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Abstract. We investigate the relationship between circumstellar disks and the Taylor-Couette flow. Using the Reynolds simi-
larity principle, this results in a number of parameter-free predictions about stability of the disks, and their turbulent transport
properties, provided the disk structure is available. We discuss how the latter can be deduced from interferometric observations
of circumstellar material. We use the resulting disk structure to compute the molecular transport coefficients, including the ef-
fect of ionization by the central object. The resulting control parameter indicates that the disk is well into the turbulent regime.
The analogy is also used to compute the effective accretion rate, as a function of the disk characteristic parameters (orbiting
velocity, temperature and density). These values are in very good agreement with experimental, parameter-free predictions
derived from the supposed relationship. The turbulent viscosity is also computed and found to correspond to an α-parameter
2× 10−4 < α < 2 × 10−2. Predictions regarding fluctuations are also checked: luminosity fluctuations in disks do obey the same
universal distribution as energy fluctuations observed in a laboratory turbulent flow. Radial velocity dispersion in the outer part
of the disk is predicted to be of the order of 0.1 km s−1, in agreement with available observations. All these issues provide a proof
of the turbulent character of circumstellar disks, as well as a parameter-free theoretical estimate of effective accretion rates.
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1. Introduction

Stars form by gravitational collapse of molecular clouds.
During this process, proto-stars get surrounded and plausibly
are fed by an envelope/disk made of gas and dust, which can,
under certain conditions, coagulate to form planetary embryos.
There is little doubt that gas motion, usually considered as tur-
bulent, plays a major role. Turbulent motion enhances transport
properties, thereby accelerating the evolution of the tempera-
ture and density in the envelope/disk. Also, turbulence may cat-
alyze planet formation thanks to the trapping of dust particle in-
side large-scale vortices (Barge & Sommeria 1995; Tanga et al.
1996; Chavanis 2000). As of now, the assertion that circumstel-
lar disks are turbulent (what we shall refer to as the “turbulent
hypothesis”) has never been properly checked. It mainly relies
on the fact that the luminosity produced by the disk interact-
ing with the central star is very large (see e.g. Hartmann et al.
1998). In certain cases (FU Orionis-type systems), this lumi-
nosity is so high that it even supersedes the stellar component.
The most widely accepted scenario so far to account for the
abnormal luminosities of young stellar objects involves a mag-
netospheric accretion for classical T Tauri stars. In this case, the
matter in the inner parts of the disk is coupled with the stellar
magnetic field and falls onto the stars along the field lines at the

free fall velocity (see e.g. Gullbring et al. 1998; Muzerolle et al.
1998). This entails an accretion shock at the stellar surface in
which almost all the visible and UV excess is produced (veiling
the stellar lines). This scenario has shown many successes in
interpreting spectral features of T Tauri stars like sodium and
hydrogen line profiles (see e.g. Muzerolle et al. 1998). In the
case of Fu Ori stars, the currently advocated picture involves a
wide boundary layer (see e.g. Popham et al. 1996). One of the
main weaknesses of this scenario is its low predictive power
since it relies on an adjustable parameter (the accretion rate)
which must be postulated a posteriori by comparison with
observational data.

Indeed, in this framework, the luminosity is directly re-
lated to the amount of energy released by the disk. The ne-
cessity for turbulence comes from the hypothesis that no lam-
inar motions can produce the amount of energy dissipated
required to explain observed luminosities (see e.g. Pringle 1981
and references therein). However, no attempt has been made
to substantiate this claim in a quantitative manner. The ques-
tions we address here are: what are the luminosities produced
by a laminar disk and by a turbulent disk? How do these com-
pare with observations? These two questions are equally dif-
ficult to answer, but they hide different levels of difficulties.
One is of a theoretical nature: the physical processes at work in
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this disk/star interaction region are complex. A correct descrip-
tion should simultaneously include the resolution of turbulence
(with compressibility effects), radiative transfer (accounting for
UV-irradiation by the star), magnetic processes, chemistry, the
disk flaring, phase separation, time evolution, etc. The second
difficulty is of an observational nature. At the present time, in-
formation has been gathered about the temperature, density and
velocity distributions in the outer parts of disks, at �100 AU
typically, thanks to high resolution interferometry and clever
data analysis (Guilloteau & Dutrey 1998). Unfortunately, ba-
sic parameters (mean free path, sound velocity and viscosity)
connected with the gas dynamics and dissipation are still not
known in the inner regions, and especially in the region where
the disk and the star interact.

Because of these difficulties, we choose to adopt a radically
different approach than the classical model: instead of trying to
build a fully “realistic” circumstellar disk, we use a simplified
hydrodynamic model (“zero order model”) and study in detail
its physical properties. In the future, we will slowly increase its
complexity (and reality!) by adding new ingredients like mag-
netic field, stratification, radiative transfer. Here, we show that
our zero order model is analogous to an incompressible rotat-
ing shear flow. It is therefore amenable to treatment as a simple
laboratory prototype, the Taylor-Couette flow. From theoretical
and experimental studies of the properties of this prototype, one
can then build general laws in circumstellar disks by a simple
use of the Reynolds similarity principle. Taylor-Couette flow
is a classical laboratory flow, and it has been the subject of
many experiments. A recent review about stability properties
and transport properties for use in astrophysical flows has been
made by Dubrulle et al. (2004). As a result, they derive critical
conditions for stability, and simple scaling laws for transport
properties, including the influence of stratification, magnetic
field, boundary conditions and aspect ratio. In the present pa-
per, we apply these results to circumstellar disks and derive
the expression of the characteristic parameters of the model
as a function of astrophysical observables. We propose a pro-
cedure of quantitative estimation of the observables using the
observational results of Guilloteau & Dutrey (1998) and de-
rive parameter-free predictions about turbulence and turbulent
transport in circumstellar disks. These predictions are tested
against observational data from T Tauri and FU Ori stars.

