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ABSTRACT

Context. The analysis of lunar laser ranging (LLR) observations is based on determining the round- trip travel times of light pulses
between stations on the Earth and reflectors on the surface of the Moon. Several works have demonstrated that this technique is
powerful in various domains including astronomy, geodynamics and gravitational physics.
Aims. In the field of geodynamics, LLR contributes to the realization of a dynamical celestial reference frame, in contrast to very long
baseline interferometry (VLBI) that determines a kinematical celestial reference frame. In this paper, we have determined corrections
to the celestial pole coordinates, denoted X, Y , using LLR observations. This determination is of particular interest for comparison
with the one obtained from VLBI observations. The main purpose is to study the benefits of LLR for the determination of the celestial
pole coordinates and second how to best combine the time series obtained from both techniques.
Methods. For these determinations, data acquired by LLR tracking stations since 1969 were analyzed and corrections to the nutation
terms estimated using a weighted least square fit. Finally, LLR data were combined with the IVS combined VLBI series of 23-year
duration.
Results. We have demonstrated the possibility of determining the celestial pole offsets from LLR data even though the results are not
as accurate nor as dense as those obtained with VLBI. This work provides some external constraints to the celestial pole coordinates
derived from VLBI observations. Moreover, the LLR determination of the long periodic nutation terms shows an improvement with
respect to previous studies. The combination of LLR and VLBI series may indicate that the combined series reveal details that do not
appear in the VLBI series alone.
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1. Introduction

Various space geodetic techniques contribute to a better under-
standing and modeling of the Earth’s rotation. Very long baseline
interferometry (VLBI) plays an unquestionable role in determin-
ing the Earth orientation parameters (EOP). This technique is
powerful especially for the determination of UT1 and the celes-
tial pole coordinates. However, it has its limitations, and with
the current level of accuracy, errors at a microarcsecond level
from VLBI have to be considered. These errors can occur from
the models used in the data reduction, as well as from the method
of analyzing the data and from the realization of the reference
systems. VLBI orients the terrestrial coordinate system with re-
spect to the celestial coordinate system, the latter being realized
by radio source positions. Thus, the realized reference frame de-
pends on the choice of these radio sources as well as on the con-
straints applied. The satellite space-geodetic techniques, such as
the global positioning system (GPS) or satellite laser tracking
(SLR), also define an inertial reference frame. However, the im-
perfection of the models of the non-gravitational forces acting
on the satellites gives inaccuracies in the determination of the
precession of the ascending node on the long periods and thus
in the realized reference frame. In contrast, lunar laser ranging
(LLR) is the only space-geodetic technique capable to realize a
dynamical reference system defined by the lunar orbit, which is
determined with sufficient accuracy to allow a stable reference
frame.

LLR has been operating since 1969 and has brought remark-
able results in different fields such as lunar science, solar system
dynamics, geophysics and fundamental physics. In the field of
geodynamics, the lunar motion defines intrinsically a dynami-
cal celestial reference system and contributes to the realization
of both terrestrial and selenocentric reference frames. Several
works have already been carried out in this field, especially con-
cerning the estimation of the EOP. Williams et al. (1991) esti-
mated the luni-solar precession from lunar laser ranges, Folkner
et al. (1994) and Charlot et al. (1995) determined the preces-
sion and nutation components using a joint analysis of LLR
and VLBI observations, and Chapront et al. (2002) estimated
the general precession in longitude. This work contributes to
this topic; it is of particular interest to see the potential of the
LLR observations for the determination of the celestial pole co-
ordinates denoted (X, Y) in the Geocentric Celestial Reference
System (GCRS), independent of any other technique.

LLR data and their analysis are described in Sects. 2 and 3,
respectively. The strategy adopted for the calculation of the cor-
rections to the celestial pole coordinates DX, DY with respect to
the IAU 2006-2000A model of precession nutation using LLR
observations is presented in Sect. 4 and the DX, DY time se-
ries obtained are analyzed. In Sect. 5 an analysis of the celestial
pole offsets obtained from VLBI observations is presented for
comparison with LLR results. The results of this comparison are
discussed in Sect. 6.

