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Abstract. I present in this paper a method to subtract the bias due to source photon noise from visibilities measured with a
single-mode optical interferometer. Properties of the processed noise are demonstrated and examples of subtraction on real data
are presented.
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1. Introduction

The properties of source photon noise are well known. It fol-
lows a Poisson distribution whose variance is equal to the av-
erage total number of photons. In frequency space, it is a white
noise with a flat average power spectral density. In most practi-
cal cases where the observables are linearly linked to the num-
ber of photons detected, photon noise can be directly averaged
out from the data to reduce its variance. For some applications
for which the observables are quadratically linked to the num-
ber of photons, the data suffer both from photon noise and from
a bias linked to the variance of the noise. This is for example
the case in speckle imaging techniques where the source spa-
tial intensity distribution is recovered from the power spectral
density of a short time exposure (Thiébaut 1994). In astronom-
ical optical interferometry, the observables are the modulus of
the visibility and its phase usually expressed as a closure phase
quantity. The visibility modulus can be obtained by integrating
the modulus of the spectrum of interferograms. However, this
estimator is biased by the power spectral density of noises as
these add to the power spectral density of the fringe signal. An
unbiased estimator of the modulus of the visibility is obtained
by forming the squared modulus of the visibility as the power
spectral densities of the noises can be independently estimated
and subtracted. An example in interferometry is the computa-
tion of the fringe squared visibility in the ABCD method where
the white light fringe is sampled at four λ/4 spaced optical path
differences. An unbiased single fringe ABCD estimator is ob-
tained by subtracting the source photon noise and the detector
noise variances (when the noise has a flat spectrum the power
spectral density is constant and equal to the variance) from the
fringe power spectral density (Tango & Twiss 1980).

In single-mode interferometers, beams are spatially filtered
by single-mode waveguides trading phase fluctuations against
intensity fluctuations. A fraction of intensities collected by
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each aperture can be measured to renormalize interferograms
to eliminate the fluctuations due to turbulence. The visibility
estimator is no longer directly linked to the power spectral den-
sity of the fringe signal. I demonstrate in the following sections
that the classical method (explained further in the paper) es-
tablished by Goodman (1985) can be rigourously extended to
such ratios of physical noisy signals under certain assumptions
to provide unbiased visibility estimators. Real data reduction
cases are presented to illustrate the method.

2. Principles of photon noise bias subtraction

2.1. Description of the signals and assumptions

I refer the reader to Coudé du Foresto et al. (1997) for a full
description of the principle to measure fringe amplitudes (also
called coherence factors) with a single-mode fiber interferom-
eter and for a detailed description of the fringe signal for coax-
ial interferometers. Visibility calibration will be addressed in a
separate paper (Perrin 2002). I assume here, for sake of sim-
plicity, that no calibration is required and the coherence fac-
tor is directly equal to the visibility. Here I will use the more
general expression of the interferogram for a two-telescope
interferometer:

i(x) = PA(x) + PB(x) + 2
√

PA(x)PB(x) m(x) (1)

where m is an oscillating function containing the fringes. PA

and PB are the intensities coupled in the single-mode waveg-
uide at each telescope and are called the photometric signals. i
is a function of the optical path difference or of time for coax-
ial beamcombiners. For multiaxial interferometers, x is a fo-
cal plane coordinate. In the following, I will deal with coax-
ial interferometers only and I will use time t as the variable.
The method can be easily adapted to multiaxial interferome-
ters. The photometric signals vary in time with turbulence and
the modulation m varies with turbulence and with the optical
difference which is varied linearly with time, coding the fringe
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signal in frequency space. i is measured in photon counts and is
defined as the average signal one would obtain if no noise were
present.

In the photometric calibration method, the photometric sig-
nals need to be estimated. The estimated signals are filtered,
the filtering function being adjusted to reject most of the noise
and keep the intensity fluctuations due to turbulence only.
Turbulent fluctuations are low frequency fluctuations (limited
to frequency ranges of a few tens of Hertz). I note PA and PB

the estimated photometric signals suitably low-pass filtered.
The important property of the filtered photometric signals is
that they contain no energy at the fringe frequency and above.