2. Hydrodynamic model

2.1. Basic ideas

Observation of circumstellar disks suggests that they have sizes
between 100 and 1000 astronomical units. In the following, we
will focus only on the part of the disk expected to behave like
an incompressible fluid. An estimate of the importance of com-
pressibility can be obtained via the Mach number, the ratio of
the typical velocity to thermal velocities. It is generally admit-
ted that compressibility effects start playing a role when this
number reaches values of unity. In the outer part of the disk,
this ratio has been estimated by Guilloteau & Dutrey (1998)
from CO line profiles. Its value is about 0.2–0.3. In the in-
ner part of the disk (radius ranging from 1 to 30 astronomical

units), we may use the disk structure inferred from the D/H ra-
tio measured in the Solar System (Drouart et al. 1999; Hersant
et al. 2001), which leads to a Mach number of the order of 0.05
to 0.1. These figures indicate that both the inner and the outer
part can be treated as incompressible fluids. Closer to the star,
the situation is less clear. On the one hand, temperature tends
to increase strongly, leading to an increase of the sound veloc-
ity and a decrease of the Mach number. On the other hand, as
one gets closer to the boundary, one may expect larger typical
velocities induced by larger velocity gradients, and thus an in-
crease of the Mach number. There are no direct observations
supporting one scenario or the other. We shall then consider
two scenarios: one in which the Mach number Ma never ex-
ceeds unity. In this case, the whole disk is incompressible, and
connects smoothly onto the star at the star radius. The inner
boundary is thus defined as ri = r∗. In the second scenario, the
Mach number reaches unity at some “interaction radius” rin,
leading to an inner boundary at ri = rin. At this location, a
shock appears, in which all velocities are suddenly decreased
to very small values. In the shock, all the kinetic energy is
transfered to the thermal energy, thereby producing a strong
temperature increase (by a factor of 1 + Ma2 � 2). This en-
tails an increase of ionization and the matter gets more cou-
pled to the stellar magnetic field. This second situation is con-
sidered in magnetospheric accretion models (Hartmann et al.
1998; Hartmann et al. 2002), in which case rin is the Alfven ra-
dius; see Schatzman (1962, 1989). Figure 1 summarizes these
two possible configurations. From a hydrodynamical point of
view, in the first situation the boundary is similar to a free-
slip boundary (with possible non-zero velocities in the direc-
tion tangential to the star boundary), while in the second sit-
uation, the interaction radius acts as a no-slip boundary (with
all velocities becoming zero). This difference may be reflected
in the transport properties, see Dubrulle et al. (2004). In the
following, the free-slip boundary condition will be referred to
as smooth, while the no-slip boundary will be referred to as
rough. In the laboratory experiments reviewed in Dubrulle et al.
(2004), the turbulent transport depends on the boundary condi-
tions. Specifically, transport is enhanced (with respect to other
boundary conditions) for boundary conditions of the rough or
no-slip type. In the astrophysical case, it is not quite clear
whether these two boundary conditions apply, or even whether
different inner and outer boundary conditions result in an in-
termediate transport enhancement. We shall therefore devise
observational tests using quantities independent of boundary
conditions via a suitable non-dimensionalisation.

2.2. Basic equations

In either case, the angular velocity Ω at the inner boundary is
that of the star, namely Ω(ri) = Ω∗. For r > ri, the Mach num-
ber of the flow is less than one by construction, i.e. pressure
fluctuations vary over a time scale short compared to the dy-
namical time. In such a case, one can assume hydrostatic equi-
librium in the vertical direction, implying a decoupling of the
vertical and horizontal structure. It is then convenient to de-
scribe the disk by its “horizontal equations”, obtained by
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Fig. 1. Two possible configurations considered in the present model:
a) the whole disk is incompressible and extends onto the proto-star;
and b) the disk is incompressible until an “interaction radius” imposed
for instance by a magnetic field.

averaging the original equations of motion in the vertical di-
rection. The procedure is described e.g. in Dubrulle (1992). It
leads to:

∂tΣ + ∂
h
i Σui = 0,

∂t(Σui) + ∂h
j(Σuiu j) = −∂h

i Hp + ∂h
jτi j − ΣGM

r2
er,

τi j = µ
(
∂h

i u j + ∂
h
jui

)
+

(
ζ +
µ

3

)
∂h

ju j. (1)

Here, ∂h is the horizontal gradient (∂z = 0), u and p are the
Favre average of the velocity and the pressure over the vertical
direction, Σ is the surface density, µ and ζ are surface viscosity
coefficients, G is the gravitational constant, M the mass of the
star, and r the distance to the star in cylindrical coordinate, er

is a unit vector in the radial direction and H the vertical scale
height. In the hydrostatic approximation,

H = cs

(
r3

GM

)1/2

, (2)

where cs is the sound velocity. This expression is only valid
when self-gravity can be neglected, namely when:

Mdisk

M
�

H
R

(3)

where Mdisk and M are the masses of the disk and the star,
respectively (see e.g. Huré 2000).

In the opposite case, H will rather vary like the Jeans length
in the vertical direction, as:

H =
c2

s

4πGΣ
· (4)

These equations should be supplemented with an equation for
the surface energy E ∼ Hc2

s , but we shall not need it in the
sequel.

2.3. Stationary axi-symmetric state

Equation (1) admits simple basic state, under the shape of sta-
tionary axi-symmetric solution. The mass conservation then
implies:

1
r
∂r(rΣur) = 0, (5)

or

ur =
Mt

Σr
, (6)

where Mt is a constant, dimensionally equivalent to an accre-
tion rate. Plugging this into the radial and azimuthal component
of Eq. (1), we obtain two equations:

−M2
t

Σr3

(
1 +

r∂rΣ

Σ

)
− Σu2

θ

r
= −∂rHp − ΣGM

r2

+
2µMt

Σr3

(
− r∂rµ

µ

(
1 +

r∂rΣ

Σ

)
− r2∂2

rΣ

Σ
+ 2

(r∂rΣ)2

Σ2
− r∂rΣ

Σ

)
,

Mt

r2
∂r(ruθ) =

1
r2
∂r

(
µr3∂r

uθ
r

)
· (7)

The general solution of the second equation of (7) is:

uθ = A exp

(∫ r

ri

(β + 1)dx/x

)
+

B
r
, (8)

where A and B are constants and β = Mt/µ. Plugging this
solution into the first equation of (7) then defines the general
pressure.

