and the
central black hole. This prevents any kinematic estimate (using a Jeans analysis) of the inner
slope of the DM density profile. The gas fraction rises, but the baryon fraction decreases with
radius, at least out to 10 effective radii (Re). Even with line-of-sight velocity dispersion (VD)
measurements at 4 or 5Re with 20 km s−1 accuracy and perfectly known velocity anisotropy,
the total mass within the virial radius (rv ≡ r 200) is uncertain by a factor of over 3. The DM
distributions found in �CDM simulations appear inconsistent with the low VDs measured by
Romanowsky et al. of planetary nebulae between 2 and 5Re. Some of Romanowsky et al.’s
orbital solutions for NGC 3379 imply a dark matter content at least as large as cosmologically
predicted, and the lower M/L values of most of their solutions lead to a baryonic fraction
within rv that is larger than the universal value. Replacing the Navarro–Frenk–White (NFW)
DM model by the new model of Navarro et al. decreases the VD slightly at a given radius.
So, given the observed VD measured at 5Re, the inferred M/L within rv is 40 per cent larger
than that predicted by the NFW model. Folding in the slight (strong) radial anisotropy found
in �CDM (merger) simulations, which is well modelled (much better than with the Osipkov–
Merritt formula) with β(r ) = 1

2 r/(r + a), the inferred M/L within rv is 1.6 (2.4) times higher
than for the isotropic NFW model. Thus, the DM model and radial anisotropy can partly
explain the low planetary nebula VDs, but not in full. The logarithmic slope of the VD at radii
of 1–5Re, which is insensitive to radius, is another measure of the DM mass within the virial
radius, but it is similarly affected by the a priori unknown DM mass profile and stellar velocity
anisotropy.

In an appendix, single integral expressions are derived for the VDs in terms of general radial
profiles for the tracer density and total mass, for various anisotropic models (general constant
anisotropy, radial, Osipkov–Merritt and the model above).

Key words: methods: analytical – galaxies: elliptical and lenticular, cD – galaxies: haloes –
galaxies: kinematics and dynamics – galaxies: structure.

1 I N T RO D U C T I O N

Whereas much work has been devoted to constraining the distribu-
tion of dark matter in spiral galaxies from a multicomponent (disc,
bulge, halo and gas) modelling of their rotation curves (e.g. Persic,
Salucci & Stel 1996; Salucci & Burkert 2000), there have not been

�E-mail: gam@iap.fr (GAM); lokas@camk.edu.pl (ELL)

analogous analyses for elliptical galaxies, where the components are
stars, dark matter, hot gas and the central black hole. Such an anal-
ysis is much more difficult for elliptical galaxies, which contrary
to spirals, have little rotation (Illingworth 1977), so that one cannot
directly infer the mass profiles from circular velocities (assuming
nearly spherical mass distributions).

Instead, one has to analyse the velocity dispersions as a function of
position, and this analysis involves solving the Jeans equation, which
in spherical symmetry, assuming no streaming motions (including
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rotation), is
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r = −�(r )
G M(r )

r 2
, (1)

where � is the luminosity density of the galaxy, σ r is its radial
velocity dispersion and where the anisotropy parameter is

β = 1 − σ 2
t

σ 2
r

, (2)

with σt = σθ = σφ being the one-dimensional tangential velocity
dispersion, so that β = 0 corresponds to isotropy, β = 1 to fully
radial anisotropy and β → −∞ to fully tangential anisotropy.

The luminosity density is easily obtained by deprojecting the
surface brightness profile, and the situation is simplified by the re-
cent consensus on the applicability to virtually all elliptical galaxies
(Caon, Capaccioli & D’Onofrio 1993; Bertin, Ciotti & Del Principe
2002) of the generalization (hereafter Sérsic law) of the R1/4 law (de
Vaucouleurs 1948) proposed by Sersic (1968), which can be written
as

I (R) = I0 exp

[
−

(
R

aS

)1/m
]
, (3)

where I is the surface brightness, aS is the Sérsic scale parameter and
m is the Sérsic shape parameter, with m = 4 recovering the R1/4 law.
Moreover, strong correlations have been reported between the shape
parameter m and either luminosity or effective (half-projected light)
radius Re (Caon et al. 1993; Prugniel & Simien 1997 and references
therein; Graham & Guzmán 2003).

A serious difficulty in modelling the internal kinematics of el-
liptical galaxies and clusters of galaxies, considered to be spherical
non-rotating systems, is that the Jeans equation (1) has two un-
knowns: the radial profiles of total mass distribution and velocity
anisotropy and this mass/anisotropy degeneracy requires some as-
sumption on anisotropy to recover the total mass distribution. One
solution is to analyse the velocity profiles or at least the fourth-order
velocity moments (Merritt 1987; Rix & White 1992; Gerhard 1993;
L� okas & Mamon 2003; Katgert, Biviano & Mazure 2004).

One can go further in modelling the internal kinematics of ellip-
tical galaxies or clusters of galaxies with the Schwarzschild (1979)
orbit modelling method, which supposes a form of the potential
and minimizes the differences between the observations (maps of
surface brightness, mean velocity and velocity dispersion, or even
of velocity profiles) and their predictions obtained by suitable pro-
jections of linear combinations of a set of orbits that form a basis
in energy–angular momentum phase space. One can then iterate
over the form of the potential to see if one finds significantly better
fits to the observational data. Similarly, Merritt & Saha (1993) and
Gerhard et al. (1998) suggested working with a set of distribution
functions, which one hopes forms an adequate basis, and one then
minimizes the linear combination of the distribution functions that
best match the observations. However, such recent analyses rarely
place useful constraints on the gravitational potential (with no pri-
ors), with the exception of Kronawitter et al. (2000), who find that
some elliptical galaxies are consistent with constant mass-to-light
ratios while others show mass rising faster than light.

The key issue is to obtain more distant tracers of the gravita-
tional potential. Two such studies, by Méndez et al. (2001) and
Romanowsky et al. (2003), of the distribution of the line-of-sight
velocities of planetary nebulae (hereafter PNe) on the outskirts of
a total of four moderately luminous (L ∗) nearby elliptical galax-
ies indicate fairly rapidly decreasing PN velocity dispersion pro-
files. Romanowsky et al. carefully analyse one of their galaxies

(NGC 3379) with the Schwarzschild method, and their favourite
conclusion is that the dark matter content of these galaxies is
low at five effective radii, and extrapolates to a very low mass-
to-blue-light ratio of ϒB = 33 at 120 kpc, which they consider
to be the virial radius. This low mass-to-light ratio at the virial
radius (hereafter the virial mass-to-light ratio) appears to be at
strong variance with the cosmological predictions. Two recent works
suggest that ϒB has a non-monotonic variation with mass (or lu-
minosity), with a minimum value around 80–100 for luminosities
LB ≈ 109−11 L� (Marinoni & Hudson 2002; Yang, Mo & van den
Bosch 2003), with both studies predicting ϒB � 100 h70 for LB =
LB,∗ = 1.88 × 1010 L� (Mamon & L� okas 2005).

There are various alternatives to estimating the mass profiles of
elliptical galaxies through the Jeans equations; in particular, mod-
elling the X-ray emission arising from hot gas assumed to be in
hydrostatic equilibrium in the gravitational potential, through the
effects of gravitational lensing and through the kinematic analysis
of galaxy satellites.

The analyses of diffuse X-ray emission in elliptical galaxies have
the advantage that the equation of hydrostatic equilibrium, which
is the gas equivalent of the Jeans equation (1), has no anisotropy
term within it, so in spherical symmetry, one can easily derive the
total mass distribution. However, the derivation of the total mass
profile requires measuring the temperature profile and its gradi-
ent, and unfortunately, even with the two new-generation X-ray
telescopes XMM–Newton and Chandra, it is difficult to achieve
such measurements beyond half the virial radius for galaxy clus-
ters (Pointecouteau, Arnaud & Pratt 2005; Vikhlinin et al. 2005),
and even much less for elliptical galaxies. Moreover, the X-ray emis-
sion from elliptical galaxies is the combination of two components:
diffuse hot gas swimming in the gravitational potential and direct
emission from individual stars, and it is highly difficult to disentan-
gle the two (see Brown & Bregman 2001). Assuming that all the
X-ray emission is due to the diffuse hot gas, Loewenstein & White
(1999) provide interesting constraints on the dark matter in luminous
(L >L ∗) ellipticals, with a dark matter mass fraction of � 20 per cent
(39 per cent) at R = R e (5R e).

Weak gravitational lensing is yet another avenue to analyse
the gravitational potential of elliptical galaxies. As the signal is
much too weak for individual galaxies, one has to stack thou-
sands of galaxies together. In this manner, Wilson et al. (2001)
find that the gravitational lensing shear falls off with angular
distance as expected for a structure where the circular veloc-
ity is roughly independent of radius, which suggests apprecia-
ble amounts of dark matter at large radii. Moreover, from their
analysis of Sloan Digital Sky Survey (SDSS) galaxies, Guzik &
Seljak (2002) find that L∗ galaxies have a mass-to-light ratio ϒ of
the order of 100 in the B band, again implying substantial dark mat-
ter, as the stellar contribution to the mass-to-light ratio is thought
to be only ϒ∗ � 8 in the blue band (see, e.g., Gerhard et al. 2001).
Recently, Hoekstra, Yee & Gladders (2004) derived from the gravi-
tational lensing shear profile of Red Sequence Cluster Survey (RCS)
galaxies, a Navarro–Frenk–White (hereafter NFW) mass within the
virial radius, corresponding to ϒB � 59 ± 5.

The constraints from the internal kinematics of galaxy satellites,
pioneered by Zaritsky & White (1994), are now showing consistency
with the �-cold dark matter (�CDM) models (Prada et al. 2003).
However, one needs to stack the data from many galaxies, so errors
in stacking can accumulate, and the method is very sensitive to the
correct removal of interlopers (Prada et al.).

The constraints on the dark matter are greatly strengthened
when combining the internal kinematics with either the X-ray or
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Weighing dark matter in ellipticals 707

gravitational lensing approach. Combining internal kinematics with
X-rays, Loewenstein & White (1999) are able to constrain the dark
matter content of ellipticals, although they make use of the not very
realistic Osipkov–Merritt (Osipkov 1979; Merritt 1985) anisotropy
(see Fig. 2 in Section 3.2). Combining internal kinematics with the
constraints from strong gravitational lensing, Treu & Koopmans
(2002, 2004) are able to constrain the slope of the inner density
profile of the dark matter.