I call g the following gain function:

g(t) =
1

2
√

PA(t)PB(t)
(2)

I define the normalized interferogram:

in(t) = g(t).i(t) (3)

=
PA(t) + PB(t)

2
√

PA(t)PB(t)
+

√
PA(t)PB(t)√
PA(t)PB(t)

m(t).

The first term is mainly a low frequency signal whereas the
second term is the high frequency signal containing the fringe
modulation. I introduce the continuum function:

c(t) =
PA(t) + PB(t)

2
√

PA(t)PB(t)
· (4)

The continuum function is the low frequency part of the nor-
malized interferogram. It is the ratio of the arithmetic and geo-
metric means of the photometric signals. If the two photometric
signals are equal then the continuum function is equal to 1. It
departs all the more from 1 as the photometric beams get unbal-
anced. The visibility estimate is computed from the corrected
interferogram:

icor(t) = in(t) − c(t) (5)

=

[
PA(t) − PA(t)

]
+
[
PB(t) − PB(t)

]

2
√

PA(t)PB(t)

+

√
PA(t)PB(t)√
PA(t)PB(t)

m(t).

In the corrected interferogram the low frequency components
due to turbulence are eliminated. If the photometric signals are
perfectly estimated then the average value of the corrected in-
terferogram is equal to zero and the oscillating signal is prop-
erly renormalized. In the ideal case where data are noiseless,
the corrected interferogram is equal to the oscillating func-
tion m which is proportional to the visibility. Although the fil-
tered photometric signals do not contain energy at the fringes
frequency, the gain and continuum function may contain some
as the residual noise may have been redistributed in the fre-
quency domain by the non-linear combinations of the filtered
photometric signals. I make the assumption that this high fre-
quency noise is negligeable by several orders of magnitude

compared to the energy of the fringes. This assumption will
be validated in Sect. 3 on real data. As a consequence of this
assumption, in and icor share the same photon noise. This as-
sumption is crucial for the success of the method. Finding an
analytical solution to the problem of bias subtraction without
this assumption is certainly a big issue.

2.2. Method

The method to subtract the photon noise bias is a direct gen-
eralization of that proposed by Goodman (1985) and I will use
the same notations. In the following only photon noise is con-
sidered. Methods to subtract additive noises are well estab-
lished (see for example Coudé du Foresto et al. 1997). Detector
and source photon noises being independent the detector noise
could be added in the following derivation leading to the clas-
sical result on power spectral density bias by detector noise
variance. The primary scope of this paper being source photon
noise I have decided to keep equations as light as possible and
not include detector noise in the equations. Detector noise will
nevertheless be considered in the last section on real data.

I call ı̃(t) a representation of the interferogram in which
photon events are represented by Dirac functions. Assuming
that the total number of photons in the interferogram is Ñ for a
given realization, then I can write:

ı̃(t) =
Ñ∑

k=1

δ(t − tk). (6)

There are two random variables in this expression: the individ-
ual photon detection times tk and the total number of photons Ñ
which is equal to N in average. A model of the normalized in-
terferogram can be built:

ı̃n(t) =
Ñ∑

k=1

g(t)δ(t − tk) =
Ñ∑

k=1

g(tk)δ(t − tk). (7)

Its Fourier transform is therefore:

Ĩn( f ) =
Ñ∑

k=1

g(tk)e−2iπtk f . (8)

Thus, the average spectrum of the normalized interferogram is
therefore:

〈Ĩn( f )〉 =
〈〈 Ñ∑

k=1

g(tk)e−2iπtk f

〉
tk

〉
Ñ

(9)

=

〈 Ñ∑
k=1

〈
g(tk)e−2iπtk f

〉
tk

〉
Ñ

· (10)

In the above expression, the average on tk does not depend upon
k and the average normalized interferogram can be written:

〈Ĩn( f )〉 =
〈
Ñ
〈
g(t)e−2iπt f

〉
t

〉
Ñ
· (11)

The statistics of the photon arrival time t are described by the
probability density function i(t)

N with i(t) the average photon
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flux. Hence the average on the arrival times is equal to:

〈g(t)e−2iπt f 〉t =
∫ +∞
−∞
g(t)

i(t)
N

e−2iπt f dt (12)

=
1
N

I( f ) �G( f ). (13)