The basic state depends on three constants A, B and Mt,
which must be specified through some sort of boundary con-
ditions. In the case of astrophysical flows, the boundary condi-
tions are not very well known and it is less easy to constrain the
parameters. The condition that the rotation velocity of the disk
matches the star velocity at the interaction radius only provides
one relation between the three parameters:

A +
B
ri
= riΩ∗. (9)

An additional constraint comes from the hypothesis that the
disk is geometrically thin. This is consistent with our assump-
tion that the Mach number is less than unity. In that case,
as soon as there is no dramatic variation of the thermody-
namic variables, radial pressure gradients and terms involving
the radial velocity1 can be neglected compared to the gravity,
and the only way to satisfy the first equation of (7) is to set
Mt/µ = β = −3/2. In this case, the disk is almost Keplerian
and obeys:

ur = − 3µ
2Σr
,

uθ =

√
GM

r1/2
+

r2
i

r
(Ω∗ − ΩK(ri)) , (10)

1 The viscosity and the advection terms are then negligible com-
pared to the radial pressure gradient by a factor of the order of Ma H

r
and Ma2, respectively.
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Fig. 2. Velocity profile in a circumstellar disk in the viscous regime,
with Keplerian velocity in the outer part, and smooth matching onto
the central object at the interaction radius. For this example, the mass
of the central star has been taken as a solar mass.

where ΩK(ri) is the angular Keplerian velocity at r = ri. The
corresponding solution is plotted in Fig. 2. It is made of a
Keplerian disk in the outer part, with a continuous matching
towards the star velocity at the interaction radius.

2.4. Comment about the disk outer radius

In the expression we derived for the velocity, we did not need
to specify anything about the condition at the outer boundary
of the disk. One may then wonder what determines this bound-
ary, and whether it is relevant in specifying the geometry of the
problem. One way to answer this question is to note that sta-
tionary solutions of the shape (10) are only possible provided
the dynamical time scales are short with respect to the viscous
time scale. In the vertical direction, the dynamical time scale to
ensure hydrostatic equilibrium is H/cs ∼ Ω−1

K . In the horizon-
tal plane, the two dynamical time scale are the radial time scale
r/ur ∼ r2Σ/µ and the orbital time scale Ω−1 ∼ Ω−1

K . The radial
time scale is comparable to the viscous time scale. So the con-
dition for stationarity is that the orbital time scale is less than
the viscous time scale, resulting in r < ro, with ro solution of
the equation:

ro =

(
µ

ΣΩ

)1/2
|r=ro . (11)

This radius defines the outer geometrical limit within which
stationary solutions can reasonably exist. If in this formula one
considers the ordinary viscosity, then one typically obtains ro

much larger than the observed disk outer radii. On the other
hand, one may argue that as soon as the disk is turbulent, the
molecular viscosity becomes irrelevant and one must consider
a kind of “turbulent viscosity” in this formula. In this case, us-
ing the formula we derive in Sect. 3.3, we find that ro is of the
order of the disk scale height. In geometrically thin disks, it is
not clear whether this limit really exists or not. Neither limits
really match the observed disk radii. However, the sharp ob-
served edge of disks remains inconsistent with stationary mod-
els. Stationary solutions, due to constant accretion rate in ra-
dius, are indeed in essence radially infinite. This suggests that

the disk outer radii may still be linked to some non-stationary
effects. This is the subject of a forthcoming paper (Mayer et al.
2004, in preparation).

2.5. The incompressible analog

Astrophysical disks are (weakly) compressible and radially
stratified. It is however possible to build an incompressible ana-
log of them, using clever boundary conditions. This remark is at
the heart of the laboratory prototype. Consider an incompress-
ible, unstratified fluid, enclosed within a domain with cylindri-
cal symmetry, bounded by inner and outer radii ri and ro. Its
equations of motion are given by the Navier-Stokes equations:

∂tu + u·∇u = −1
ρ
∇p + ν∆u,

∇ · u = 0, (12)

where ρ is the density, u is the velocity, ν the molecular viscos-
ity and p is the pressure. If we assume hydrostatic equilibrium
in the vertical direction, we get:

∂z p � 0, (13)

so that p is a function of r only. In that case, Eq. (12) admits
the basic state of stationary solutions, with axial and transla-
tional symmetry along the disk rotation axis (the velocity only
depends on r). The incompressibility condition then implies:

1
r
∂r(rur) = 0, (14)

or

ur =
K
r
, (15)

where K is a constant, to be constrained later. Plugging this into
the radial and azimuthal component of Eq. (12), we obtain two
equations:

−K2

r3
− u2

θ

r
= −∂r

Π

ρ
,

K
r2
∂r(ruθ) =

ν

r2
∂r

(
r3∂r

uθ
r

)
· (16)

The second equation of Eq. (16) is homogeneous in r. It only
admits two power law solutions, with exponent−1 and 1+K/ν,
so that the general solution is:

uθ = Ar1+β +
B
r
, (17)

where A and B are constants and β = K/ν. Plugging this solu-
tion into the first equation of (16) then defines the pressure.

The basic state depends on three constants A, B and K,
which must be specified through boundary conditions. In labo-
ratory flows, these conditions are usually well defined and al-
low for a simple determination of the constants once the ro-
tation velocities at the inner and outer boundaries are known
(Bahl 1970):

A =
r−βo

1 − ηβ+2

(
Ωo − η2Ωi

)
,

B =
r2

i

1 − ηβ+2

(
Ωi −Ωoη

β
)
, (18)
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where η = ri/ro is the radius ratio, Ωo and Ωi are the angular
velocity at outer and inner radii and β = Rr = K/ν = ur(ri)ri/ν
is the radial Reynolds number, based on the radial velocity
through the wall of the inner cylinder. Note that it is positive
for motions outwards from the axis of rotation.

Comparing Eq. (10) with Eqs. (17) and (18), it is possible to
see that the “laboratory” analog of Keplerian flow is such that:

β = −3
2
,

Ωi = Ω∗,

Ωo =

√
GM

r3
o
,

η = ri/ro. (19)

This shows that this basic state also describes laboratory in-
compressible flows, with rigid boundaries and without grav-
ity, in which angular momentum distribution may be imposed
by boundary conditions, and astrophysical flows, without rigid
boundaries, in which angular momentum distribution is im-
posed by gravity. In other words, building a prototype of as-
trophysical disks (within the approximations described above)
requires a (laboratory) flow with equivalent angular momen-
tum distribution, and equivalent control parameters. We now
derive these control parameters, in order to apply the Reynolds
similarity principle.