On the theoretical side, large-scale dissipationless cosmological
N-body simulations have recently reached enough mass and spatial
resolution that there appears to be a convergence on the structure
and internal kinematics of the bound structures, usually referred to
as haloes, in the simulations. In particular, the density profiles have
an outer slope of � −3 and an inner slope of between −1 (Navarro,
Frenk & White 1995, 1996) and −3/2 (Fukushige & Makino 1997;
Moore et al. 1999; Ghigna et al. 2000). In this paper, we consider
the general formula that Jing & Suto (2000) found to provide a good
fit to simulated haloes:

ρ(r ) ∝
( r

ad

)−α [
1 +

( r

ad

)]α−3

, (4)

where the absolute value of the inner slope α = 1 or 3/2 and ‘d’
stands for dark. These profiles fit the density profiles of cosmological
simulations well out to the virial radius rv, wherein the mean density
is � ≈ 200 times the critical density of the Universe,1 and are
characterized by their concentration parameter

c = rv

ad
. (5)

Recently, a number of numerical studies have proposed better
analytic fits to the radial profiles of density (Diemand, Moore &
Stadel 2004a), density logarithmic slope (Navarro et al. 2004) or
circular velocity (Stoehr et al. 2002; Stoehr 2005) profiles of simu-
lated haloes. In particular, the formula of Navarro et al. is attractive
because it converges to a finite central density at very small scales
and has an increasing outer slope with a finite mass. Moreover, fit-
ting to the logarithmic slope of the density profile is to be preferred
on the grounds that fitting the density or circular velocity involves
fitting a single or double integral of the density slope, thus possibly
missing details smoothed over in the integrals. We shall therefore
focus on the density profile of Navarro et al. (2004, hereafter Nav04)
in this work.

Two recent studies have placed interesting constraints on the dark
matter distribution within elliptical galaxies. Borriello, Salucci &
Danese (2003) compute the aperture velocity dispersions of mod-
els with an NFW dark matter component and a Sérsic luminosity
component. They find that the dark matter content must be either
low or with a concentration parameter roughly three times lower
than fitted in the dissipationless cosmological N-body simulations,
as otherwise the fundamental plane of elliptical galaxies is curved
more than is allowed by the observations. Napolitano et al. (2005)
estimate the mass-to-light ratio gradient for a large number of ob-
served ellipticals. They find that very luminous ellipticals appear
to have large M/L gradients consistent with important quantities
of dark matter within the virial radius, while the lower luminosity
L � L ∗ ellipticals appear to have very low gradients, which can be

1 For the standard �CDM parameters, �m = 0.3, �λ = 0.7, one finds
(Eke, Cole & Frenk 1996; L� okas & Hoffman 2001) � = 102, but many
cosmologists prefer to work with the value of 200, which is close to the value
of 178 originally derived for the Einstein–de Sitter universe (�m = 1, �λ

= 0).

explained either by a strong lack of dark matter or else by a dark
matter concentration parameter that is much lower (c � 1 − 6) than
expected from cosmological N-body simulations (c � 15). It re-
mains to be seen how dependent are the conclusions of Napolitano
et al. on the kinematic modelling of their ellipticals.

Our basic goal is to place constraints on the total mass distribu-
tion of elliptical galaxies. In a companion paper (Mamon & L� okas
2005, hereafter Paper I), we show that the NFW, Jing & Suto (2000;
hereafter JS–1.5) and Nav04 density profiles found in dissipation-
less cosmological simulations cannot represent the total matter dis-
tribution in elliptical galaxies, because: (1) the local mass-to-light
ratios are then far below the generally admitted values for the stel-
lar component and (2) the aperture and slit-averaged velocity dis-
persions are much lower than observed for their luminosities (i.e.
through the Faber & Jackson 1976 relation). We also show that
the highly concentrated NFW models that X-ray observers have
fitted to the total mass density profile of ellipticals are an artefact
of fitting to the combination of a Sérsic stellar component and an
NFW dark matter component, and that the fits cannot be very good.
Finally, we argue that the very low local mass-to-light ratios and
aperture velocity dispersions found imply that the stellar compo-
nent fully dominates the internal kinematics of the inner few ef-
fective radii, suggesting that there is little hope in recovering the
inner slope of the dark matter density profile. All of these conclu-
sions suppose that the total mass density profile inside an effective
radius does not sharply steepen to a slope of the order of −2 or
steeper.

In the present paper, making no direct assumptions on the total
mass density profile, we focus on the velocity dispersions and mass
profiles in the outer parts of elliptical galaxies, from 1 to 5 effec-
tive radii. For this, we build a detailed four-component model of
elliptical galaxies, with stars, dark matter, hot diffuse gas and a cen-
tral black hole (as we do not know, a priori, whether these last two
components affect the kinematic analysis of dark matter in ellipti-
cals). It is very possible that the dark matter reacts to the presence of
the baryon component, which can be treated by the approximation
of adiabatic contraction, and recent simulations with gas suggest
that the resulting dark matter density profile scales as 1/r 2 over a
wide range of radii (Gnedin et al. 2004 using cosmological simu-
lations and Dekel et al. 2005 using galaxy merging simulations).
Whereas such an ‘isothermal’ distribution is a real possibility for
the dark matter, it remains unclear how feedback processes from
the baryons (as modelled by Cox et al. 2005 for the results given
by Dekel et al.) may affect this result. We therefore assume here,
as in Paper I, that the dark matter distribution follows the more ro-
bust predictions from dissipationless �CDM cosmological N-body
simulations.

The plan of our paper in as follows. In Section 2, we describe
our four-component model, in Section 3.1, we consider the mass-
to-light ratios consistent with the orbit modelling of Romanowsky
et al. (2003) on the stellar and PN kinematics in NGC 3379, and in
Section 3.2, we estimate the velocity anisotropy of the particles in
dissipationless cosmological N-body simulations. We study the ef-
fects of velocity anisotropy in Section 4.1, compare the importance
of the different components in Section 4.2 and ask whether we can
weigh the dark matter component in Section 4.3. We discuss our
results in Section 5, and reflect on the very low mass-to-light ratio
reported by Romanowsky et al. (2003) for intermediate luminos-
ity elliptical galaxies. In the Appendix we derive single quadrature
expressions for the radial profiles of the line-of-sight velocity dis-
persion in terms of general tracer density and total mass profiles for
four simple anisotropy models.
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2 BA S I C E QUAT I O N S

We now highlight the four-component model that we adopt for el-
liptical galaxies: stars, diffuse dark matter, hot gas and a central
black hole. We neglect any contribution from dark baryons (e.g.
MACHOs).

2.1 Distribution of optical light

We begin with the distribution of optical light, referring the reader
to Paper I for details. The Sérsic (equation 3, for detailed properties
see Graham & Driver 2005) optical surface brightness profile that
represents the projected stellar distribution, can be deprojected ac-
cording to the approximation first proposed by Prugniel & Simien
(1997)

�(r ) = �1 �̃(r/aS), (6)

�̃(x) � x−p exp(−x1/m), (7)

�1 =
{

�(2m)

�[(3 − p) m]

}
I0

2 aS
, (8)

p � 1.0 − 0.6097/m + 0.054 63/m2, (9)

where the latter equation is from Lima Neto, Gerbal & Márquez
(1999).

The integrated luminosity corresponding to equations (6)–(8) is
then (Lima Neto et al.)

L3(r ) = L L̃3(r/aS), (10)

L̃3(x) = γ [(3 − p)m, x1/m]

�[(3 − p)m]
, (11)

where the total luminosity of the galaxy is

L = 2πm �(2m) I0a2
S = 4πm� [(3 − p) m] �1 a3

S, (12)

as obtained by Young & Currie (1994) from the Sérsic surface bright-
ness profile of equation (3), and which matches exactly the total lu-
minosity obtained by integration of Lima Neto et al.’s approximate
deprojected profile.

It is useful to express radii in terms of the effective radius, Re,
which is the radius of half-projected light, where

Re = bm aS, (13)

b � 2m − 1

3
+ 0.009 876/m, (14)

where the latter relation is from Prugniel & Simien (1997). In Paper
I, we showed that Re and m are fairly well correlated with total
luminosity:

log h70 R(fit)
e = 0.34 + 0.54 log L10 + 0.25 (log L10)2 , (15)

log m(fit) = 0.43 + 0.26 log L10 − 0.044 (log L10)2 , (16)

where L10 = h2
70 L B/(1010 L�), R(fit)

e is measured in kpc and with
H 0 = 100 h = 70 h70 km s−1 Mpc−1.2 Then, equations (13) and (14)
lead to

aS � {b[m(fit)]}−m(fit)
R(fit)

e . (17)

2 Unless noted otherwise, we adopt h70 = 1.

2.2 The central black hole

High spatial resolution spectroscopic studies of ellipticals have
shown that they almost always harbour a supermassive black hole
of mass 0.2 per cent (Faber et al. 1997), 0.3 per cent (Kormendy
et al. 1997) or 0.6 per cent (Magorrian et al. 1998) that of the stellar
component. We thus define the fraction of black hole mass to stellar
mass,

gBH = MBH

ϒ∗ L3(rv)
. (18)

We could have defined gBH in terms of the total luminosity instead of
that at the virial radius, but the two differ by typically less than 0.1 per
cent, which is much less than the uncertainty on gBH, and the latter
scaling generates simpler equations below. A recent analysis (Häring
& Rix 2004) favours gBH = 0.15 per cent (M bulge/6 × 1011 M�)0.12,
and we will adopt below gBH = 0.15 per cent. The precise value of
gBH has a negligible effect on the constraints on dark matter in
elliptical galaxies.

2.3 Scalings of global properties

We adopt a fiducial luminosity of L = L ∗. In Paper I, we de-
rived, from Liske et al. (2003), a blue-band luminosity L ∗,B =
1.88 × 1010 h−2

70 L�, i.e. an absolute magnitude of MB = −20.24,
using (e.g. Colina, Bohlin & Castelli 1996)

M�
B = 5.45. (19)

Our choice of LB translates to m = 3.15 (equation 16), R e =
3.2 h−1

70 kpc (equation 15) and aS = 11.6 h−1
70 pc (equation 17).

In Paper I, we argued that the blue stellar mass-to-light ratios
of elliptical galaxies lay in the rough range from 5 to 8, where the
uncertainty is caused by the uncertain initial mass function and its
lower and upper mass cut-offs, as well as metallicity and the stellar
evolution code. In the present paper, we adopt the mean: ϒ ∗,B =
6.5, unless specified otherwise.

We also showed in Paper I that the mass-to-light ratio of the
Universe is

ϒ B = �m ϒclosure,B = 3 �m H 2
0

8π G jB
= 390 h70, (20)

given the luminosity density found by Liske et al. (2003) and Blanton
et al. (2003) in the 2dFGRS (2dF Galaxy Redshift Survey) and SDSS
surveys, respectively.