As mentioned earlier, LLR contributes to the realization of
a dynamical celestial reference frame, in contrast to VLBI that
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Fig. 1. Evolution of the number of LLR observations for each station
from 1969 to 2008.

realizes a kinematical celestial reference frame. Even if the reso-
lution of LLR data is not as good as VLBI, combining the series
of celestial pole offsets obtained from both techniques can be
stronger than either individually. Hence, a joint analysis of LLR
and VLBI data by combining both series is presented in Sect. 7.

2. Lunar laser ranging data

The principle of the lunar laser ranging technique is based on
time propagation measurements of a light pulse between stations
on the surface of the Earth and reflectors on the Moon.

An observation consists of a time delay; it is represented by
a “normal point”, which is built on the number of the photons
detected on the way back to Earth, averaged over a session of ob-
servation of about ten minutes. The number of photons detected
(called echos) vary from station to station. It mainly depends on
the atmospheric conditions and on the period of lunation.

During the first 15 yr of observation (i.e. 1969–1984), only
McDonald station provided LLR measurements. The accuracy
was of 25 to 30 cm in 1975, but was improved to 10 to 15 cm in
the 1980 s. Since 1985, it has achieved the current accuracy that
is of the centimeter level.

The Grasse station (in France), currently a part of the
“Observatoire de la Côte d’Azur”, started LLR observations
in 1982 that were interrupted between 2006 and 2009 for ren-
ovation. Another station in Hawaï (Haleakala) carried out lunar
laser ranging from 1984 until 1990. Besides the McDonald and
Grasse stations, the new Appolo station in southern New Mexico
started LLR observations in 2006 and is still in operation (see
Fig. 1).

LLR data depend on many parameters, such as the precision
of the start detector, the precision of the return detector, the at-
mosphere, etc. One of the main factors that affects the precision
of the measurement is the orientation of the reflector array that
depends on the lunar libration. It can produce an uncertainty in
the time delay of about 350 picoseconds for the largest reflector
(Apollo XV) (cf. Samain et al. 1998).

3. Lunar laser ranging data analysis: calculation
of the residuals

Like all the astro-geodetic techniques, the principle of the anal-
ysis is based on comparing the models with the observations,
i.e. for LLR, comparing the observed value of the time delay

(Δto) with its computed value (Δtc): ρ = O − C = Δt0 − Δtc,
with:

Δtc = 2/c × D, (1)

c being the speed of light and D the distance station-reflector.
The propagation time has to be corrected taking into ac-

count several effects, such as the relativistic curvature of the light
beam, the Earth’s tidal deformations and the influence of the tro-
posphere.

Furthermore, the computation of the distance D involves the
knowledge of the coordinates of the vectors SE, EM and MR in
the Barycentric Celestial Reference System (BCRS), which are
such that:

D = SE + EM + MR, (2)

where S is the station, E the center of mass of the Earth, M the
center of mass of the Moon and R the reflector.

The coordinates of the vector EM are provided by a lu-
nar ephemeris; the coordinates of the Earth-Moon barycenter in
the BCRS are provided by a planetary ephemeris. In our work,
we have used, for the orbital motion of the Moon, the lunar
ephemeris ELP2000 developed by Chapront-Touzé & Chapront
(1983), which is based on an analytical solution and numeri-
cal complements. For the motion of the Earth-Moon barycenter,
JPL (Jet Propulsion Laboratory) planetary ephemerides (DE245)
have been used. We chose DE245 in order to be consistent with
the numerical complements used in ELP2000. We have also
checked that the use of a more recent ephemeris gives LLR resid-
uals of the same order.

The coordinates of the vector MR implies knowledge of the
selenocentric coordinates of the reflectors and an ephemeris of
the lunar librations. Those are given, in our case, by the ana-
lytical model for the libration of the Moon (cf. Moons 1982).
Relativistic transformations of time scales have to be consid-
ered in order to express the various components in the same
time scale. Relativistic corrections also have to be applied for
the coordinate transformation between terrestrial and selenocen-
tric reference systems to the BCRS. All the corrections described
above have been applied according to Chapront et al. (1999).