2.6. Control parameters

The shape of the basic state allows for the determination of
the control parameters of the flow. These parameters are essen-
tial in the comparison with the laboratory prototype since the
Reynolds similarity principle states that the astrophysical disk
will behave like the laboratory prototype with same control pa-
rameters. These control parameters are
the global Reynolds number:

Re =
S̄ (ro − ri)2

ν
, (20)

the rotation number:

RΩ =
2Ω̄

S̄
, (21)

the curvature number

RC =
r̄

ro − ri
, (22)

the local radial Reynolds number:

Rr =
urr
ν
· (23)

The aspect ratio:

Γ =
H̄
r̄
· (24)

Here, Ω̄, S̄ and r̄ are the characteristic angular velocity, shear
and radius. Adopting the convention of Dubrulle et al. (2004),

we find:

Ω̄ = ΩK(ri)

(
ri

ro

)1/2

+
ri

ro
(Ω∗ −ΩK(ri))

S̄ =
1
2
ΩK(ri)

(ri

r̄

)3/2
− 2Ω̄, (25)

while r̄ is fixed through the condition Ω̄ = uθ(r̄)/r̄. A simplifi-
cation occurs in two limiting cases, relevant to astrophysical
disks: ri � ro or ri → ro, Ω∗ → ΩK(ri). In both cases,
we have:

r̄ = r2/3
i r1/3

o ,

Ω̄ = ΩK(r̄),

S̄ = −3
2
ΩK(r̄). (26)

The control parameters then simplify into:

Re =
3
2
ΩK(r̄)(ro − ri)2

ν
,

RΩ = −4
3
,

RC =
r2/3

i r1/3
o

ro − ri
,

Rr = −3
2
,

Γ =
H

r2/3
i r1/3

o

· (27)

If the disk is stratified or magnetized, other control parame-
ters appear, like the Prandtl number Pr = ν/κ and the mag-
netic Prandtl number Pm = µ0ν/η where κ and η are the heat
diffusivity and the magnetic resistivity, and µ0 is the vacuum
permeability.

2.7. Molecular transport processes

The computation of the control parameters requires an estimate
of molecular transport coefficients. These coefficients depend
on the ionization state of the gas. There are two sources of ion-
ization. Thermal ionization is efficient in the inner part of the
disk. The corresponding ionization fraction can be written as
(Fromang et al. 2003):

xth
e = 6 × 10−2

( T
1000 K

)3/4 (
2.4 × 1015 cm−3

n

)1/2

× exp (−25188 K/T ), (28)

where T and n are the temperature and the number density of
neutral species (hydrogen mainly), respectively. For tempera-
ture lower than 103 K (typically r > 1 AU), thermal ionization
is negligible. However, X-ray illumination from the central star
(or the magnetospheric accretion flow) may induce a weak ion-
ization in some part of the disk (typically away from the mid-
plane) (Feigelsson & Montmerle 1999). A theoretical study has
been performed by Igea & Glassgold (1999). They found that
at a given radius from the source, the ionization fraction is a
universal function of the vertical column density N⊥, indepen-
dent of the structural details of the disk. The role of cosmic
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rays in the disk ionization is still a matter of debate (Sano et al.
2000) and will not be discussed here. For a typical young stellar
object, Igea and Glassgold’s result can be approximated by:

xX
e =

ne

n
=

1017 cm−2

N⊥
T 1/4n−1/2e−0.002(rAU−1),

N⊥ > 1020 cm−2, (29)

xe =
ne

n
= 10−3T 1/4n−1/2e−0.002(rAU−1),

N⊥ < 1020 cm−2, (30)

where ne is the ion number density, and rAU is the distance from
the central star, in astronomical units.

When the gas is neutral, the viscosity and heat diffusivity
are given by (Lang 1980):

νneu = κ = 3 × 1019 T 1/2

n
cm2 s−1, (31)

where T is the disk temperature, and n the number density.
When the gas is weakly ionized (xe � 1), the transport

coefficient must be multiplied by a factor (Lang 1980):

νion

νneu
= 4 × 10−12 T 2

xe
· (32)

This correction is valid as long as νion/νneu < 1. This sets a limit
on ionization fraction, below which the gas viscosity takes the
neutral value:

xcr
e = 4 × 10−12T 2. (33)

The Prandtl number in this case is equal to 10−11 (Lang 1980).
The resistivity of an ionized gas can be written as the sum

of the resistivity induced by electron-neutral collisions and
electron-ion collisions:

η = ηen + ηei (34)

where (Lang 1980)

ηen = 10−6 1 − xe

xe
T 1/2ohm − cm (35)

ηei = 4 × 103 ln Λ
T 3/2

ohm − cm (36)

where Λ = 1.3 × 104 T 3/2

N1/2
e

is the Coulomb logarithm.

2.8. Physical parameters

Various physical parameters are required to estimate the control
parameter.

Parameters associated with the disk are ro, ri, Γ and ν. The
disk inner radius depends on whether the disk/star interaction
is direct or indirect. In the first case, ri = r∗. In the second case,
ri may not exceed the corotation radius at which the disk ve-
locity matches the star velocity. In the following, we will con-
sider variations of ri in between these two limits. The disk outer
radius ro must be specified through the implicit relation (11).
Direct observations of the disk suggest that the disk size is
of the order of rD = 1000 AU for the disk around T Tauri
and even smaller, rD = 50 AU, for the disk around FU ORI

(Kenyon 1999). Clearly, rD is thus the maximum size ro can
achieve. For practical reasons, we defer its discussion to the
next section, after computation of the temperature and density
profile.

Parameters relative to the proto-star have been measured in
some T Tauri and FU Ori stars. Table 1 gives the sample of stars
we shall use in the following. It is particularly convenient and
illustrative to scale all quantities in the problem with respect
to values defined at the distance of r̄ = 0.33 AU, which is the
characteristic radius corresponding to a disk with ri = 1011 cm
and ro = 1000 AU, the two extreme limits for ri and ro. We
also use, as a reference, a rotation period of the star of 8 days
(typical T Tauri star), leading to Ω∗ = 9 × 10−6 s−1.