We define the mass-to-light ratio bias

bϒ = ϒ

ϒ
, (21)

where ϒ = M t/L(rv), with M t representing the total mass within
the virial radius. If the Universe is unbiased, the mass-to-light ratio
within the virial radius will be ϒB = ϒ B = 390 h70. The internal
kinematics of galaxy clusters are consistent with the universal mass-
to-light ratio (e.g. L� okas & Mamon 2003 derive ϒB = 351 for the
Coma cluster). Following the predictions of Marinoni & Hudson
(2002) and Yang et al. (2003), we will adopt a standard value ϒB =
ϒ std

B = 100 h70.
We also define the baryon fraction bias

bb = fb

f b

= fb

(�b/�m)
, (22)

where f b is the baryon fraction within the virial radius, while
f b = �b/�m � 0.14 is the mean baryon fraction of the Uni-
verse. Here we used the big-bang nucleosynthesis measurement
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Weighing dark matter in ellipticals 709

�b = 0.02 h−2 = 0.041 (O’Meara et al. 2001), which is consistent
with the value obtained by Spergel et al. (2003) from the WMAP
cosmic microwave background (CMB) experiment and �m = 0.3.

Given the fractions of mass in stars, the central black hole, hot
gas and dark matter, all at the virial radius:

f∗ = ϒ∗
bϒ ϒ

, (23)

fBH = gBH f∗, (24)

fd = 1 − fb = 1 − bb f b, (25)

fg = 1 − ( f∗ + fBH + fd), (26)

where we assumed that the central black hole originates from
baryons (this assumption has a negligible effect on what follows),
it is easy to show that these two biases are related through

bb bϒ = 1 + g + gBH

f b

(
ϒ∗
ϒ

)
� 1 + g

f b

(
ϒ∗
ϒ

)
, (27)

where g is the gas-to-star ratio within the virial radius and ϒ ∗ is the
mass-to-light ratio of the stellar population, assumed independent
of radius (in conformance with the very weak colour gradients in
ellipticals, e.g. Goudfrooij et al. 1994).

If mass is biased relative to luminosity in elliptical galaxies
(bϒ 
= 1), we can assume that the baryon fraction is unaffected
(bb = 1, and g must vary according to equation 27). Indeed, it is
difficult to conceive of a mechanism that will segregate baryons
from dark matter within a radius as large as the virial radius. For the
gas-to-star ratio to be positive, one then requires

ϒB >
ϒ∗,B

f b

= 48

(
ϒ∗,B

6.5

)
. (28)

In other words, considering more mass in stars requires a larger
minimum total mass at the virial radius for the baryon fraction to
retain its universal value. Turning the argument around, a low total
mass-to-light ratio at the virial radius would imply that the baryonic
fraction is greater than the universal value, i.e. bb > 1. Indeed, the
general equation (27) implies

bb >
ϒ∗/ϒ

f b

= 1.0
ϒ∗/6.5

ϒ/48
, (29)

where the equality is for a negligible gas-to-star ratio g.

2.4 Distribution of dark mass

We consider here three dark matter models: the NFW model with
inner slope −1, the generalized NFW model introduced by Jing &
Suto (2000) with inner slope −3/2 (JS–1.5), and the convergent
model of Navarro et al. (2004; Nav04). The dark matter density
profile can generally be written (see Paper I, especially for the Nav04
model):

ρd(r ) = c3

gd(c)

(
Md

4π r 3
v

)
ρ̃d(r/ad), (30)

ρ̃d(y) =

y−α (1 + y)α−3 α = 1 (NFW), α = 3

2
(JS–1.5),

exp(−2µ y1/µ) (Nav04),
(31)

gd(y) =


ln(y + 1) − y/(y + 1) (NFW),

2
[

sinh−1 √
y −

√
y/(y + 1)

]
(JS–1.5),

1

2
(2µ)1−3µγ [3µ, 2µ y1/µ] (Nav04),

(32)

where α is the absolute value of the logarithmic slope of the inner
density profile (for the NFW and JS–1.5 models), c is the concentra-
tion parameter (equation 15), ad is the radius where the logarithmic
slope is equal to −2 (NFW, Nav04) or −9/4 (JS–1.5, for which
ad/2 is the radius where the slope is −2), µ � 6 (Paper I) and
sinh−1 x = ln(x + √

x2 + 1) for x > 0. In equation (30), Md is
the dark mass within the virial radius, defined such that the mean
total density within it is � = 200 times the critical density of the
Universe, ρ crit = 3 H 2

0/(8 πG), yielding a virial radius (see Navarro,
Frenk & White 1997)

rv =
(

2 G Mv

� H 2
0

)1/3

,

= 163h−1kpc

(
h Mt

1012 M�

)1/3

,

= 206 h−1
70 kpc

(
h70 Mt

1012 M�

)1/3

,
(33)

for � = 200. Jing & Suto (2000) measured the concentration pa-
rameter c (equation 15) from their �CDM (with cosmological den-
sity parameter �m = 0.3 and dimensionless cosmological constant
�� = 0.7) simulations, which can be fitted by the relations

c �
{

10.2 M−0.08
12 (NFW),

4.9 M−0.13
12 (JS–1.5),

(34)

where M 12 = hM t/1012 M�. In Paper I, we derived the concentra-
tion parameter of the Nav04 model:

c = 8.1 M−0.11−0.015 log M12
12 , (35)

which is similar to the concentration parameters in equations (34).
For LB = L ∗,B , equations (15) and (33) lead to

rv

Re
= 79

(
ϒB

100

)1/3

. (36)

The cumulative mass of the dark models used here can all be
written as

Md(r ) = Md M̃d(r/ad), (37)

M̃d(y) = gd(y)

gd(c)
, (38)

where gd (y) is given in equation (32).3

A complication arises because the luminosity at the virial radius
is very close to but not exactly equal to the total luminosity. We
write out the total mass at the virial radius, both as a mean density
threshold, and as the luminosity at the virial radius times the mass-
to-light ratio:

Mt = 4π

3
r 3

v � ρcrit = �H 2
0 r 3

v

2 G
= ϒ L L̃3(rv/as) (39)

(where we used equation 21) and solve the final equality of equa-
tion (39) for rv (the correction on rv turns out to be negligible as the
luminosity has nearly fully converged at the virial radius).

3 Note that the definition of gd is the inverse of the definition of g given by
L� okas & Mamon (2001) for the NFW model.
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710 G. A. Mamon and E. L. L� okas

2.5 Distribution of gas mass

Elliptical galaxies also shine in the X-ray band. Both discrete sources
and a hot diffuse interstellar medium contribute to their X-ray emis-
sion, and the latter component should contribute non-negligibly to
the mass budget of ellipticals. Indeed, if elliptical galaxies are un-
biased matter tracers (bϒ = 1), then according to equation (23),
stars contribute at the virial radius to a fraction of the total mass of
f∗ = ϒ∗/ϒ = 0.017 (ϒ∗/6.5). This is much less than the baryon
fraction at the virial radius assuming no baryon bias (bb = 1), i.e.
fb = f b = 0.14 h−2

70 (Section 2.3). So, if ellipticals have the same
baryon fraction within their virial radius as the full Universe, then the
hot gas in ellipticals accounts for 0.14 h−2

70 − 0.025 h−1
70 = 0.11 (for

h70 = 1) of the total mass within the virial radius (assuming no dark
baryons), which is 0.11/0.025 � 4 times more than stars. If elliptical
galaxies have virial mass-to-light ratios as low as ϒB = 100, then the
gas-to-star ratio is lower (for a fixed baryonic fraction). According
to equation (27), for no baryon bias (bb = 1), the gas dominates the
stars at the virial radius (g > 1) for ϒB > 2ϒ∗,B/ f b = 93(ϒ∗,B/8).

Brown & Bregman (2001) have fitted the X-ray surface brightness
profiles of luminous ellipticals (jointly with a component for discrete
sources following the R1/4 law), and find that the usual so-called β-
model

ρg(r ) = ρ0 ρ̃g(r/rc), (40)

ρ̃g(z) = (1 + z2)−3βg/2, (41)

provides a good representation of the distribution of the hot gas,4

with 〈β g〉 = 0.49 and

rc � Re

q
, (42)

where q � 10. Using a larger sample of elliptical galaxies,
O’Sullivan, Ponman & Collins (2003) find a mean β g of 0.55,
but do not estimate rc/R e. These parameters should be considered
tentative, as the subtraction of the hard stellar component is quite
uncertain.

As for the other non-stellar components, the gas enters our anal-
ysis only through its cumulative mass (see the Jeans equation 1).
Adopting

βg = 1

2
, (43)

the cumulative mass distribution arising from equation (40) is

Mg(r ) = 4 π ρ0 r 3
c M̃g(r/rc) (44)

M̃g(z) = 2

3
z

[
(1 + z2)1/4 − 2 F1

(
1

2
,

3

4
;

3

2
; −z2

)]
, (45)

where 2 F1(a, b; c; x) = �(c)/[�(b)�(1−b)]
∫ 1

0
tb−1(1−t)c−b−1(1−

t x)−a is the hypergeometric function. Note that M̃g(1) � 0.239.
To an accuracy of 2.7 per cent for all z, one has

M̃g(z) �
[(

1

3
z3

)−γ

+
(

2

3
z3/2

)−γ ]−1/γ

, (46)

with γ = 21/8 � 1.0905.

4 Our parameters z and β g have nothing to do with a redshift or velocity
anisotropy, respectively!

We write the gas mass profile as

Mg(r ) = Mg(rv)
M̃g(r/rc)

M̃g(rv/rc)
(47)

and normalize the gas component with the baryon fraction within
the virial radius:

Mg(rv)

Mt
= fb − (1 + gBH) f∗ = bb f b − (1 + gBH)

ϒ∗
ϒ

. (48)

The divergence of the gas mass profile at large radii is very severe
(Mg ∝ r 3/2), leading to a divergent gravitational potential, and to a
local gas fraction that is much too large. We therefore assume that,
beyond the virial radius, the ratio of the local baryon (gas + stellar)
mass density to the local total matter density is equal to the universal
baryon ratio f b = �b/�m, yielding

ρg(r ) = f b

1 − f b

ρd(r ) − ϒ∗ �(r ) for r > rv, (49)

where ρ d is the dark matter density.
The local gas density profile will therefore be discontinuous at

the virial radius. Physically, one expects a shock to occur at the
interface between the gas infalling into the galaxy and the gas in
equilibrium within the galaxy, and this shock should occur very
close to the virial radius. With equations (40)–(44), (46) and (48),
the local gas density profile just within the virial radius is (dropping
the negligible 1 + gBH term in equation 48)

ρg(r−
v ) =

(
bb f b − ϒ∗

ϒ

) (
1 + r 2

v /r 2
c

)−3/4

M̃g(rv/rc)

(
Mt

4πr 3
c

)
, (50)

while with equations (30)–(32) and (49), the local gas density just
outside the virial radius is

ρg(r+
v ) =

{
[c/(c + 1)]3−α

gd(c)
f b

(
1 − bb f b

1 − f b

)
− (rv/aS)3 �̃(rv/aS)

m �[(3 − p)m] L̃3(rv/aS)

ϒ∗
ϒ

}(
Mt

4πr 3
c

)
. (51)

According to equations (50) and (51), the discontinuity of the gas
density at the virial radius can be written as

ρg(r+
v )

ρg(r−
v )

= 1

bbϒ f b − ϒ∗

(
1 + z2

v

)3/4
M̃g(zv)

z3
v

×
{

ϒ f b

(
1 − bb f b

1 − f b

)
[c/(c + 1)]3−α

gd(c)

− ϒ∗
m�[(3 − p)m]

x3
v �̃(xv)

L̃3(xv)

}
, (52)

where x v = rv/aS and zv = rv/r c. For a wide variety of plausible
parameters ϒ ∗, bb, ϒ , α, c, x v and zv, equation (52) yields den-
sity ratios ρ g (r−

v )/ρ g (r+
v ) between 2 and 3.5, in accordance with

the standard Rankine–Hugoniot conditions (density ratio smaller
than 4).