The coordinates of the vector SE in the terrestrial reference
system used in this work are those given in the ITRF2000. In
order to determine these coordinates in a celestial reference sys-
tem, we need a precise model for the Earth’s rotation (see IERS
Conventions 2003 for more details)1. In this work, we have used
the Celestial Intermediate Origin (CIO) based transformation
described in the IERS Conventions 2003, using the IAU2006-
2000A precession nutation model as implemented in the SOFA
(2007)2 routines. This includes the use of the x, y coordinates
of the Celestial Intermediate Pole (CIP) in the International
Terrestrial Reference System (ITRS) and UT1, which are given
by the IERS C04 series.

To calculate the residuals, we have used 16 355 normal
points obtained by the LLR stations of (i) McDonald from 1969
to 2006; (ii) Haleakala from 1984 to 1990; and (iii) Grasse from
1984 to 2005. Table 1 shows the evolution of the LLR residu-
als obtained for the distance between the stations on the Earth
and the reflectors on the Moon. It provides the root mean square
(rms) of the residuals obtained with the data of each station, and
the number N of LLR “normal points”. Figures 2 and 3 show
the residuals obtained for the Grasse and McDonald stations,
respectively.

1 IERS technical Note 32: IERS Conventions (2003).
2 SOFA: http://www.iau-sofa.rl.ac.uk
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Table 1. Evolution of the quality of the LLR residuals for each station.

Observatory Period of observation rms N
(cm)

McDonald 1969–1986 46 3522
1987–2006 9.2 3080

Haleakala 1984–1990 11.1 481
Grasse 1984–1986 24.6 1130

1987–2005 5.1 8142
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Fig. 2. LLR residuals in meters at the Grasse station (1984–2005).

We separated the residuals into two parts for each station,
in order to show the improvement of the accuracy over the pe-
riod of observation (Fig. 2: Grasse station – upper: LLR resid-
uals 1984–1986 – lower: LLR residuals 1987–2005 – Fig. 3:
McDonald station – upper: LLR residuals 1969–1986 – lower:
LLR residuals 1987–2006). Table 1, Fig. 2 and Fig 3 show the
improvement of the accuracy since 1987, which is due to the
improvements in the instruments.

4. Lunar laser ranging data analysis: fitted
parameters

To represent the planetary and lunar motions, two different ap-
proaches are possible: a numerical approach (numerical integra-
tion), such as the JPL solution, and an analytical approach.

In our work, we have used the ELP2000 solution and adopted
the strategy composed of the two following steps:

(i) once the residuals have been obtained as explained in the
previous section, we determined the following parameters:

– the orbital parameters of the Moon and of the
Earth-Moon barycenter in the BCRS, which include
the mean motions of the Moon and of the Earth-Moon
barycenter as well as the tidal secular acceleration of the
Moon;

– the orientation angles of the lunar orbit at J2000.0 with
respect to the GCRS;

– the main free libration parameters of the Moon in the
BCRS;

– the coordinates of the reflectors in the selenocentric ref-
erence system.

Once we determined these parameters, we fixed them and
checked their stability.
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Fig. 3. LLR residuals in meters for the McDonald station (1969–2006).

The aim of this step is to determine the most stable lunar or-
bit over the whole interval of LLR observations in order to
provide the best possible dynamical reference frame avail-
able at each date of the LLR observations. That orbit has
been determined using the very complete lunar ephemeris
ELP2000 and fitting the orbital parameters described above
to the whole set of available LLR observations. The dynam-
ical reference frame thus realized over the interval of LLR
observations benefits from the quality of both the ELP2000
theory and the longest interval of LLR observations;

(ii) Then, we calculated the corrections to the celestial pole co-
ordinates as described in the next section.

The aim of this final step was to determine a time series of GCRS
celestial pole coordinates DX(t) and DY(t) having the best pos-
sible resolution with sufficient precision. The reference to the
GCRS was obtained through the link to the GCRS of the dy-
namical reference frame as determined in the first step.