The temperature and number density in circumstellar disks
are not known due to the lack of spatial resolution. However,
their magnitude can be deduced by short radii extrapolation of
measurements made on the outer disk. The inversion method of
Guilloteau & Dutrey (1998), based on χ-square fitting of CO
interferometric maps, yields temperature and density profiles
at r � 50−100 AU. For instance, for the disk around DM Tau
(M � 0.5 M
), their method predicts



T � 30
(

r
100 AU

)−0.6
K

n � 108
(

r
100 AU

)−2.75
cm−3

Σ � 1
(

r
100 AU

)−1.5
g cm−2,

where Σ is the surface density of the disk (including gas and
dust). Error bars on the measurements are rather large, and
could amount to a possible variation by a factor of 5 to 10. At
r = 1 AU, one finds n � 3 × 1013 cm−3 and Σ � 1000 g cm−2,
in agreement with values obtained by modeling the deuterium
enrichment in the Solar System (Drouart et al. 1999; Hersant
et al. 2001). At the reference radius of 0.33 AU, the density is
n̄ � 7 × 1014 cm−3, the surface density is Σ̄ � 5275 g cm−2, the
height is H̄ = 4.6 × 1012 cm and the temperature is �925 K.
In a more recent analysis of the disk around BP Tau, Dutrey
et al. (2003) found densities and temperature corresponding to
a value of n̄ � 3 × 1014 cm−3, Σ̄ � 992 g cm−2, H̄ = 1011 cm
and T̄ = 289 K. The difference between these figures and the
figures of DM Tau provide an illustration of the error bars asso-
ciated with our “typical values”, since the disk around BP Tau
seems much smaller, and corresponds to a more evolved stage
than the disk around DM Tau.

2.8.1. Ionization state

It is interesting to study the ionization state of the disk with
temperature and density observed in DM Tau. The ionization
fraction is plotted as a function of radius in Fig. 3 for the ther-
mal and X-ray contribution. One sees that the thermal contri-
bution dominates at r < 1 AU, while the X-ray contribution be-
comes important at larger radii. However, comparing with the
limiting ionization state Eq. (33), one sees that only the outer
part of the disk r > 100 AU is sufficiently ionized to influence
the molecular viscosity.
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Table 1. Observational parameters for T Tauri stars (from Bouvier 1990; Hartmann et al. 1998) and for FU Ori stars (from Popham et al. 1996)
considered in this study (left) and disk physical parameters (right). The computation of the corotation radius requires the knowledge of the
stellar rotation velocity. In case this last quantity is not available, the corotation radius has been set to 10.05 R
, the solar value. Lower and
upper bound on Ṁ0 and Re have been computed using either the star radius or the corotation radius for ri. Accretion rates are in M
 yr−1.

input parameters output parameters

Mass Radius Coro. radius Disk outer edge Accr. rate Eff. rates Reynolds num.
Star M/M
 r∗/R
 rcoro/R
 ro/1000 AU log Ṁ log Ṁ0(r∗) log Ṁ0(rcoro) log Re∗ log Recoro

AA Tau 0.53 1.74 13.81 1 –8.48 –4.39 –3.67 13.53 12.55
BP Tau 1.32 1.99 17.79 1 –7.54 –2.87 –2.10 13.27 12.24
CY Tau 0.42 1.63 10.05 1 –8.12 –4.17 –3.54 13.61 12.74
DE Tau 0.25 2.45 10.05 1 –7.58 –4.00 –3.52 13.54 12.85
DF Tau 0.27 3.37 11.29 1 –6.91 –3.31 –2.90 13.39 12.78
DK Tau 0.43 2.49 10.05 1 –7.42 –3.49 –3.01 13.42 12.73
DN Tau 0.38 2.09 10.03 1 –8.46 –4.60 –4.06 13.52 12.76
DO Tau 0.37 2.25 10.05 1 –6.84 –3.00 –2.48 13.50 12.77
DQ Tau 0.44 1.79 10.05 1 –9.40 –5.43 –4.83 13.56 12.73
DS Tau 0.87 1.36 10.05 1 –7.89 –3.45 –2.76 13.53 12.58
GG Tau 0.44 2.31 10.05 1 –7.76 –3.81 –3.30 13.45 12.73
GI Tau 0.71 1.48 10.05 1 –8.02 –3.72 –3.06 13.53 12.63
GK Tau 0.46 2.15 10.05 1 –8.19 –4.21 –3.67 13.47 12.72
GM Aur 0.52 1.78 10.05 1 –8.02 –3.95 –3.34 13.52 12.69
HN Tau 0.81 0.76 10.05 1 –8.89 –4.45 –3.55 13.80 12.60
IP Tau 0.52 1.44 10.05 1 –9.10 –5.00 –4.33 13.62 12.69

UY Tau 0.42 2.60 10.05 1 –7.18 –3.27 –2.80 13.41 12.74
CI Tau 0.5 1.87 10.05 1 –7.19 –3.14 –2.56 13.51 12.70
CX Tau 0.33 1.63 10.05 1 –8.97 –5.18 –4.55 13.66 12.79
CZ Tau 0.41 1.19 10.05 1 –9.35 –5.39 –4.65 13.75 12.74
DM Tau 0.43 1.39 10.05 1 –7.95 –3.97 –3.29 13.67 12.73
DD Tau 0.42 1.44 10.05 1 –8.39 –4.43 –3.76 13.66 12.74
DH Tau 0.38 1.67 11.33 1 –8.30 –4.42 –3.76 13.62 12.71
DI Tau 0.43 1.71 12.56 1 –8.75 –4.79 –4.01 13.58 12.64
DP Tau 0.46 1.44 10.05 1 –7.88 –3.86 –3.19 13.64 12.72
FM Tau 0.58 1.17 10.05 1 –8.45 –4.26 –3.52 13.68 12.67
FO Tau 0.33 1.59 10.05 1 –7.50 –3.71 –3.07 13.67 12.79
FQ Tau 0.35 1.42 10.05 1 –6.45 –2.61 –1.93 13.71 12.78
FS Tau 0.46 1.25 10.05 1 –8.09 –4.06 –3.34 13.70 12.72
FV Tau 0.71 1.87 10.05 1 –6.23 –1.95 –1.37 13.44 12.63
FX Tau 0.34 1.94 10.05 1 –8.65 –4.86 –4.28 13.58 12.79
FY Tau 0.50 1.87 10.05 1 –7.41 –3.36 –2.78 13.51 12.70
GH Tau 0.29 1.90 10.05 1 –7.92 –4.23 –3.65 13.62 12.82
GO Tau 0.50 1.40 10.05 1 –7.93 –3.86 –3.17 13.64 12.70