The cumulative gas mass beyond the virial radius is then

Mg(r ) = Mg(rv) + f b

1 − f b

[Md(r ) − Md(rv)]

− ϒ∗ [L(r ) − L(rv)], (53)
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yielding a normalized gas mass satisfying

M̃g(z)

M̃g(zv)
− 1 = Mg(r )

Mg(rv)
− 1

= fd

fg

f b

(1 − f b)

[
M̃d

( r

ad

)
− 1

]
− f∗

fg

[
L̃3 (r/aS)

L̃3 (rv/aS)
− 1

]
, (54)

where the second term is negligible (as the integrated luminosity
has almost fully converged at the virial radius).

3 OT H E R A S T RO N O M I C A L I N P U T S

3.1 Lower bound on the virial mass-to-light ratio

Our lower bound on the mass-to-light ratio within the virial radius is
taken from the work of Romanowsky et al. (2003), who performed,
for the nearby giant elliptical, NGC 3379, an orbit modelling of
the velocity field of the planetary nebulae combined with the radial
profiles of the stellar surface brightness and line-of-sight velocity
dispersion. Although they quote a mass-to-light ratio at 120 kpc,
which they estimate to be the virial radius, of ϒB = 33 ± 14, we
find

�(r ) = 2
ϒB G L B

H 2
0 r 3

= 507, (55)

for r = 120 kpc, ϒB = 33 and LB = 1.51 × 1010 L� (from
Romanowsky et al.’s MB = −20.0 and equation 19). So clearly
the radius of overdensity 200 is much larger than 120 kpc, and as
dark matter is believed to be more extended than luminous matter
(e.g. Fig. 4, below), the mass-to-light ratio should be larger than 33.

We extrapolate Romanowsky et al.’s mass-to-light ratio out to
the virial radius, as follows. In their orbit modelling of NGC 3379,
Romanowsky et al. (supporting on-line material) write the density
profile as the sum of a luminous Hernquist (1990) component and
a dark NFW component:

ρ(r ) = a2 v2
∗

2 π G r (r + a)3
+ rs v2

s

4 π G r (r + rs)2
. (56)

Writing r = a x and r s = a x s, it is easy to show that the mass
enclosed within radius r satisfies

G M(r )

av2∗
=

{( x

x + 1

)2

+
(

vs

v∗

)2

xs

[
ln

(
1 + x

xs

)
− x

x + xs

]}
.

(57)

Expressing the mean density at the virial radius as � times the
critical density of the Universe, one needs to solve for xv = rv/a =
c x s the equation{( xv

xv + 1

)2

+ 2
(

vs

v∗

)2

xs

[
ln

(
1 + xv

xs

)
− xv

xv + xs

]}
=

(
�

2

)(
H0 a

v∗

)2

, (58)

where rvir is the virial radius for the total matter.
Fig. 1 shows the resulting values of the concentration parameter of

the NFW dark matter model versus the mass-to-light ratio evaluated
at the virial radii, r200 (open circles) and r102 (filled circles), for
Romanowsky et al.’s 15 orbit solutions (with the values of r s, v∗
and v2

s /v
2
∗ given in their supporting on-line material). Here, we first

solved equation (58), and substituted the dimensionless virial radius,

Figure 1. Dark matter (NFW) concentration versus total mass-to-light ratio
at the virial radius, r200 (open circles) and r102 (filled circles), as inferred
from the orbit solutions of Romanowsky et al. (2003, supporting on-line ma-
terial, circles) and Romanowsky (private communication, diamonds), using
equation (58). The oblique horizontal line indicates the concentration–mass
relation of Bullock et al. (2001) as rescaled by Napolitano et al. (2005). The
vertical line gives the mass-to-light ratio at the virial radius from the cosmo-
logical prediction of Marinoni & Hudson (2002). The hashed regions give
an indication of the uncertainties on the concentration-mass relation (factor
of 1.4) and the mass-to-light ratio at the virial radius derived by Marinoni
& Hudson (factor of 1.6). The arrow indicates where the solutions lead to a
baryonic fraction that is higher than the universal value. The filled symbols
ought to lie within the hatched regions and to the right of the arrow.

xv for x in equation (57). We also plot (as diamonds) in Fig. 1 another
acceptable solution, which A. Romanowsky kindly communicated
to us, leading to ϒB as high as 164 at r200 and 196 at r102.

Whereas Romanowsky et al. quote ϒB = 33 ± 14 at 120 kpc,
we find, using the same input values of r s, v∗ and v2

s /v
2
∗, assuming

R e = 36 arcsec5 (from which we infer a Hernquist scale radius of
a = 1.0 kpc), ϒB (120 kpc) to be in the range 19–48, with a mean
of 27 and a median of 22. Extrapolating to the virial radius, defined
in this paper as r200, we find ϒB in the range 20–70, with a mean of
32 and a median of 25, while for the �CDM virial radius, r102, we
obtain an ϒB value of between 22 and 82, with a mean of 37 and a
median of 28.

Fig. 1 shows that one of the 15 orbit solutions of Romanowsky
et al. has a combination of virial mass-to-light ratio and concen-
tration parameter in line with the predictions from dissipationless
cosmological simulations (ϒ B,102 = 70 and c = 10), where the
concentration parameter predictions are those that Napolitano et al.
(2005) rederived from the dissipationless cosmological simulations
analysed by Bullock et al. (2001). None of the orbit solutions lead to
the very low concentration parameters favoured by Borriello et al.
(2003) and Napolitano et al.

5 The effective radius adopted by Romanowsky et al. (2003), originates from
aperture photometry (de Vaucouleurs et al. 1991). Determinations from fits of
the differential surface brightness profile over a very large radial range yield
Re = 53 arcsec (de Vaucouleurs & Capaccioli 1979; Capaccioli et al. 1990),
so the effective radius adopted by Romanowsky et al. may be underestimated
by a factor of 1.5.
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712 G. A. Mamon and E. L. L� okas

We also note that the Hernquist model contribution to the mass-
to-light ratio at the virial radius is always near ϒ∗,B = 5.6. According
to equation (28), this amounts to a minimum mass-to-light ratio of
ϒB = 41 for the baryonic fraction at the virial radius equal to the
universal value. Only three of the 15 orbit solutions of Romanowsky
et al. can be modelled with no baryon bias, but for their mean value
of ϒB = 33, which we adopt as our lower limit, the baryon bias
is (equation 29) bb = 1.25 with ϒ∗,B = 5.6 or bb = 1.45 with ϒ

∗,B = 6.5. Therefore, in systems with total mass-to-light ratios as
low as the mean derived by Romanowsky et al., the baryon fraction
within the virial radius is greater than the universal value, unless
the stellar mass-to-light ratio is overestimated (see also Napolitano
et al. 2005). One is then left with the difficulty of explaining how
baryons can segregate from dark matter as far out as the virial radius.

3.2 Velocity anisotropy

Given the mass/anisotropy degeneracy mentioned in Section 1, it is
difficult to estimate the radial variation of the anisotropy parame-
ter, β (defined in equation 2). The simplest solution is to assume
isotropy throughout the galaxy. In fact, for clusters of galaxies,
Merritt (1987), L� okas & Mamon (2003) and Katgert et al. (2004)
each derived isotropic orbits throughout, Merritt and Katgert et al. by
examining the global velocity distribution and L� okas & Mamon by
performing a joint local analysis of the radial profiles of the line-of-
sight velocity dispersion and kurtosis. With their Schwarzschild-like
Gerhard et al. (1998) modelling of elliptical galaxies, Kronawitter
et al. (2000) and Saglia et al. (2000) find β � 0.3 within R e/2.

It is useful to compare these still very uncertain anisotropy es-
timates with those measured in cosmological N-body simulations.
Fig. 2 shows the anisotropy profiles for five recent analyses of dis-
sipationless cosmological simulations by Diaferio (1999), Colı́n,
Klypin & Kravtsov (2000), Diemand, Moore & Stadel (2004b),
Rasia, Tormen & Moscardini (2004) and Wojtak et al. (2005), with
the latter four converted from r/r 100 to r/r 200 assuming r 100/r 200 =
1.37, as expected for Nav04 models with the masses (at the level
of galaxy clusters) as simulated. Note that the orbital anisotropies
of Diaferio (1999), Colı́n et al. (2000) and Wojtak et al. (2005) in-
clude the mean radial and tangential streaming motions, while that
of Rasia et al. (2004) does not.