4.1. Calculation of the celestial pole offsets with respect
to the IAU2006-2000A precession-nutation

LLR residuals have been used to fit the corrections to the X
and Y coordinates of the CIP in the GCRS with respect to
the IAU2006-2000A model of precession nutation (cf. Mathews
et al. 2002; Capitaine et al. 2003). For this analysis, the partial
derivatives of the matrix transformation for the GCRS motion of
the CIP are calculated (for more details see Capitaine & Gontier
1991, and IERS Conventions 2003).

4.1.1. Partial derivatives of the observables with respect
to the X, Y variables

To express the components of ES in the GCRS, we have to apply
the following transformation:

ESGCRS =M.ESITRS

where M is the matrix transformation from the ITRS to the
GCRS. It can be expressed as the product of three matrix
transformations.

M = Q(t).R(t).W(t)

W being the matrix transformation for the motion of the CIP
in the ITRS, R the matrix transformation for the Earth rotation

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912644&pdf_id=3
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and Q the matrix transformation for the motion of the CIP in the
GCRS.

Q can be written as:

Q = PN(X, Y).R3(s),

PN being the precession nutation matrix and R3(s) the rotation
matrix around the z-axis with the angle s, which is the CIO lo-
cator.

Hence, the partial derivatives with respect to the X coordi-
nate are:

δQ
δX
=
δPN(X, Y)
δX

.R3(s),where

δPN(X, Y)
δX

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−2aX − X3

4 −aY − X2Y
4 1

−aY − X2Y
4 − XY2

4 0

−1 0 −2aX − X(X2+Y2)
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3)

with: a = 1/2 + 1/8(X2 + Y2) with an accuracy of 1 μas.

The partial derivatives with respect to the Y coordinate are:

δQ
δY
=
δPN(X, Y)
δY

.R3(s),where

δPN(X, Y)
δY

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− X2Y

4 −aX − XY2

4 0
−aX − XY2

4 −2aY − Y3

4 1

0 −1 −2aY − Y(X2+Y2)
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4)

Finally, the partials of M with respect to X and Y are:

∂M
∂X
=
∂Q
∂X
.R(t).W(t) (5)

∂M
∂Y
=
∂Q
∂Y
.R(t).W(t).

The partial derivatives of the calculated time delay with respect
to X and Y can be obtained from:

∂Δtc
∂X
=

2
c

[ D
D
·
(
−∂M
∂X

)
ESITRS

]

∂Δtc
∂Y
=

2
c

[ D
D
·
(
−∂M
∂Y

)
ESITRS

]
. (6)

4.1.2. Choice of an appropriate windowing for the calculation
of the corrections to the DX, DY coordinates

We have looked for the most appropriate interval to estimate the
corrections to the X, Y coordinates of the CIP with respect to
the IAU2006-2000A model, using LLR data. Many investiga-
tions have been done in order to find the most appropriate reso-
lution and the best estimation of the parameters. We tested dif-
ferent time intervals. With a time interval shorter than 70 days
it was not possible to make an estimation of the parameters be-
cause of the imperfect distribution of the observations. A time
interval longer than 70 days did not allow a sufficient resolution.
Consequently, we have applied the partial derivatives of the LLR
observables (cf. Eq. (6)) for the calculation of the corrections
DX, DY every 70 days and obtained a series of 175 corrections.

Figures 4 and 5 show the corrections DX, DY to the celes-
tial pole coordinates and the corrections with their formal errors,
respectively. It is clear that our estimation has a better precision
since 1987, when the LLR residuals were improved. Figure 6
represents a zoom of Fig. 4 over the period 1987–2006.
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Fig. 4. Corrections to the celestial pole coordinates (DX, DY) using
LLR observations (70-day resolution).
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Fig. 5. Corrections to the celestial pole coordinates (DX, DY) with their
formal errors using LLR observations (70-day resolution).
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Fig. 6. Corrections to the celestial pole coordinates (DX, DY) using
LLR observations over the period 1987–2006 (70-day resolution).
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Fig. 7. Time series of the long term corrections (constant term, secular
term, 18.6-yr and 9.3-yr nutation terms) for X and Y coordinates fitted
to LLR observations.

Table 2. Numerical results for the weighted fits of periodic nutation
terms (i.e 18.6-yr and 9.3-yr) plus secular and constant term for the
LLR series.