The � symbol indicates a convolution. Capital letters are used
for Fourier transforms. Replacing the average on t by this ex-
pression, I obtain for the average normalized interferogram:

〈Ĩn( f )〉 = 〈Ñ〉Ñ 1
N

G( f ) � I( f ) (14)

= G( f ) � I( f ). (15)

As a check, the expression of the average interferogram after
applying the inverse Fourier transform to the above expres-
sion is:

〈ĩn(t)〉 = g(t).i(t). (16)

Let us consider Ĩ(2)
n ( f ) the power spectral density of the normal-

ized interferogram with Ĩ(2)
n ( f ) = |Ĩn( f )|2. In the ideal case of

non noisy data, the integral of the power spectral density is pro-
portional to the squared visibility. The integral of the average
power spectral density is:

〈
Ĩ(2)
n ( f )

〉
=

〈〈 Ñ∑
k=1

Ñ∑
l=1

g(tk)g(tl)e−2iπ(tk−tl) f

〉
tk ,tl

〉
Ñ

· (17)

An important assumption on photon events to derive the
Poisson statistics is that they are not correlated. Arrival times tk
and tl are therefore not correlated as long as k � l. This im-
portant property is used to split the above expression in two
terms:

〈
Ĩ(2)
n ( f )

〉
=

〈〈 Ñ∑
k=1

[g(tk)]2+2
Ñ∑

k=1

∑
l<k

g(tk)g(tl)e−2iπ(tk−tl) f

〉
tk

〉
Ñ

· (18)

The first average is equal to:

〈〈 Ñ∑
k=1

[g(tk)]2

〉
tk

〉
Ñ

=

〈 Ñ∑
k=1

〈
[g(tk)]2

〉
tk

〉
Ñ

(19)

=

〈 Ñ∑
k=1

∫ +∞
−∞

[g(t)]2 i(t)
N

dt

〉
Ñ

(20)

=

〈
Ñ
∫ +∞
−∞

[g(t)]2 i(t)
N

dt

〉
Ñ

(21)

=

∫ +∞
−∞

[g(t)]2i(t)dt (22)

where I have used once again the probability density of the
photon statistics i(t)

N . The second average of Eq. (18) can be
written as the sum of factors yielding:

〈〈
2

Ñ∑
k=1

∑
l<k

g(tk)g(tl)e−2iπ(tk−tl) f

〉
tk ,tl

〉
Ñ

=

〈
2

Ñ∑
k=1

∑
l<k

〈
g(tk)e−2iπtk f

〉
tk

〈
g(tl)e2iπtl f

〉
tl

〉
Ñ

· (23)

The averages on tl and tk can be substituted by the expression
of Eq. (13) yielding:

〈〈
2

Ñ∑
k=1

∑
l<k

g(tk)g(tl)e−2iπ(tk−tl) f

〉
tk ,tl

〉
Ñ

=

〈
2

Ñ∑
k=1

∑
l<k

1
N2
|I( f ) �G( f )|2

〉
Ñ

(24)

and:

〈
2

Ñ∑
k=1

∑
l<k

1
N2
|I( f ) �G( f )|2

〉
Ñ

=

〈
Ñ(Ñ − 1)

〉
Ñ

1
N2
|I( f ) �G( f )|2 = |I( f ) �G( f )|2. (25)

|I( f ) � G( f )|2 is the power spectral density of the normalized
interferogram. From the equation above I therefore derive an
unbiased estimate of this quantity:

|I( f ) �G( f )|2 =
〈
Ĩ(2)
n ( f )

〉
−
∫ +∞
−∞

[g(t)]2i(t)dt. (26)

Since the normalized and the corrected interferograms share
the same noise bias, the integral term of the above equation
is also the bias of the power spectral density of the corrected
interferogram.

2.3. Comments

The expression of the photon noise bias is very intuitive. i(t)
is the average number of photons detected at time t. Being a
Poisson statistics, it is also the variance of the photon noise.
When the signal is multiplied by the gain g(t), the variance at
time t becomes [g(t)]2i(t). Photon events at different times be-
ing uncorrelated, the total variance of the photon noise is there-
fore equal to the integral of the local variance.

Equation (26) demonstrates that the noise of the corrected
interferogram remains a white noise whose mean power spec-
tral density is constant. This property is also the result of the
independence of photon events.