The figure also displays analytical representations of the data: the
model (dotted curve) that Carlberg et al. (1997) fit to the kinematics
of CNOC clusters:

β(r ) = 2 βm
ra r

r 2 + r 2
a

, (59)

with βm = 0.65 and ra = 2 rv, which Colı́n et al. (2000) found to
fit well the anisotropy of the subhaloes in their simulation, and an
anisotropy model that also appears to fit the simulation data well:

β(r ) = 1

2

r

r + ra
, (60)

for ra = 0.18 (lower solid curve).
The anisotropy profiles plotted in Fig. 2 are for all the particles

of a halo, instead of for the subhaloes of a halo, which are much
closer to isotropy. Indeed, we are wary of using the subhaloes in
the cosmological simulations, because the number density profile
of subhaloes within haloes is suspicious, as it has a much shallower
inner slope than the dark matter (Colı́n et al. 1999) with a nearly
homogeneous core (Diemand et al. 2004a), in contrast with the dis-
tribution of galaxies in clusters (Carlberg et al. 1997). Interestingly,
stars show more radial orbits than dark matter particles in hydro-
dynamical cosmological (Sáiz, Domı́nguez-Tenreiro & Serna 2004)

Figure 2. Radial variation of the velocity anisotropy found in cosmolog-
ical N-body simulations. The asterisks, triangles, stars, circles and squares
correspond to particles within haloes of cosmological �CDM N-body sim-
ulations of Diaferio (1999), Colı́n et al. (2000), Rasia et al. (2004), Diemand
et al. (2004b) and Wojtak et al. (2005), respectively. The dotted curve is the
profile proposed by Carlberg et al. (1997, equation 59) and found by Colı́n
et al. to fit the subhalo anisotropies well. The solid curves are the analytical fit
of equation (60), with ra/rv = 0.18 (providing a good fit to the data from the
dissipationless cosmological N-body simulations) and 0.018 (matching the
anisotropy profile of Dekel et al.’s 2005 merger remnants), going upwards
(red and blue in the electronic version of the journal). The dashed curves
are the Osipkov–Merritt anisotropy (equation 61) with ra/rv = 0.25 and 1,
going downwards. The upper limit is from the analysis of Kronawitter et al.
(2000) and Saglia et al. (2000), assuming rv/Re � 100 as expected for our
standard parameters (LB = 1010 h70 L� and ϒB = 100).

and merger (Dekel et al. 2005) simulations, where the gas is allowed
to cool and form stars, and, for the latter study, have a feedback ef-
fect on the cooling of the remaining gas. Dekel et al. find a stellar
anisotropy profile that resembles the model of equation (60), with
r a � 1.4R e � 0.018 rv (using equation 36 for the latter approx-
imation). This is shown as the higher of the two solid curves in
Fig. 2.

Fig. 2 indicates that the anisotropy of equation (60) with ra =
0.18 rv fits very well the anisotropy profiles of Colı́n et al., Rasia
et al., and Diemand et al. (2004b) from 2 to 10 per cent of the virial
radius, which happens to be the region where we shall find that the
anisotropy may play an important role in modelling the mass-to-light
ratios of elliptical galaxies. Fig. 2 also shows the commonly used
Osipkov–Merritt (Osipkov 1979; Merritt 1985) anisotropy model,

β(r ) = r 2

r 2 + r 2
a

, (61)

for ra/rv = 0.25 and 1. Clearly, the Osipkov–Merritt anisotropy is
a poor fit to the simulations, as it converges to a too high value of
unity, and worse, decreases to zero too fast at increasingly low radii.

In what follows, we generally assume that the anisotropy of the
stellar population is equal to the anisotropy of the dark matter par-
ticle system, but we will also allow for the much stronger radial
anisotropy found by Dekel et al. In the Appendix, we derive the
line-of-sight velocity dispersion profile for four different anisotropy
profiles: constant anisotropy, the limiting purely radial case,
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Weighing dark matter in ellipticals 713

Osipkov–Merritt and the anisotropy model of equation (60). With
these single quadratures, one avoids double integration (first inte-
grating the Jeans equation to obtain the radial velocity dispersion
and then integrating along the line of sight to obtain the line-of-sight
velocity dispersion).

4 R E S U LT S

If, as we found in Paper I, the mass models found in dissipation-
less cosmological N-body simulations are not able to reproduce by
themselves the rather high central velocity dispersions observed in
elliptical galaxies, this suggests that the central velocity dispersions
of ellipticals are dominated by the stellar component and by a cen-
tral supermassive black hole, as we shall see below. We are now
left with the question of whether the NFW, JS–1.5 and Nav04 mod-
els are adequate in describing the diffuse dark matter component
(excluding the central black hole) of elliptical galaxies.

Dark matter is expected to become significant in the outer re-
gions of ellipticals, as the black hole affects the central regions,
and the influence of the stellar component is usually thought to be
important in the inner regions, at least within Re. We therefore pre-
dict the line-of-sight velocity dispersion profiles of ellipticals built
with four components: a Sérsic stellar component of constant mass-
to-light ratio ϒ∗, a central black hole, a hot gas component and a
diffuse dark matter component described by an NFW, JS–1.5 or
Nav04 model, according to our parametrizations of Section 2. We
focus our analysis on the following set of parameters: a luminosity
LB = L ∗,B = 1.88 × 1010 h−2

70 L� (implying Re = 3.2h−1
70 kpc from

equation 15, m = 3.15 from equation 16 and aS = 12h−1
70 pc from

equation 17), a stellar mass-to-light ratio ϒ∗,B = 6.5 and no baryon
bias (bb = 1).

4.1 The effects of velocity anisotropy

We first check the effects of anisotropy, by computing the line-of-
sight velocity dispersions of our four-component model, assuming
different anisotropy profiles. Fig. 3 shows the total line-of-sight stel-
lar velocity dispersion, σ los (i.e. the quadratic sum of the individual
velocity dispersions of the four components) for four anisotropy
models: isotropic, radial and the model of equation (60) for two
choices of ra. The line-of-sight velocity dispersion profile of the
anisotropy model of equation (60) with our standard value of ra

= 0.18 rv is virtually indistinguishable from that of the isotropic
model: the anisotropic model producing 2 per cent lower velocity
dispersions at 5R e. On the other hand, if the velocity ellipsoid is
indeed radially anisotropic beyond rv/50, as suggested by the or-
bital anisotropies of the stellar particles in the simulations of Sáiz
et al. (2004) and Dekel et al. (2005), then one can obtain a small
but non-negligible decrement in line-of-sight velocity dispersion: if
ra = 0.018 rv, one finds decrements of 4 per cent at 2R e and 9 per
cent at 5R e. Note that with Osipkov–Merritt anisotropy, and ra = rv

or even ra = 0.25 rv, the line-of-sight velocity dispersions (obtained
with equation A12) are indistinguishable from the isotropic ones.

Hence, with an optimistic precision on velocity dispersion of
5 km s−1, the slight radial anisotropy found in cosmological N-body
simulations produces line-of-sight velocity dispersion profiles that
are virtually indistinguishable within 9Re from analogous profiles
assuming velocity isotropy everywhere, while the stronger radial
anisotropy found for stars in simulated merger remnants displays
measurable differences beyond 2Re.

In comparison, as illustrated in Fig. 3, discarding the dark matter
component has a much stronger effect on the velocity dispersions

Figure 3. Line-of-sight stellar velocity dispersion of a four-component el-
liptical galaxy for different anisotropy models (equations A19 and A16),
with a Nav04 dark matter model, L B = L∗,B = 1.88 × 1010 L�, m =
3.15, Re = 3.2h−1

70 kpc, ϒ∗,B = 6.5, ϒB = 100, gBH = 0.0015 and bb =
1. The short-dashed, solid and long-dashed curves represent the isotropic
(see equation A11), mildly and sharply anisotropic (equation 60, with
ra/rv = 0.18 and 0.018, using equation A9), respectively, while the dash-
dotted curve represents a galaxy with no dark matter (ϒB = f b ϒ std

B = 14)
and mild anisotropy (equation 60 with ra/rv = 0.18) – these four cases are,
respectively, shown in red, black, blue and green in the electronic version of
the journal.

at a few effective radii than does the strong radial anisotropy with
ra = 0.018 rv, with dispersion 19 and 33 per cent lower than with
dark matter (at ϒB = 100).

4.2 Relative importance of dark matter, stars, gas and the
central black hole

Fig. 4 shows the contribution of each component to the lo-
cal mass density, cumulative mass, line of sight (with the
mild anisotropy of equation 60 and ra/rv = 0.18) and aperture
(isotropic)6 velocity dispersions. For our standard parameters, LB =
L ∗,B = 1.88 × 1010 h−2

70 L�, ϒ ∗,B = 6.5, ϒB = 100 (the typ-
ical value inferred in the cosmological analyses of Marinoni
& Hudson 2002 and Yang et al. 2003, i.e. bϒ = 0.26) and gBH =
0.0015, the stellar component dominates over the dark matter com-
ponent out to R � 2R e for the local density, 5R e for the enclosed
mass, 3R e for the line-of-sight velocity dispersion, while the stars
dominate the dark matter everywhere for the aperture velocity dis-
persion. In the inner regions, with gBH = 0.0015, the central black
hole is the dominant component for R < 0.015R e for the enclosed
mass, 0.006R e for the aperture velocity dispersion, but only out to
0.003R e (i.e. � 10 pc) for the line-of-sight velocity dispersion.

The figure also indicates that our model produces Nav04 dark
matter contents that at R = 5R e are consistent with the joint

6 The aperture velocity dispersion with the anisotropy of equation (60) is
difficult to express in terms of a single quadrature, but the difference with
respect to the isotropic case should be very small, as the difference between
isotropic and mildly anisotropic line-of-sight velocity dispersions is negli-
gible, see Fig. 3.
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714 G. A. Mamon and E. L. L� okas

Figure 4. Contribution of stars (short dashes), dark matter (light curves; dashed for NFW, dotted for JS–1.5 and solid for Nav04), hot gas (long dashes), and
the central black hole (big dots) to the local mass density (upper left-hand side), cumulative mass (upper right-hand side), local (middle left-hand side) and
cumulative (middle right-hand side) mass-to-light ratios, mildly anisotropic (equation 60 with r a = 0.18 rv) line-of-sight velocity dispersion (lower left-hand
side) and isotropic aperture velocity dispersion (lower right-hand side); for a giant elliptical with LB = L ∗,B = 1.88 × 1010 h−2

70 L� (corresponding to

m = 3.12, Re = 3.2 h−1
70 kpc and aS = 11.6 h−1

70 pc), ϒ ∗,B = 6.5, ϒB = 100 (i.e. bϒ,B = 0.26), yielding rv/Re = 79, shown as the thin vertical lines) with no
baryon bias (bb = 1), black hole to stellar mass ratio gBH = 0.0015 and dark matter scaling relations from Section 2. The top, solid and dotted, curves represent
the total galaxy assuming either Nav04 or JS–1.5 dark matter, respectively. The arrows (upper right-hand side) indicate the lower limits to the dark matter mass
according to Loewenstein & White (1999), given our total mass at those radii.

kinematics/X-ray modelling of Loewenstein & White (1999), while
our Nav04 dark matter mass fraction at R = R e is 1.6 times lower
than the lower limit found by Loewenstein & White (but our pre-
dicted JS–1.5 dark matter mass is precisely the lower limit of
Loewenstein & White).

Although the gas component begins to dominate the stellar com-
ponent at 10R e, as expected, the gas does not influence the line-of-
sight or aperture velocity dispersions: although its influence on the
line-of-sight velocity dispersion dominates that of the stellar com-
ponent at 60R e, by that large radius the dark matter component is
fully dominating the stellar velocity dispersion.