Haro 6-37 0.60 1.90 10.05 1 –7.00 –2.83 –2.26 13.46 12.66
HO Tau 0.56 0.94 10.05 1 –8.86 –4.68 –3.86 13.79 12.68
IQ Tau 0.35 2.01 10.05 1 –7.55 –3.74 –3.18 13.56 12.78

LkCa 15 0.81 1.53 10.05 1 –8.87 –4.49 –3.84 13.49 12.60
Lk Ha 332/G1 0.29 2.36 10.05 1 –6.60 –2.93 –2.43 13.53 12.82

V955 Tau 0.44 2.34 10.05 1 –7.02 –3.07 –2.57 13.44 12.73

V1057 Cygni 0.50 1.60 13.53 0.005 –4.00 –0.86 –0.12 14.73 13.72
FU Ori 0.70 1.20 15.83 0.005 –3.70 –0.31 –0.58 14.78 13.58

2.9. Regimes

The previous scaling allows for an estimate of the disk control
parameter, and, therefore, for an identification of the possible
regimes. A difficulty with respect to the laboratory experiment

is that in disks, the transport coefficients vary over across the
disk due to the radial stratification. To define the control param-
eter, one must pick a typical value. In this context, it is logical
to consider their value at r = r̄, since both the typical shear and
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Fig. 3. Midplane ionization fraction due to thermal contribution (dot-
dashed line) and X-ray contribution (dot-dotted line). The solid line is
the limiting ionization fraction, below which the ionization does not
influence molecular transport. The shaded area is the region where
ionization has to be taken into account in the computation of the
viscosity.

radii at this location have been used. Using the values given in
the previous section, we then obtain:

Re = 2 × 1025

(
M
M


)1/2 ( n̄
7 × 1014 cm−3

) ( T̄
930 K

)−1/2

×
( ri

1011 cm

)−4/3 ( ro

103 AU

)−2/3

RΩ = −4
3
,

Rr = −3
2
,

Pr = 1,

Pm = 2 × 10−8,

Γ = 0.94. (37)

The value of the rotation number indicates that the flow is anti-
cyclonic and belongs to the “globally sub-critical” class defined
in Dubrulle et al. (2004). The radial Reynolds number is nega-
tive, indicating an inward radial circulation. Its value is close to
unity. So its influence on transport properties can be neglected
as a first approximation, see Dubrulle et al. (2004). The curva-
ture number depends on the interpretation of the viscous time
scale (see Sect. 2.9.2). In the case where the interpretation is
done with the molecular viscosity, one finds RC = 0.0004, that
is, disks are in the wide gap limit. In the other limiting case
where the viscous time scale is computed using the turbulent
viscosity, one finds RC = 1 − Γ, that is, disks are in the small
gap limit. The relevant Reynolds parameter to be considered
in studying transport properties will be ReR2

C = S̄ r̄2/ν, see
Dubrulle et al. (2004). Finally, the aspect ratio is less than one.
From the review of Dubrulle et al, we infer that an additional
correction Γ2 must be included in the definition of the relevant

Reynolds parameter, which becomes:

Rephys = Re(RCΓ)2 =
S̄ H̄2

ν
,

= 3 × 1013

(
M∗
M


)−1/2 ( n̄
7 × 1014 cm−3

)

×
(

T̄
930 K

)1/2 ( rin

1011 cm

)−1 ( ro

103 AU

)−1/2
· (38)

This is the expression one would naturally derive by con-
sidering the “smallest” length scale in the problem, see e.g.
Longaretti (2003).

3. Predictions about the structure of circumstellar
disks

3.1. Stability: The laminar/turbulent transition

The stability properties of circumstellar disks can be found
by comparing the physical Reynolds number Rephys with crit-
ical Reynolds numbers derived in laboratory experiments, in
the anti-cyclonic non-linear regime. These measurements are
summarized in Dubrulle et al. (2004). Disregarding any body
forces, one finds a critical Reynolds number of the order
of 2300, well below the disk value. Taking into account the
possible stable vertical stratification observed e.g. in DM Tau
(Dartois et al. 2003)2, one obtains a slightly larger value of the
order of 4000 (Dubrulle et al. 2005). The presence of a vertical
magnetic field may increase the critical Reynolds number, due
to the low magnetic Prandtl number prevailing in disks. Using
the scaling of Willis & Barenghi (2002), one finds a critical
Reynolds number Rec ∼ 100/Pm = 1010. This is still well be-
low the observed Reynolds number. These numbers lead us to
conclude that the disk is turbulent.

However, due to the huge variation of the transport coef-
ficients across the disk, one may wonder how strong this con-
clusion is. A way to answer this question is to see how locally
in the disk, the stability criterion are satisfied using a “local”
non-dimensionalized parameter, built by replacing r̄ by r the
distance to the central object. The result of this procedure is
plotted in Fig. 4. One sees that at any radius, such an effec-
tive local Reynolds number is well above any critical Reynolds
number due to body forces. This strengthens our conclusion.

3.2. Mean energy dissipation and accretion rate

3.2.1. Definition

The quantitative comparison between experimental measure-
ments and energy dissipated in circumstellar disks first requires
a relation linking the torque and the disk luminosityL. The to-
tal power dissipated in a Taylor-Couette experiment with same
control parameter as in a Keplerian disk is

ε = ν̄2Σ̄
S̄ G
4
=

G

4Re2
phys

Σ̄S̄ 3H̄4, (39)

2 This may be due to disk illumination by the central star (D’Alessio
et al. 1998).
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Fig. 4. Physical local Reynolds number in circumstellar disks as a
function of radius (dotted-line with symbols). The dashed-dotted line
and the full line are the critical Reynolds number deduced from labo-
ratory experiments, see Dubrulle et al. (2004).

where Σ̄ is the disk surface density, G the non-dimensional
torque and ν̄ the viscosity. In a stationary disk, this power is
dissipated under the form of heat, and thus coincides with the
disk luminosity, that is

L = ε. (40)

In practice, observed luminosities are often expressed as a func-
tion of an “effective mass accretion rate”, namely (Hartmann
et al. 1998)

Ṁ =
0.8r∗L
GM

· (41)

From a theoretical point of view, the detailed computation
of the accretion luminosity is not straightforward since it de-
pends on the boundary conditions at the interaction radius. For
comparison with experimental data, we therefore consider the
quantity:

G

Re2
phys

=
Ṁ

Ṁ0
, (42)

where Ṁ0 is an effective accretion rate given by

Ṁ0 = Σ̄r∗r̄Ω̄
(

H̄
r̄

)4

· (43)

The quantity G/Re2
phys (the non-dimensional energy dissipa-

tion), includes all the boundary condition dependence and only
depends on the Reynolds number.