Terms DX (mas) DY (mas)
sin (18.6-yr) 0.171 ± 0.273 0.075 ± 0.255
cos (18.6-yr) 0.121 ± 0.144 −0.241 ± 0.143
sin (9.3-yr) 0.121 ± 0.163 0.104 ± 0.154
cos (9.3-yr) 0.315 ± 0.139 −0.009 ± 0.131

secular term (mas/cy) 3.516 ± 3.841 −0.155 ± 3.662
constant term 0.163 ± 0.153 −0.220 ± 0.145

These figures show that LLR observations allow us a deter-
mination of time series of corrections to the celestial pole coor-
dinates (i.e. celestial pole offsets), though not with the same ac-
curacy and resolution as with VLBI. However, the celestial pole
offsets from LLR data are provided using a different approach
from the ones obtained by VLBI.

4.2. Analysis of the DX, DY time series

In order to characterize the signal, we estimated corrections to
periodic nutation terms at different periods as well as secular
and constant terms using a weighted least square fit. In our cal-
culation we first removed from the LLR series the free fore nu-
tation (FCN) using the empirical model of Lambert (cf. IERS
Conventions 2003)3.

4.2.1. Estimation of a slope and corrections to nutation terms

We have considered three different estimations. In all cases, we
note that the uncertainties are large compared to the estimated
values (see the discussion in Sect. 6); however, the uncertain-
ties are approximately of the order of 100–300 μas, which is an
improvement compared to previous studies:

(i) first, we estimated the long term components (i.e constant
term, secular term, 18.6-yr and 9.3-yr nutation terms).
The numerical results for the amplitudes of the terms are
shown in Table 2. Figure 7 represents the time series of

3 http://hpiers.obspm.fr/eop-pc/models/fcn/index.html
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Fig. 8. Time series of the long term corrections (constant term, secu-
lar term, 18.6-yr nutation term) for X and Y coordinates fitted to LLR
observations.

Table 3. Numerical results for the weighted fits of the 18.6-yr nutation
term plus the secular and constant terms for the LLR series.

Terms DX (mas) DY (mas)
sin (18.6-yr) 0.002 ± 0.221 −0.022 ± 0.206
cos (18.6-yr) 0.009 ± 0.129 −0.215 ± 0.123

secular term (mas/cy) 5.769 ± 3.246 1.068 ± 3.108
constant term 0.270 ± 0.134 −0.174 ± 0.125

Table 4. Numerical results for the weighted fits of annual and semi-
annual components plus the secular and constant terms for the LLR
series.

Terms DX (mas) DY (mas)
sin (annual) 0.380 ± 0.135 0.204 ± 0.128
cos (annual) −0.189 ± 0.125 −0.232 ± 0.122

sin (semi-annual) 0.104 ± 0.131 0.272 ± 0.126
cos (semi-annual) 0.128 ± 0.120 −0.168 ± 0.113

secular term (mas/cy) 5.597 ± 2.093 −0.108 ± 1.989
constant term 0.154 ± 0.104 −0.183 ± 0.098

the long term components corresponding to the fitted coeffi-
cients of Table 2.
Our estimates show that the correction for the 9.3-yr cosine
term is larger by about a factor of 2 than for the other terms
in the X coordinate. The correction to the 18.6-yr cosine term
is the largest one for the Y coordinate;

(ii) second, we estimated the constant term, secular term and the
18.6-yr nutation term. The numerical results are shown in
Table 3. It shows that the corrections for the terms are smaller
than 200 μas except for the 18.6-yr cosine term in the Y co-
ordinate.
Figure 8 represents the time series of the long term compo-
nents corresponding to the fitted coefficients of Table 3.
The difference between the corrections in Tables 2 and 3
are probably due to the correlation between the 18.6-yr and
9.3-yr terms as shown in Table 5 in the next paragraph;

(iii) third, we have estimated the constant term, secular term, an-
nual and semi-annual components. The numerical results are
shown in Table 4. Figure 9 represents the time series of
the components corresponding to the fitted coefficients of
Table 4.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912644&pdf_id=7
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Fig. 9. Time series of the constant term, secular term, annual and semi
annual terms for X and Y coordinates fitted to LLR observations.