Given the strong dominance of stars (and the central black hole)
over the dark matter component, the differences in aperture or line-
of-sight velocity dispersion profiles between the inner dark matter
slopes of α = 1 and 3/2 are very small, and basically indistinguish-
able from observations.

The line-of-sight velocity dispersion using the Nav04 profile is
also indistinguishable from the other two dark matter profiles. How-
ever, the Nav04 profile produces slightly (5 per cent) lower to-
tal velocity dispersions at R = 5R e. This is illustrated in Fig. 5,
which plots the mass and line-of-sight velocity dispersion profiles
normalized to those of the Nav04 model. At radii around rv/8

C© 2005 RAS, MNRAS 363, 705–722

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/363/3/705/1143492 by C
N

R
S - ISTO

 user on 27 Septem
ber 2022



Weighing dark matter in ellipticals 715

Figure 5. Radial profiles of cumulative dark mass (thin curves, blue in
the electronic version of the journal) and stellar line-of-sight velocity dis-
persion (thick curves, red in the electronic version of the journal) for the
NFW (dashed curves) and JS–1.5 (dotted curves) dark matter models, both
normalized to those of the Nav04 dark matter model. Same parameters as in
Fig. 4.

(corresponding to 10R e for our standard set of parameters), the
NFW velocity dispersion is up to 6 per cent larger than that of the
Nav04 model, which fits much better the density profiles found in
dissipationless cosmological N-body simulations. The correspond-
ing overestimate of the cumulative mass is almost 20 per cent at
rv/8 (10R e), and the same effect is visible in fig. 2 of Navarro et al.
(2004) (with the virial radii given in their table 3). The maximum
velocity dispersion ratio in Fig. 5 indicates that the lower stellar
velocity dispersions obtained with the Nav04 dark matter model
relative to its NFW counterpart are not caused by the convergent
dark matter mass profile of the former at large radii, but by the 20
per cent difference in mass profiles at 10R e.

The conclusions from Fig. 4 are unchanged if we adopt the much
higher universal total mass-to-light ratio ϒB = ϒ B = 390, instead
of 100, in particular the stellar component dominates the dark mat-
ter out to only 2R e (instead of 3R e) for the line-of-sight velocity
dispersion.

Note that the ratio of aperture velocity dispersion at R e/8 (the
aperture used by Jorgensen, Franx & Kjaergaard 1996) to circular
velocity at the virial radius, σap (R e/10)/V v, is 0.64 when ϒB = 390,
but is as high as 1.00 when ϒB = 100. Indeed, as the stars dominate
the aperture velocity dispersion measurement, decreasing the total
mass-to-light ratio decreases V v without affecting σap (R e/8) much.

Fig. 6 displays radial profiles of the baryon fraction and gas-to-
star ratio. For our standard mass-to-light ratio at the virial radius,
ϒB = 100, the decrease in star fraction with radius is only partially
compensated by the increase in gas fraction, so that the total baryon
fraction decreases with radius for r < rv: for the Nav04 model, f b

decreases from unity at small radii to 0.87 at Re, 0.76 at 2R e, 0.53 at
5R e, and down to a minimum of 0.132 at R = 68R e � 0.95 rv, and
then slowly rises by 0.1 per cent from there to the virial radius. These
trends are very similar for the NFW dark matter model, while for
the JS–1.5 dark matter model, the baryon fraction actually increases

Figure 6. Radial profiles of cumulative fractions of gas (long dashes), stars
(short dashes) and total baryons (solid curve) for a Nav04 dark matter model
(top), and the cumulative gas/star ratio (bottom). Also shown is the baryon
fraction with the JS–1.5 model (dotted in top panel). The arrows indicate
the virial radii. Thick and thin curves and arrows are for ϒB = 100 and 390,
respectively. Other parameters are the same as in Fig. 4.

from 0.87 at R e/100 to 0.90 at R e/13 and then decreases to 0.80
at Re, 0.70 at 2R e and 0.49 at 5R e. For the universal mass-to-light
ratio, ϒB = 390, the trends are similar, except that the baryonic
fraction reaches a minimum of 0.10 (for all dark matter models)
around 50R e, i.e. rv/2, and rises at larger radii.

The bottom plot of Fig. 6 indicates that the gas-to-star ratio rises,
roughly as r1.2 from rv/10 000 to rv. If the mass-to-light ratio at the
virial radius is increased, while the baryonic fraction at the virial
radius and the total stellar mass are kept constant, then the gas
component must become relatively more important, which explains
why the ϒB = 390 gas-to-star ratio is larger than the ϒB = 100
gas-to-star ratio, by a factor of 390/100 = 3.9.

4.3 Can one weigh the dark matter component?

As we have seen in Paper I and Section 4.2, the dark matter con-
tributes little to the inner regions of elliptical galaxies, and hence
we need to focus on the outer regions to be able to weigh the dark
component.

Fig. 7 illustrates the effect of the mass of the dark matter com-
ponent on the line-of-sight velocity dispersion profiles. While the
steep inner slope of the density profile of the JS–1.5 model allows
it to have a non-negligible effect on the line-of-sight velocity dis-
persions at small projected radii, the opposite is true for the NFW
and Nav04 models: the inner line-of-sight velocity dispersions are
completely independent of the total mass of the galaxy. Moreover,
at large radii with ϒB = 100, it is difficult to distinguish between
the three dark matter models. Note that relative to the Nav04 dark
matter model, the NFW model has no effect on the line-of-sight
velocity dispersions measured from 0.01 to 0.1R e (even when no
central black hole is present), while the JS–1.5 component has a
small effect, increasing with mass.

Fig. 8 shows again the effect of the mass of the dark matter com-
ponent, this time allowing the very low mass-to-light ratio deduced
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716 G. A. Mamon and E. L. L� okas

Figure 7. Line-of-sight stellar velocity dispersions of our four-component
elliptical galaxy (equation A9) for our slightly anisotropic (equation 60 with
r a = 0.18 rv) NFW (dashed), JS–1.5 (dotted) and Nav04 (solid) dark matter
models, with total mass-to-light ratio within the virial radius of ϒB = 100
and 390, increasing upwards (respectively, black and red in the electronic
version of the journal). Other parameters are the same as in Fig. 4.

Figure 8. Same as in Fig. 7 with Nav04 dark matter, ϒB = 33, 100 and
390, increasing upwards (blue, black and red in the electronic version of the
journal), and the no dark matter (ϒB = f b ϒ std

B = 14) case (lower curve,
green in the electronic version of the journal), for which ϒB = f b ϒ std

B = 14.
The baryon bias is bb = 1 (solid curves) and bb = 1.5 (dashed curves). The
case bb = 1 is not shown for ϒB = 33 because the gas fraction would then
be negative (see equation 28). Other parameters are the same as in Fig. 4.

by Romanowsky et al. (2003) (see Section 3.1), which requires
bb > 1 (equation 29). The figure shows that, at R/R e = 2, 3, 4,
5 and 6, the velocity dispersion increases by 26, 33, 39, 43 and
46 km s−1 when the mass-to-light ratio at the virial radius is in-
creased from ϒB = 33 to 390. In other words, a line-of-sight ve-
locity dispersion measurement at 4R e with 20 km s−1 measurement
error implies an uncertainty on the total mass-to-light ratio of a

Figure 9. Normalized line-of-sight stellar velocity dispersion for our
slightly anisotropic (equation 60 with r a = 0.18 rv) model with Nav04 dark
matter, with ϒB = 100 and LB = 3.2 × 109 (dotted curve), 1010 (solid curve)
and 3.2 × 1010 L� (dashed curve), with Sérsic shape m and effective radius
Re taken from equations (16) and (15), respectively, and parameters are the
same as in Fig. 4.

Figure 10. Line-of-sight stellar velocity dispersion of our four-component
elliptical galaxy at two (upper curves) and five (lower curves) effective radii,
as a function of total mass-to-light ratio at the virial radius (or its bias relative
to the universal value, upper axis). The dotted, short-dashed, solid and long-
dashed curves represent the isotropic NFW, isotropic Nav04 and anisotropic
(equation 60) Nav04 models, respectively, the latter two with r a/rv = 0.18
and 0.018, respectively. Other parameters are the same as in Fig. 4, in par-
ticular no baryon bias (bb = 1), which limits the virial mass-to-light ratios
as in equation (28).

factor greater than 3! At higher radii, less precision is required
on the velocity dispersions, but these are more difficult to estimate
as they are smaller. These conclusions are the same if we adopt
purely isotropic models. This threefold uncertainty becomes even
larger if we do not assume a precise form for the velocity anisotropy
profile.
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Weighing dark matter in ellipticals 717

Figure 11. Ratio of the mass-to-light ratio inferred from a general model to
the mass-to-light ratio inferred from the isotropic NFW model, as a function
of the measured line-of-sight velocity dispersion at five (left-hand side) and
two (right-hand side) effective radii for a continuous range of virial mass-
to-light ratios. The short-dashed, solid and long-dashed curves represent
the ratios to isotropic NFW mass-to-light ratios for the isotropic Nav04
and anisotropic (equation 60) Nav04 models, respectively, the latter two
with r a/rv = 0.18 and 0.018, respectively, while the dotted curve shows
the analogous ratio for the anisotropic NFW model (equation 60 with r a =
0.18 rv). Other parameters are the same as in Fig. 4.

Also shown in Fig. 8 is the case of no dark matter (for which ϒB =
f b ϒ std

B =14). The dispersions now fall to quite low values. However,
this ‘no dark matter’ case is extreme, as its baryonic fraction is unity.

How much do these conclusions depend on the galaxy luminosity?
Fig. 9 displays the dispersion profiles normalized to the values at
0.1R e (at which radius the dispersion profile is fully dominated by
the stellar component, as seen in Fig. 4). The velocity dispersion
profiles have a strikingly similar shape, with relative differences of
less than 6.5 per cent for R < 5R e, and interestingly, of less than
3.5 per cent for R � 2.5R e. Also, the slope at R >R e varies with
luminosity.

Reverting now to our standard luminosity LB = L ∗,B =
1.88 × 1010 L�, we look in more detail at how the velocity dis-
persion at a fixed number of effective radii scales with the total
mass-to-light ratio. Fig. 10 shows that the velocity dispersion at 2
and 5R e rises slowly with mass-to-light ratio, as a power-law of slope
1/13 and 1/6, respectively. In other words, the virial mass-to-light
ratio increases very sharply with the measured line-of-sight velocity
dispersion at a fixed number of effective radii. Also, at fixed mea-
sured velocity dispersion, the standard isotropic NFW model pro-
duces significantly smaller mass-to-light ratios than the anisotropic
Nav04 model.