3.2.2. Prediction using laboratory experiments

The results of Dubrulle et al. (2004) lead to an analytical pre-
diction for the function Ṁ/Ṁ0 = f (RΩ)Gi/Re2

phys, where f (RΩ)
is a function parameterizing the influence of rotation, and Gi is
the torque in situation when only the inner cylinder is rotat-
ing. From the experiments, we infer f (RΩ) ∼ 0.1 if the flow

is turbulent, and 1 is the flow is laminar. Taking the wide gap
limit ri � ro, R2

CRe = Rephys in the formulae of Dubrulle et al.
(2004), we obtain three possible regimes:

– in the laminar regime, for Rephys ≤ 2300

Ṁ

Ṁ0
=

2π
Rephys

· (44)

– for smooth boundary conditions and Rephys > 2300

Ṁ

Ṁ0
|smooth = 0.06

[
ln

(
3 × 10−4 Re2

phys

)]−3/2
. (45)

– for rough boundary conditions and Rephys > 2300

Ṁ

Ṁ0
|rough = 1.9 × 10−2. (46)

In the other limit ri → ro, the turbulent value follows a similar
expression, but must be multiplied by a factor 1/3(1 − Γ)3/2.
In astrophysical disks, the boundary conditions are not known
a priori. Moreover, given the huge physical difference between
the inner part and the outer part, it is unlikely that the bound-
ary conditions at the inner and outer part coincide, so that we
are probably more in a state of “mixed” boundary conditions
studied experimentally by Van den Berg et al. (2003). In that
case, the energy dissipation is found to vary between the two
limits set by respectively the “pure” smooth type (45) and the
pure “rough” type (46), see Dubrulle et al. (2004). We shall
therefore adopt these formulae as a lower and upper limit of
the energy dissipation in disks.

3.2.3. Test against observational data

We find the following scaling for Ṁ0:

Ṁ0 � 3 × 10−5

(
Σ̄

5300 g cm−2

) (
M
M


)−3/2 ( r∗
1011 cm

)

×
( ri

1011 cm

)−0.8 ( ro

103 AU

)−0.4
(

T̄
930 K

)2

M
 /yr.

(47)

We are aware that these values are probably uncertain by a fac-
tor of 10 or even more. In the next decade, the results expected
with ALMA will greatly reduce the error bars.

At Re = 3 × 1013, our model (Eqs. (45) and (46) predicts
that 0.0002 < Ṁ/Ṁ0 < 0.019, resulting in 6 × 10−9 < Ṁ <
6 × 10−7 M
 yr−1 for T Tauri stars. This is in good agree-
ment with the observed values ranging from Ṁ = 10−10 to
10−6 M
 yr−1 (Hartmann et al. 1998). Disks around FU Ori are
characterized by a smaller disk radius, leading to higher val-
ues of Ṁ according to Eq. (47), by a factor 5. This is not quite
enough to reach values of up to 10−5 M
 yr−1, associated with
disks around FU Ori stars (Kenyon 1994). Such values could
be obtained if the typical disk density is higher in disk around
FU Ori, resulting in more massive disks. This is plausible, since
FU Ori stars are younger than T-Tauri stars.

A graphical representation of this discussion can be ob-
tained by plotting the computed Ṁ/Ṁ0 as a function of Rephys
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Fig. 5. Comparison between the non-dimensional energy dissipation
predicted from laboratory measurements in the wide gap limit (dot-
ted lines) or in the small gap limit (plain lines) and observed in circum-
stellar disks (symbols), as a function of the Reynolds number Rephys.
For an easier comparison, the mean energy dissipation has been trans-
lated into the non-dimensional accretion rate Ṁ/Ṁ0 (computed us-
ing Eq. (45) and observationally determined parameters reported in
Table 1). The symbols � report the value using ri = rcoro, which pro-
vides an upper bound of the energy dissipation. The circles report the
value using ri = r∗, which provides the lower bound of the energy
dissipation. All the quantities have been computed using temperature
and density estimated for the DM Tau system using the results of
Guilloteau & Dutrey (1998), so there is no adjustable parameter in
this plot.

using the values listed in Table 1 as input parameters. To re-
move the problem of our ignorance of the actual value of ri,
we have used the relation r∗ ≤ ri ≤ rcoro and computed the
corresponding Ṁ/Ṁ0 and Rephys. The actual dissipation lies in
between the two corresponding estimates. These estimates are
plotted in Fig. 5. For comparison, we have added the theoret-
ical predictions (Eqs. (45) and (46)) giving the minimum and
the maximum expected values in the turbulent case, as well as
the laminar value. This last value is very much lower than the
turbulent values, and is never even nearly approached by any
stars we considered. This may be seen as a proof of the turbu-
lent character of these disks.

We also see that energy dissipation for disks around T Tauri
stars has a tendency to cluster between the minimal and maxi-
mal values allowed by the theoretical predictions. The relative
position of the cluster of points is slightly better in the case
where ri is computed with rcorot, which may be an indication
that ri is actually closer to the corotation radius than to the
star radius. However, given the error bars stressed above, this is
probably not enough to conclude that disks around T Tauri stars
are connected through a magneto-sphere, rather than through a
boundary layer. In the case of FU Ori, the points are clearly
above the maximum allowed by our choice of parameters. The
discrepancy is slightly lower for the case when ri = r∗, a choice
which should probably be favored by the possible signatures of
boundary layer in these objects (Kenyon 1994). In that case, an

increase of the surface density by a factor 10 with respect to
our values would be enough to solve the discrepancy.

Our estimate neglects the influence of the magnetic field.
Laboratory experiments using liquid metals have proved that
this can potentially change the intensity of the transport with
respect to the pure hydro-dynamical case. However, no experi-
ment has been performed so far to study the magnetic influence
in regimes relevant to astrophysical disks.