Table 5. Coefficients of correlation for DX, DY coordinates correspond-
ing to the fit of Table 2 for LLR series.

Terms Sin (9.3-yr) Secular term Constant term
sin (18.6-yr) 0.6 –0.8 –0.7
sin (9.3-yr) 1 –0.5
secular term 1 0.7

In this case, the numerical results show that the largest cor-
rection is for the sine term of the annual nutation for the X com-
ponent, but concerning the other terms the corrections are ap-
proximately of the same order as their uncertainties.

4.2.2. Correlation coefficients

The coefficients of correlation corresponding to the fit of Table 2
are provided in Table 5 for the DX, DY coordinates. Only the
coefficients greater than 0.5 are shown.

We can see that there is a strong correlation (0.8) between the
18.6-yr sine term and the secular term and a correlation of 0.7 be-
tween the secular term and the constant term as well as between
the 18.6-yr sine term and the constant term. This shows that the
LLR data do not yet allow us to separate the secular term and
the 18.6-yr sine nutation term as well as the constant term and
the 18.6-yr sine nutation term.

Even if the uncertainties are greater than 100 μas, these de-
terminations provide information about the time series obtained
and their long term nutation components as well as their annual
and semi annual terms.

5. Analysis of the celestial pole offsets derived
from VLBI observations

In order to compare LLR estimations with VLBI ones, we car-
ried out the same investigation using the IVS combined solution
(ivse08q1.eops) that includes 2846 values from 1984 to 2008.
The celestial pole offsets DX, DY of this solution are currently
given with respect to the IAU 2000 model. Then, to be consis-
tent with our work, we estimated the DX, DY corrections with
respect to the IAU 2006-2000A model. For this determination,
we used the equation (cf. Capitaine & Wallace 2006, Eq. (41),
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Fig. 10. DX, DY corrections after removing the FCN from VLBI
(ivse08q1.eops) series w.r.t. the IAU2006-2000A model of precession
nutation – the curve: time series of the long term corrections (constant
term, secular term, 18.6-yr and 9.3-yr nutation terms) for X and Y coor-
dinates fitted to VLBI observations.

Table 6. Numerical amplitudes of the fitted terms (i.e constant term,
secular term, 18.6-yr and 9.3-yr nutation terms) for the VLBI series.

Terms DX (mas) DY (mas)
sin (18.6-yr) 0.000 ± 0.004 0.013 ± 0.004
cos (18.6-yr) 0.060 ± 0.004 −0.067 ± 0.004
sin (9.3-yr) −0.004 ± 0.003 −0.000 ± 0.003
cos (9.3-yr) 0.011 ± 0.003 −0.005 ± 0.003

secular term (mas/cy) 0.054 ± 0.067 −0.118 ± 0.067
constant term 0.044 ± 0.002 −0.101 ± 0.002

after correcting a typographical error) for the difference between
the IAU2006 and IAU2000 expressions of the precession in X
and Y (in μas):

XIAU2006 − XIAU2000 = 155t − 2564t2 + 2t3 + 54t4

YIAU2006 − YIAU2000 = −514t − 24t2 + 58t3 − 1t4 − 1t5. (7)

5.1. Analysis of the DX, DY VLBI time series

Once we have obtained the time series of DX, DY corrections
with respect to the IAU 2006-2000A model, we perform the
same analysis as in Sect. 4 after removing the FCN:

(i) first, fitting the long term components (i.e constant term, sec-
ular term, 18.6-yr and 9.3-yr nutation terms). The numerical
results are printed in Table 6. This table shows that the cor-
rection for the 18.6-yr cosine term is the largest one for the X
and Y components. Also, our calculations show that the es-
timation of the amplitude of the fitted terms is determined
with a precision that is better by a factor of 50 than in the
LLR analysis;
Figure 10 represents the DX, DY corrections after remov-
ing the FCN from VLBI (ivse08q1.eops) series w.r.t. the
IAU2006-2000A model of precession nutation and the time
series of the long term components (constant term, secular
term, 18.6-yr and 9.3-yr nutation terms) for X and Y coordi-
nates fitted to VLBI observations;

(ii) second, we have estimated the constant term, secular term
and the 18.6-yr nutation term. The numerical results are

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912644&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912644&pdf_id=10
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Fig. 11. DX, DY corrections after removing the FCN from VLBI
(ivse08q1.eops) series w.r.t. the IAU2006-2000A model of precession
nutation – the curve: time series of the long term components (constant
term, secular term, 18.6-yr nutation term) for X and Y coordinates fitted
to VLBI observations.