This is quantified in Fig. 11: at 5R e, going from the isotropic
NFW model to the isotropic Nav04 model, the inferred mass-to-
light ratio is � 1.4 times higher (left-hand ‘Nav04-iso’ curve), and
this factor is roughly independent of the measured velocity disper-
sion. Indeed, as seen in Fig. 5, at 5–20 R e, the velocity dispersion
of the NFW model is a few per cent larger than that of the Nav04
model. One therefore needs a higher mass-to-light ratio to reproduce
a fixed value of σlos with the Nav04 model in comparison with the
less accurate NFW model. Moreover, going from the isotropic NFW

Table 1. Relative uncertainties on the mass-to-light ratio at the virial radius.

R σv δσv

(
δϒ

ϒ

)
obs

(
δϒ

ϒ

)
mod

(
δϒ

ϒ

)
tot

(km s−1) (km s−1)

2Re 130 5 0.9 1.0 1.3
5Re 106 20 1.8 1.4 2.3
5Re 106 10 0.7 1.4 1.6

(Nav04) model to the slightly anisotropic NFW (Nav04) model of
equation (60), the inferred mass-to-light ratio is 1.1–1.2 times larger
(increasing for smaller measured velocity dispersions), again as ex-
pected since radial anisotropy causes lower values of σlos at large
radii (see Fig. 3). The combined effect of the dark matter model and
the velocity anisotropy is displayed in the upper curve of Fig. 11,
and indicates that line-of-sight velocity dispersion measurements
lower than 135 km s−1 for an L∗ elliptical galaxy imply an under-
estimation of the mass-to-light ratio within the virial radius of a
factor of roughly 1.6, when using the isotropic NFW model instead
of the best slightly anisotropic models arising from dissipationless
cosmological N-body simulations. Similarly, the velocity dispersion
at 5R e produced by the Nav04 dark matter model with the strong
radial stellar anisotropy (ra = 0.018 rv) seen by Dekel et al. in
merger simulations is the same as that produced by an isotropic
NFW dark matter model with a virial mass-to-light ratio 2.3 times
lower.

Similar patterns are found at 2R e but with considerably smaller
effects. Note that a positive baryon bias (bb > 1) will produce lower
velocity dispersions at a given radius for a given mass-to-light ratio
(Fig. 8), hence the inferred mass-to-light ratio will be increased
relative to the value obtained for bb = 1.

How far out should one measure velocity dispersions? Table 1
compares the uncertainties at 2 and 5R e, from the two effects we
discussed above: (1) the observational uncertainty on the velocity
dispersion as inferred from the slopes of the curves in Fig. 10, and
(2) the uncertainty caused by uncertain total (or equivalently dark)
mass and anisotropy profiles, as inferred from Fig. 11, where we
assume the velocity dispersion profile given in Fig. 10 and guess
the measurement errors (see also Section 5, below). For assumed
measurement errors on σlos of 5 kms−1 at 2R e and 20 km s−1 at 5R e,
we end up with a total factor of 2.3 at 2R e and of 3.3 at 5R e, the
latter factor being reduced to 2.6 if the velocity dispersion at 5R e

can be measured with 10 km s−1 accuracy.
Of course, one can do better by combining the measurements of

σlos at various radii between 1 and 5R e. A quantitative assessment of
combining measurements is beyond the scope of the present paper.
However, inspection of the lower left-hand panel of Fig. 4, indicates
that the logarithmic slope of the line-of-sight velocity dispersion
profile is roughly independent of the limiting radii, when these lie in
the interval [1, 20]R e. The middle right-hand panel of Fig. 4 shows
that this is not the case for the (cumulative) mass-to-light ratio:
the slope rises with radius. In view of the possible 1.5 (or more)
underestimation of the effective radius of NGC 3379, any error on
estimating the effective radius of a galaxy will lead to biases in
analyses based upon the mass-to-light ratio gradient, such as the
study of Napolitano et al. (2005).

It is much safer to base one’s analysis on the velocity dispersion
gradient. Fig. 12 shows that the logarithmic slope of the line-of-sight
velocity dispersion profile decreases linearly with the log of the
mass-to-light ratio at the virial radius. Alas, the direct interpretation
of this logarithmic slope is complicated by the uncertainties in the
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718 G. A. Mamon and E. L. L� okas

Figure 12. Logarithmic slope of the radial profile of the line-of-sight stellar
velocity dispersion as a function of the total mass-to-light ratio at the virial
radius. Same line types as in Fig. 10.

dark mass and stellar anisotropy profiles: for a given slope of the
velocity dispersion profile, these uncertainties lead to a factor of 3
uncertainty on the mass (or mass-to-light ratio) at the virial radius.
Moreover, as noted earlier (Fig. 9) the luminosity of the galaxy also
affects the slope of the line-of-sight velocity dispersion profile.

The large range of mass-to-light ratios at the virial radius that we
infer from Romanowsky et al.’s 15 orbit solutions (Fig. 1) suggests
that the detailed orbit modelling provides little constraint on the
dark matter content of ellipticals within their virial radii.

5 S U M M A RY A N D D I S C U S S I O N

In this paper, a four-component model of elliptical galaxies has been
built to compare the predictions of cosmological N-body simulations
with the observations of elliptical galaxies. The inner regions are
dominated by the stellar component, unless the inner dark matter
density profile is as steep as r−3/2, which seems to disagree with
the latest cosmological N-body simulations of Stoehr et al. (2002),
Power et al. (2003), Navarro et al. (2004), Diemand et al. (2004a)
and Stoehr (2005). Therefore, there is little hope in constraining,
through the analysis of internal kinematics, the inner slope of the
dark matter density profile unless it is as large as 3/2 in absolute
value.

The dark matter component is found to become important at typi-
cally 3–5 effective radii. At these radii, the galaxy surface brightness
is low and one requires the sensitivity of an 8-m class telescope, and
the required precision on velocity dispersion of say 5 km s−1 im-
poses a decent spectral resolution (with R = 1000, a signal-to-noise
ratio S/N > 10 should lead to 10 km s−1 precision on observed
velocity dispersions – L. Campbell, private communication). For
example, according to the Exposure Time Calculator at the ESO
Web site,7 observations of the giant elliptical galaxy NGC 3379,
using the Sérsic surface brightness profile we fit (see Section 3.1),

7 http://www.eso.org/observing/etc

on the VLT-UT1 (Antu) 8-m telescope using the FORS2 multislit
spectrograph at R = 2000, one can reach S/N = 10 (per spectral
pixel and per arcsec) in 3 h at R = 2R e. Among the 16 slits, one
can dedicate say 10 for R = 3R e and the combined spectrum should
produce S/N > 10 with a precision on velocity dispersion of the
order of 5 km s−1. This measurement at 3R e should constrain the
total mass-to-light ratio within the virial radius, but to fairly low pre-
cision: at 3R e, one has d ln ϒB/d ln σ los � 9, yielding an accuracy
of a factor of 1.5 only.

Three physical mechanisms are found to decrease the observed
line-of-sight velocity dispersion at 2–5 effective radii:

(i) the lower cumulative mass of the new dark matter models such
as that of Navarro et al. (2004) at these radii and slightly above;

(ii) radial velocity anisotropy;
(iii) a possible excess of the baryon fraction relative to the uni-

versal value.

In turn, if we model the observed velocity dispersions at five
effective radii, the combined effect of the new dark matter models
and velocity anisotropy is to increase the inferred mass-to-light ratio
at the virial radius by 60 per cent for slight anisotropy, as observed
for the particles in structures within dissipationless cosmological
N-body simulations, and by a factor of 2.4 for the strong anisotropy
found by Dekel et al. (2005) in simulations of merging galaxies.

The effect of the velocity anisotropy on the mass at the virial
radius is a direct illustration of the mass/anisotropy degeneracy. On
the other hand, the analysis of the galaxy kinematics at some radius
R requires knowledge of the mass profile beyond R in theory, but
just a little beyond R in practice, as the mass profile entering the
expression (equation A15) for the line-of-sight velocity dispersion
is weighted by the luminosity density profile, which falls relatively
fast. Therefore, the extrapolation of the mass profile out to the virial
radius somewhat depends on the details of the mass profile.

In their analysis of haloes from dissipationless cosmological N-
body simulations, Sanchis, L� okas & Mamon (2004) showed that
the mass profile was recovered to high accuracy beyond 0.03 rv.
The difference here, is that the line-of-sight velocity dispersion data
in ellipticals extends only out to 2–5 effective radii, i.e. to less than
6 per cent of the virial radius, while in clusters of galaxies, the
analogous dispersions extend all the way out to the virial radius.

One may be tempted to explain the very low (ϒB = 33) mass-to-
light ratio at the virial radius reported by Romanowsky et al. (2003)
(which at face value requires the baryonic fraction within the virial
radius to be larger than the universal value) by this factor of 2.4,
which would raise the mass-to-light ratio at rv to ϒB ≈ 80, and to
roughly 100 when we use r102 for the virial radius instead of r200.
However, this comparison is not fair, because the best-fitting orbital
solutions of Romanowsky et al. are also anisotropic: their orbits are
nearly as radial as the stellar orbits at a few Re found by Dekel et al.
(A. Romanowsky, private communication).

Furthermore, the low dispersions of planetary nebulae veloci-
ties around nearby ellipticals measured by Romanowsky et al.,
≈80 km s−1, cannot be reproduced with our models: as seen in
Fig. 10, we consistently produce velocity dispersions at 5R e above
σlos = 95 km s−1 for ϒB > 80. Therefore, resorting to radial
anisotropy and to the Nav04 dark matter model appear to be in-
sufficient to explain the low velocity dispersions observed at large
radii by Romanowsky et al. And yet, we found that some of the orbit
solutions found by these authors lead to high enough mass-to-light
ratios (Fig. 1), as does a new solution (Romanowsky, private com-
munication, and the rightmost pair of points in Fig. 1). In fact, the
second most massive among the solutions of Romanowsky et al. (the
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Weighing dark matter in ellipticals 719

third pair of points from the right in Fig. 1) has ϒB(r 102) = 70, and
if a Nav04 dark matter model were used instead of the NFW model,
one would obtain roughly 40 per cent larger masses at the virial ra-
dius (see Fig. 11), i.e. 100, as roughly expected from cosmological
modelling (Marinoni & Hudson 2002; Yang et al. 2003). Note that
the more massive solutions of Romanowsky et al. have low dark
matter concentration parameters, compared with the expectations
of Bullock et al. (2001), revised by Napolitano et al. (2005), but one
solution (ϒ B,102 = 70, c = 10) is consistent with the predictions
from dissipationless cosmological simulations.