3.3. Turbulent viscosity

The turbulent viscosity in circumstellar disks can be predicted
by comparison with laboratory measurements, see Dubrulle
et al. (2004). We find:

νt =
1

2π
τlam

τ̄

G

Re2
phys

|S̄ |H̄2, (48)

where τ = ΣS is proportional to the angular momentum, and
the index lam means laminar value. The ratio τlam/τ is a func-
tion describing the radial variation of the turbulent transport. In
an incompressible laboratory flow with constant density, this
function is the ratio of the laminar shear profile to the turbulent
shear profile: the turbulence regulates itself through a modifica-
tion of the velocity profile. In Keplerian disks, the shear profile
is fixed (through the gravitational force), and the regulation op-
erates through the density. This function has been measured in a
number of laboratory experiments. At large Reynolds number,
it seems to approach a constant value of 4 predicted by Busse
(1970) using the argument of maximal momentum transport.
With |S̄ | = 1.5Ω and G/Re2

phys = Ṁ/Ṁ0, this defines a result-
ing typical turbulent viscosity as:

ν̄t =
3
π

Ṁ

Ṁ0
Ω̄H̄2. (49)

This turbulent viscosity takes the shape of an α viscosity, pro-
posed by Shakura & Sunyaev (1973). The corresponding α
coefficient here is a function of the Reynolds number of the
circumstellar disk (through Eqs. (45) and (46)). At Rephys =

3 × 1013, its value is typically 2 × 10−4 < α < 2 × 10−2. This
range is in good agreement with the range of values inferred
from the D/H ratio in the Solar System (Drouart et al. 1999;
Hersant et al. 2001). More generally, this range is compatible
with the disk lifetime and the values usually adopted in theo-
ries. Using this expression for the turbulent viscosity, the vis-
cous timescale is:

tν =
π

3
Ṁ0

Ṁ

( r
H

)2 1

Ω̄
· (50)

3.4. Energy fluctuations

Up to now, we have considered only the mean energy dis-
sipation and its luminous counterpart, but we can also ob-
tain interesting information from the luminosity fluctuations
which reflect the dynamics of the underlying turbulent flow.
In laboratory experiments with smooth boundary conditions,
turbulent fluctuations are observed to follow a universal
(i.e. Reynolds number-independent), log-normal distribution
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Fig. 7. Distribution of luminosity fluctuations observed disk around
V1057 Cyg (symbols) compared with a log-normal distribution of
variance ∆ = 0.03 (plain line).

(Lathrop et al. 1992) with variance ∆ = 0.042. The uni-
versal distribution occurs for variables normalized by their
mean. Energy dissipation is proportional to the wall shear stress
squared. Since the functional shape of the log-normal distribu-
tion is unchanged by squaring, the distribution of energy dis-
sipation should also be log-normal. To check this prediction,
we have computed the distribution of the luminosity fluctua-
tions observed from the disk around BP Tau and from the disk
around V1057 Cygni. The results are shown in Figs. 6 and 7.
One sees that the fluctuations in the disk around V1057 Cyg
are very well fitted by a log-normal distribution, with a vari-
ance similar to that of laboratory experiments. In the case of BP
Tau, however, the comparison is not as good. This difference
between the two systems may be traced to different boundary
conditions. If we accept that disks around T Tauri stars follow
the magnetospheric accretion scenario, while the disk around
FU Ori is connected to the star through a boundary layer, it
may not be surprising that only the disk around FU Ori follows
the laboratory, smooth boundary condition distribution. Since
we do not have any measurements for rough boundary condi-
tions, we cannot say whether the discrepancy comes from the
different boundary conditions, or from the presence of other
physical effects, like accretion shock or a magnetic field.

3.5. Velocity fluctuations

Laboratory measurements provide interesting clues about the
intensity of velocity fluctuations. Since such fluctuations may
be potentially observable in disks using non-thermal line
widening, they may be used as additional constraints or ob-
servational tests of the analogy between laboratory flows and
circumstellar disks. From results of Dubrulle et al. (2004),
it appears that azimuthal velocity fluctuations should be pro-
portional to the mean azimuthal velocity, with a proportion-
ality factor depending weakly on the Reynolds number, like
0.03(Re/Rec)−0.125. With Rephys = 3 × 1013 and Rec = 108 (see
Sect. 3.1), the factor is of the order of 0.01. Using Eq. (10),
we can compute the azimuthal velocity dispersion for a typi-
cal circumstellar disk around a T Tauri. The azimuthal velocity
dispersion decreases from about 0.6 km s−1 in the inner part,
to 0.03 km s−1 in the outer part, at 100 AU The total veloc-
ity dispersion depends on the anisotropy of the turbulence. In
laboratory experiments, the radial relative velocity dispersion
is observed to be about twice the azimuthal velocity disper-
sion. There was no measure of the vertical velocity dispersion,
but it can be expected to be much smaller than the horizontal
dispersion due to the rotation-induced anisotropy (Dubrulle &
Valdettaro 1992).

The velocity dispersion in disks has been measured by
Guilloteau & Dutrey (1998) at r > 100 AU They obtain a value
of the order of 0.1 km s−1, which would correspond to a value
of about 0.05 km s−1 for the azimuthal component. This is close
to the values found from comparison with laboratory flows.

4. Summary

In this paper, we have derived and studied the analogy between
circumstellar disks and the Taylor-Couette flow. This analogy
results in a number of parameter-free predictions about stability
of the disks, and their turbulent transport properties, provided
an estimate of the disk structure is available. We have proposed
to get this estimate from interferometric observations of cir-
cumstellar disks, and checked that the energy dissipation, the
turbulent transport, and the fluctuations in circumstellar disks
all follow behavior compatible with the prediction from the
analogy. This check can first be used as a clear proof of the
turbulent character of circumstellar disks. A second interesting
application would be to build from this analogy a parameter-
free model of circumstellar disks. In this respect, the propor-
tionality between the turbulent viscosity and the so-called “ac-
cretion rate” (a quantity easily accessible by observation) is
very interesting because it opens the possibility to infer the
disk structure from the observation of its luminosity. For this,
a model has to be built linking the turbulent transport and the
disk structure. This is the subject of ongoing work.

We note finally that our model could also possibly apply to
other types of disks (e.g. around black holes, or in close bina-
ries) given minor adaptations.
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