With the above result, the computation of the unbiased esti-
mate of the visibility is easy. The bias is simply obtained by co-
adding the individual counts of the normalized interferogram.

3. Example of bias subtraction on real signals

The purpose of this section is to illustrate the theoretical results
of the previous section and to show that the assumptions on the
noise of the continuum and gain functions are correct.

I have selected a series of scans of Mira observed with
FLUOR in October 2000. The observations were carried out
with a baseline long enough that the fringe contrast is of a few
percent only. This is an interesting case because the source is
very bright and the fringe contrast is small, hence the photon
noise bias is relatively important and accounts for a large frac-
tion of the visibility if not corrected.
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Fig. 1. Examples of raw signals acquired for Mira in October 2000 with FLUOR. a) and b) The two photometric signals PA(t) and PB(t).
c) Interferometric signal i(t). d) Power spectral density of the interferometric signal. Energy units are photon counts. The power spectral
density is expressed in squared photon counts. The fringe peak is located between 350 and 400 Hz. Other peaks are due to the noise and
disappear when averaging the power spectral densities. The source is resolved hence the fringe amplitude is small and hardly shows up in the
interferogram signal. The fringe peak in the power spectral density is proportional to the squared modulus of the visibility which is obtained by
integrating the peak.

Fig. 2. a) Gain function g(t). b) Continuum function c(t). c) Power spectral density of the gain function. d) Power spectral density of the
continuum function. The gain function is homogeneous to the reciprocal of a number of photon counts. The continuum function has no unit.

The raw photometric and interferometric signals are dis-
played in Fig. 1. The intensities are in photon counts. The
fringes are hardly visible and their amplitude is smaller than

that of the photometric fluctuations. The fringes peak is visi-
ble in the power spectral density between 350 and 400 Hz. In
Fig. 2 are presented the gain and continuum functions as well
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Fig. 3. The corrected interferogram and its power spectral density. The corrected interferogram being the ratio of photon counts has no unit.

Fig. 4. a) Average corrected interferograms power spectral density. b) Average processed dark current scans power spectral density.
c) Difference of the two to suppress the bias due to detector noise. d) Difference of the two with photon noise bias subtracted. The energy
peak at low frequency in the processed dark signal power spectral density is due to the multiplication of the dark signals by the gain function.
This peak causes a drop when the dark signal power spectral density is subtracted from that of the fringe signal.

as their power spectral densities on a log scale. The noise level
of the continuum at the fringes frequency range can be directly
compared to that of the corrected interferogram in Fig. 3. A
residual photometric fluctuation is visible on the corrected in-
terferogram hence the low frequency component. In the data
reduction procedure, the detector dark current signals undergo
the same correction process as the source signals. In case the
dark currents would combine both detector dark signal and sky
background if measured with a chopping technique, the dark
signals would contain both background photon noise and de-
tector noise. But both noises can be treated as additive noise, in
particular the background photon noise does not need to be pro-
cessed like the source photon noise. In the case of the FLUOR
signals, background photon noise is totally negligible and the

dark signals only contain the detector contribution. In Fig. 4
I have represented the average of power spectral densities of
both the corrected detector dark current and corrected interfer-
ograms to reduce the noise on the power spectral densities. On
the same figure, the difference of the two is plotted. At this
stage, the bias due to source photon noise is not removed to
make its magnitude obvious to the reader. The fringe squared
visibility being obtained by integrating the power spectral den-
sity at the fringe frequency, the non-zero mean level under the
fringe peak causes the bias. This is the bias due to source pho-
ton noise. This graph also shows an increasing residual noise
at high frequency due to detector instabilities. The value of the
bias has been computed with the method presented in this pa-
per and subtracted as illustrated by the last graph of this figure.
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The power spectral density background level is now equal to
zero in average showing that the bias has been correctly sub-
tracted.

4. Conclusion

A method to subtract the photon noise bias from visibility data
acquired with a single-mode interferometer has been presented.
An analytical expression for the bias can be established under
verified assumptions. Other non-analytical methods based on
the fit of the average level of power spectral densities may suf-
fer from confusion with fringe signal and from detector insta-
bilities and the analytical method should be preferred.
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