Dekel et al. suggest other ways to bring down the velocity disper-
sions: a steeper density profile for the planetary nebulae measured by
Romanowsky et al., and viewing triaxial galaxies along their minor
axis. Another possibility is an incomplete dynamical equilibrium of
elliptical galaxies, caused by small residual time variations, affect-
ing both the orbit modelling performed by Romanowsky et al. and
the Jeans kinematic modelling, as presented here. Detailed analyses
of kinematic observations and of merger simulations are in progress
to help clarify the dark matter content of elliptical galaxies.
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A P P E N D I X : L I N E - O F - S I G H T V E L O C I T Y D I S P E R S I O N S F O R A N I S OT RO P I C M O D E L S

A1 Radial velocity dispersion

The general solution to the Jeans equation (1) is

�(r ) σ 2
r (r ) = 1

f (r )

∫ ∞

r

f (s) �(s)
G M(s)

s2
ds, (A1)

where f is the solution to

d ln f

d ln r
= 2 β(r ), (A2)

i.e.

f (r ) = f (r1) exp

[∫ r

r1

2 β(s)
ds

s

]
(see also van der Marel 1994).
For isotropic orbits, the Jeans equation (1) trivially leads ( f = 1) to

�(r ) σ 2
r (r )

G
=

∫ ∞

r

� M

(
ds

s2

)
. (A3)

For radial orbits, one has (L� okas & Mamon 2003)

�(r ) σ 2
r (r ) = G

r 2

∫ ∞

r

� M ds. (A4)

Also, with the Osipkov–Merritt anisotropy (equation 61) one obtains with f = r2 + r 2
a

�(r ) σ 2
r (r ) = G

r 2 + r 2
a

∫ ∞

r

� M

(
s2 + r 2

a

s2

)
ds. (A5)

Similarly, with the anisotropy profile of equation (60), shown as the solid curve in Fig. 2, one obtains with equations (A1) and (A2) and f =
r + r a

�(r ) σ 2
r (r ) = G

r + ra

∫ ∞

r

� M
( s + ra

s2

)
ds. (A6)

A2 Line-of-sight velocity dispersion

A2.1 General formulae

Projecting the velocity ellipsoid along the line of sight, one finds that the line-of-sight velocity dispersion is (Binney & Mamon 1982)

1

2
I (R) σ 2

los(R) =
∫ ∞

R

�σ 2
r r dr√

r 2 − R2
− R2

∫ ∞

R

β �σ 2
r dr

r
√

r 2 − R2
. (A7)

Inserting equations (A1) and (A2) into equation (A7) and inverting the order of integration, one obtains the general expression

I (R) σ 2
los(R)

G
= 2

∫ ∞

R

f � M

s2
ds

∫ s

R

1

f

r dr√
r 2 − R2

− R2

∫ ∞

R

f � M

s2
ds

∫ s

R

d f /dr

f 2

dr√
r 2 − R2

. (A8)
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The inner integrals of equation (A8) are closed for only several realistic8 forms of f :

(i) f = r 2 β , which implies β = cst;
(ii) f = (r + a)α , with α = 1 or 2, which implies β = (α/2) r/(r + a);
(iii) f = (r 2 + a2)α , again with α = 1 or 2, which implies β = α r 2/(r 2 + a2) – hence, α = 1 corresponds to Osipkov–Merritt (Osipkov

1979; Merritt 1985) anisotropy.

For the anisotropy profile of equation (60), one obtains from equation (A8), for R 
= r a, after inverting the order of integration, with plenty
of algebra

I (R) σ 2
los(R)

G
= 2

∫ ∞

R

(r + ra

r 2

)
cosh−1

( r

R

)
�(r ) M(r ) dr + R2

r 2
a − R2

∫ ∞

R

√
r 2 − R2

r 2
�(r ) M(r ) dr

− sgn
(ra

R
− 1

)
ra

2 r 2
a − R2∣∣r 2

a − R2
∣∣3/2

∫ ∞

R

(r + ra

r 2

)
C−1

(
ra r/R + R

r + ra

)
�(r ) M(r ) dr , (A9)

where C −1 (x) = cosh−1 x for r a >R and C −1 (x) = cos−1 x for r a < R.9 For R = r a, we similarly obtain

I (ra) σ 2
los(ra)

G
= 2

∫ ∞

ra

(r + ra

r 2

)
cosh−1

( r

ra

)
�(r ) M(r ) dr − 1

3

∫ ∞

ra

(
8 ra + 7 r

r 2

) √
r − ra

r + ra
�(r )M(r ) dr . (A10)

In the limit of isotropy (r a → ∞), we recover (after some algebra on equation A9) the standard line-of-sight velocity dispersion for isotropic
systems (Prugniel & Simien 1997):

I (R) σ 2
los(R) = 2 G

∫ ∞

R

√
r 2 − R2

r 2
�(r ) M(r ) dr , (A11)

which can also be easily obtained through equations (A3) and (A7), again after inversion of the order of integration.
For Osipkov–Merritt anisotropy (equation 61) one finds, in a similar fashion,

I (R) σ 2
los(R)

G
= 2 r 2

a + R2(
r 2

a + R2
)3/2

∫ ∞

R

(
r 2 + r 2

a

r 2

)
tan−1

√
r 2 − R2

r 2
a + R2

�(r ) M(r ) dr − R2

r 2
a + R2

∫ ∞

R

√
r 2 − R2

r 2
�(r ) M(r ) dr . (A12)

For constant anisotropy orbits, the same procedure yields

I (R) σ 2
los(R)

G
= R1−2β

[(
3

2
− β

)√
π

�(β − 1/2)

�(β)

∫ ∞

R

�(r ) M(r ) dr + β

∫ ∞

R

B

(
R2/r 2, β + 1

2
,

1

2

)
�(r ) M(r ) dr

−
∫ ∞

R

B

(
R2/r 2, β − 1

2
,

1

2

)
�(r ) M(r ) dr

]
, (A13)

where B(x, a, b) = ∫ x

0
ta−1(1 − t)b−1 dt is the incomplete beta function. For purely radial orbits, one can obtain the simpler formula

I (R) σ 2
los(R)

G
= π

2 R

∫ ∞

R

�(r ) M(r ) dr −
∫ ∞

R

√
r 2 − R2

r 2
�(r ) M(r ) dr − 1

R

∫ ∞

R

sin−1

(
R

r

)
�(r ) M(r ) dr . (A14)

Therefore, for our choice of simple anisotropy profiles, we can generally write

I (R) σ 2
los(R) = 2 G

∫ ∞

R

K
( r

R
,

ra

R

)
�(r ) M(r )

dr

r
, (A15)

8We reject f = √
r2 − a2 and f = 1/

√
r2 − a2, as both lead to unphysical β > 1 near r = a.

9Here and below, we use the positive definitions of cos−1 x and cosh−1 x .

C© 2005 RAS, MNRAS 363, 705–722

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/363/3/705/1143492 by C
N

R
S - ISTO

 user on 27 Septem
ber 2022



722 G. A. Mamon and E. L. L� okas

where the kernel K can be expressed for our five anisotropy models as

K (u, ua) =



1

2
u2β−1

[(
3

2
− β

)√
π

�(β − 1/2)

�(β)
+ β B

(
1

u2
, β + 1

2
,

1

2

)
− B

(
1

u2
, β − 1

2
,

1

2

)]
(cst-β),√

1 − 1

u2
(isotropic),

π

4
u − 1

2

√
1 − 1

u2
− u

2
sin−1

(
1

u

)
(radial),

√
u2 − 1

u1−2β

[ −β∑
k=0

(
−β

k

)
(u2 − 1)k

2k + 1
− β

−β−1∑
k=0

(
−β − 1

k

)
(u2 − 1)k

2k + 1

]
(β = −1, −2, . . .),

u2β−1 cosh−1 u − β

√
1 − 1

u2
(β = 1/2, −1/2),

u−2n

[
J (u, n) +

(
n − 1

2

)
J (u, n − 1)

]
(β = −n + 1/2, n � 2),

u2
a + 1/2(

u2
a + 1

)3/2

(
u2 + u2

a

u

)
tan−1

√
u2 − 1

u2
a + 1

− 1/2

u2
a + 1

√
1 − 1/u2 (Osipkov−Merritt),

1/2

u2
a − 1

√
1 − 1

u2
+

(
1 + ua

u

)
cosh−1 u

−sgn (ua − 1) ua
u2

a − 1/2∣∣u2
a − 1

∣∣3/2

(
1 + ua

u

)
C−1

(
uau + 1

u + ua

)
(equation 60, ua 
= 1),

(
1 + 1

u

)
cosh−1 u − 1

6

(
8

u
+ 7

) √
u − 1

u + 1
(equation 60, ua = 1),

(A16)

where again, B is the incomplete beta function, C−1 (x) = cosh−1 x for u a > 1 and C−1 (x) = cos−1 x for u a < 1, and where

J (u, n) = u2n−1

2n

√
u2 − 1

[
1 +

n−1∑
k=1

(2n − 1)!!/(2n − 1 − 2k)!!

(2n − 2)!!/(2n − 2 − 2k)!!

1

u2k

]
+ (2n − 1)!!

(2n)!!
cosh−1 u. (A17)

A2.2 Application to cold dark matter profiles and a Sérsic luminosity profile

The total mass at a given radius is the sum of masses from the dark, stellar, gas and black hole components:

M(r ) = Mt M̃(r/aS) (A18)

M̃(x) = fd M̃d(ηx) + f∗
L̃3(x)

L̃3(xv)
+ fg

M̃g(ξ x)

M̃g(ξ xv)
+ gBH f∗, (A19)

where we have used equations (10), (18), (32), (37), (38), (47) and (48), and the component fractions at the virial radius, fi, from equations
(23)–(26), where x = r/aS, x v = rv/aS, η = aS/ad, ξ = aS/r c = q/bm, the deprojected luminosity L̃3 of the Sérsic profile is given in equation
(11), and the dimensionless gas profile M̃g is given in equation (46) for r � rv or (54) for r > rv. One can set f b = f ∗ = ϒ ∗ = 0 if one
wishes to study the case of an NFW, JS–1.5 or Nav04 potential, i.e. assuming that the total matter density profile is the NFW, JS–1.5 or Nav04
density profile (see Paper I).

Using equations (3), (6)–(8), (A15), (A17) and (A18) the line-of-sight velocity dispersion of component i can be written as

σ 2
los,i (R) = �(2m)

�[(3 − p)m]

rv

aS
V 2

v exp(X 1/m)

∫ ∞

X

K
( x

X
,

xa

X

)
�̃(x) M̃i (x)

dx

x
, (A20)

where X = R/aS, x a = r a/aS and the kernel K is given in equation (A16). Then σ 2
los(R) = ∑

i σ 2
los,i (R).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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