Table 7. Numerical amplitudes of the fitted terms (i.e constant term,
secular term, 18.6-yr nutation term) for the VLBI series.

Terms DX (mas) DY (mas)
sin (18.6-yr) −0.007 ± 0.003 0.016 ± 0.003
cos (18.6-yr) 0.057 ± 0.004 −0.066 ± 0.004

secular term (mas/cy) 0.164 ± 0.060 −0.155 ± 0.060
constant term 0.045 ± 0.002 −0.102 ± 0.002

shown in Table 7. Figure 11 represents the time series of
the long term components corresponding to the fitted coeffi-
cients of Table 7.

The results show that there is no significant difference between
case 1 and 2 (cf. Tables 6 and 7), in contrast to LLR where they
are different (cf. Tables 2 and 3).

5.2. Correlation coefficients

The coefficients of correlation corresponding to the fit of Table 6
are provided in Table 8 for the DX and DY coordinates. Only the
correlations greater than 0.5 are given.

We can see that contrary to the LLR correlations, there is
a strong correlation (approx. 0.70) between the 18.6-yr cosine
term and the secular term.

6. Discussion

The large uncertainties of the estimated values from LLR are
due to the imperfect distribution of the observations. LLR solu-
tion values for the corrections to the 18.6-yr and 9.3-yr nutation
coefficients for case 1 (Table 2) are almost of the same order ex-
cept for 18.6-yr sine term and 9.3-yr cosine term in the Y com-
ponent, where the values are smaller. However, if we compare
those values with those obtained in case 2 (Table 3), they are
smaller by a factor 100 than in the first case, especially for the
X component. This is probably due to the data span of LLR that
is not yet long enough to reliably separate the 18.6-yr and 9.3-yr
coefficients. Even if a 37-yr interval should be sufficient to allow
the separation between the long periodic nutation terms from the

Table 8. Coefficients of correlation corresponding to the fit of Table 6
for VLBI series.

Terms Secular term
sin (18.6 yr) –0.5
cos (18.6 yr) –0.7

constant and the secular term, this separation is still imperfect
due to the insufficient precision of the LLR data over the interval
1969–1986.

We have also determined corrections to the annual and semi-
annual terms, where the values are of the same order for the X
and Y coordinates.

LLR data have the property of being sensitive to both the
ecliptic and the equator. However, comparison between the re-
sults of Sects. 4 and 5 shows that LLR data are not as robust
as VLBI for the determination of the celestial pole offsets be-
cause there are fewer LLR observation stations. We do not ex-
pect agreement with VLBI results at the level of VLBI accuracy.
However, we have shown that it is possible to determine celes-
tial pole offsets from LLR observations and have specified the
characteristics of this time series.

7. Joint analysis of LLR and VLBI data

In this section, we present a joint analysis of LLR and VLBI data
combining the two series of celestial pole offsets DX, DY. The
principal reason for doing this combination is the complemen-
tarity of these two series; the combined series benefits from the
accuracy of VLBI, as well as the advantage of the LLR by its
longer time series and its different approach for determining the
celestial pole offsets.

In a first step, the celestial pole offsets of each space-geodetic
technique were analyzed separately. Statistical analysis were ap-
plied in order to determine an optimal weight for both series.
For the VLBI series, we applied the Allan variance after remov-
ing all the known systematic errors (i.e the FCN, the 18.6-yr
nutation term and 9.3-yr nutation term). LLR series were com-
pared to the C04 series of the IERS which were considered as
the reference series. Many tests have been performed in partic-
ular to check that LLR series are in the reference system of the
C04 series and to rescale our standard deviation. We obtained a
bias of 121 μas in X and −181 μas in Y with a standard deviation
of about 1 mas. This means that the series is actually in the C04
reference system. Concerning the standard deviation, the statis-
tical tests demonstrated that our formal errors are not realistic,
and have to be multiplied by a factor of 2.

In order to combine both series, we computed a weighted
mean VLBI series at 70 days interval (i.e. the same time interval
as in the LLR data). The series obtained has 127 values; it is
represented in Fig. 12.

The principle of the combination used is the following: we
have stacked the two series, the VLBI one being more accurate
and the LLR one being longer, and choosing the corresponding
optimal weights. Several tests have been made in order to deter-
mine the optimal values for both series. Finally, we adopted the
strategy described below:

– for the non common periods (1969–1985 and 2006–2008), we
retained the weights associated to the corrections DX, DY of
each series.

– for the common period (1985–2006), we calculated the rela-
tive weight taking into account the two techniques, using the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912644&pdf_id=11
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Fig. 12. DX and DY corrections after removing the FCN of the VLBI
time series w.r.t. the IAU 2006-2000A model of precession nutation
averaged over 70 days.

following:

WeightLLR =

⎛⎜⎜⎜⎜⎝ 1

σ2
LLR

⎞⎟⎟⎟⎟⎠ /
⎛⎜⎜⎜⎜⎝ 1

σ2
LLR

+
1

σ2
VLBI

⎞⎟⎟⎟⎟⎠
WeightVLBI =

⎛⎜⎜⎜⎜⎝ 1

σ2
VLBI

⎞⎟⎟⎟⎟⎠ /
⎛⎜⎜⎜⎜⎝ 1

σ2
LLR

+
1

σ2
VLBI

⎞⎟⎟⎟⎟⎠ · (8)

The combined solution was obtained using the following
formula:

DXcombined=WeightLLR × DXLLR +WeightVLBI × DXVLBI

DYcombined=WeightLLR × DYLLR +WeightVLBI × DYVLBI. (9)

The results obtained from the combination are represented
in Fig. 13. The present large curves at the beginning (i.e.
1972–1985) are the celestial pole offsets derived from the LLR
observations over the period (1972–1985). We have seen that
over this period of time the LLR observations are less precise
(see Fig. 2, Fig. 3), which is why our determination is more noisy
over this period. But the advantage is to have a longer time series
because there are no VLBI observations over this period of time
(before 1985).

If we zoom in on the common period and show only the
weighted mean VLBI series and the combined series (Fig. 14),
we can see that there are cases where some signal appears in the
combined solution, while it does not appear in the correspond-
ing VLBI series. See for example DY over the period 1998–2001
and DX over the period 1996-1998. This may indicate that the
combined series reveals details that do not appear in the VLBI
series alone.

8. Concluding remarks

In this paper, we have demonstrated the possibility of
determining celestial pole coordinates using LLR observations.
This determination is not as accurate nor as dense as with VLBI
observations, but its advantage is its different approach for deter-
mining the celestial reference system, thus, the celestial pole co-
ordinates. So far, only the VLBI technique has provided this kind
of determination. This work provides some external constraints
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Fig. 13. DX, DY corrections after removing the FCN from LLR/VLBI
w.r.t. the IAU2006-2000A model of precession nutation over the period
1969–2008.
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Fig. 14. DX, DY corrections after removing the FCN from LLR/VLBI
w.r.t. the IAU2006-2000A model of precession nutation over the period
1984–2008.

to the celestial pole coordinates derived from VLBI observa-
tions. Moreover, the determination of the long-period nutation
terms shows an improvement with respect to previous studies.

The comparison of the time series DX, DY derived from
LLR observations with the C04 series has demonstrated the con-
sistency of our calculation.

The combination of LLR and VLBI series can be stronger
than either individual time series. The whole series completes
the VLBI series and allows us to have a time series of celestial
pole offsets over a longer interval. Further studies are necessary
in order to allow a physical interpretation of the results. In the
future, more LLR observations with a better resolution will offer
possibilities to improve the LLR/VLBI combined series and thus
the determination of the 18.6-yr nutation term and consequently
of the Earth’s dynamical parameters.
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