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 where the switch between RANS and LES zones is set dynamically by the model itself.

Introduction

During the ascent of a space launcher, the propulsive jets present supersonic multi-species reactive mixing layers with the external flow. These interactions occurring in the afterbody area of the launcher influence the base drag of the vehicle through a suction effect, the pressure fluctuations levels on the nozzle(s) with noise generation and the base and nozzle(s) temperature due to hot propulsive gas convection [START_REF] Gusman | Best practices for CFD simulations of launch vehicle ascent with plumes-overflow perspective[END_REF]. When designing a space launcher, minimizing drag and unsteady loads while providing an optimal thermal protection ensuring the integrity of components with a small amount of added mass constitutes a major challenge [START_REF] Mahjub | Design optimization of solid rocket propulsion: A survey of recent advancements[END_REF]. Thus, the study of these mixing layers and the improvement of their numerical characterization [START_REF] Mehta | Base heating sensitivity study for a 4-cluster rocket motor configuration in supersonic freestream[END_REF][START_REF] Stephan | Propulsive jet influence on generic launcher base flow[END_REF] is of primary interest for space agencies. The physics of compressible supersonic reactive mixing layers and their numerical modelling have been widely studied for scramjet applications as reviewed in [START_REF] Drummond | Methods for prediction of high-speed reacting flows in aerospace propulsion[END_REF]. For these applications, the 10 interactions between fluid dynamics and chemistry are very important in order to control the combustion process. Prior to the consideration of chemistry effects, an important challenge is to perform an accurate 1 pierre-elie.weiss@onera.fr modelling of turbulent inert gas mixing [START_REF] Zilberter | Large-Eddy Simulation/Reynolds-averaged Navier-Stokes Simulations of High-Speed Mixing Processes[END_REF][START_REF] Brinckman | Improved methodology for RANS modeling of high-speed turbulent scalar mixing[END_REF]. Furthermore, the influence of chemical reactions on space launcher aerodynamics can be small (on base pressure for instance [START_REF] Mehta | Base heating sensitivity study for a 4-cluster rocket motor configuration in supersonic freestream[END_REF]) while the computational cost can increase significantly between an inert and a reactive jet simulation [START_REF] Ferrer | A detailed verification procedure for compressible reactive multicomponent Navier-Stokes solvers[END_REF].

This article is thus focused on the development of an inert bi-species scale-resolving numerical workflow, intended for space launcher aerodynamics, which aims to simulate the turbulent supersonic mixing of two inert gases. To this end, some issues concerning the modelling of turbulent mass diffusion together with the numerical spatial scheme requirements for supersonic shear flows are first briefly reviewed in the following.

Review of turbulent mass diffusion modelling techniques

When using a scale separating formulation (RANS, RANS/LES or LES [START_REF] Sagaut | Multiscale and multiresolution approaches in turbulence-LES[END_REF]) for a binary gas flow, the influence of unresolved turbulent structures on momentum, energy and mass transport equations has to be modelled. As a turbulent viscosity µ t is often used for the momentum turbulent diffusion, a common choice in the literature [START_REF] Albouze | Simulation aux grandes échelles des écoulements réactifs non prémélangés[END_REF][START_REF] Sainte-Rose | Simulations numériques d'écoulements réactifs massivement décollés par une approche hybride RANS/LES[END_REF] is to define a turbulent Prandtl number P r t to evaluate the turbulent heat diffusion coefficient λ t and a turbulent Schmidt number Sc t to compute the turbulent mass diffusion coefficient D t :

λ t = µ t c p P r t ; D t = µ t ρSc t . (1) 
with c p the constant pressure heat capacity and ρ the fluid density. The idea is to empirically define, thanks to wind-tunnel experiments and advanced numerical simulations, adequate values for these two dimensionless numbers. In practice however, the values for these numbers have been found to vary significantly between flow configurations and even between the different stages of a mixing layer [START_REF] Kozusko | The structure of variable property, compressible mixing layers in binary gas mixtures[END_REF][START_REF] Davidenko | Numerical modeling of inert and reacting compressible turbulent jets[END_REF]. Several conclusions on the use of these numbers for numerical simulations of supersonic mixing layers are summarized from the literature below.

First, results obtained with RANS computations appear to dramatically depend on the constant values set for turbulent Prandtl and Schmidt numbers [START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF][START_REF] Reynaud | Towards binary gas mixture ZDES for space launcher base flow prediction[END_REF]. For a defined flow configuration, these values can nevertheless often be adequately tuned a posteriori to produce satisfying results [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF][START_REF] Dharavath | Numerical exploration of dissimilar supersonic coaxial jets mixing[END_REF][START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF]. Improved RANS models enabling the spatio-temporal variations of Sc t and P r t have been developed to reduce this sensitivity [START_REF] Zilberter | Large-Eddy Simulation/Reynolds-averaged Navier-Stokes Simulations of High-Speed Mixing Processes[END_REF][START_REF] Brinckman | Improved methodology for RANS modeling of high-speed turbulent scalar mixing[END_REF]. However, these models still exhibit case-dependent behaviours and cause an increase of computational costs due to added transport equations. For inert gas mixing simulations, this additional computational cost is not always justified when comparing results with computations using constant Sc t and P r t [START_REF] Hoste | Study of a supersonic reacting wall jet with a variable turbulent Prandtl and Schmidt number approach[END_REF].

RANS/LES computations of supersonic mixing layers have provided results almost independent of the choice of constant values for Sc t and P r t and generally in better agreement with wind tunnel measurements than classical RANS computations [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF][START_REF] Reynaud | Towards binary gas mixture ZDES for space launcher base flow prediction[END_REF]. However, with standard RANS/LES formulations, several studies have found an underestimation of turbulent mixing between the two streams, that is to say an undervaluation of the diffusion of the central gas for coaxial configurations [START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF][START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF][START_REF] Cocks | DDES of a supersonic coaxial helium jet[END_REF]. These discrepancies may be attributed to a possible delay in the formation of resolved turbulent structures in the switching area between attached boundary layers treated in RANS and mixing layers treated in LES mode [START_REF] Deck | Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation[END_REF]. To overcome this difficulty, some authors have tried to enhance the destruction of the subgrid-scale viscosity by tuning model constants [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF] or by using an improved subgrid length-scale [START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF], both studies report a noticeable overestimation of turbulent mixing with those solutions. The introduction of turbulent content in the attached boundary layers is then mentioned as a possible solution to reproduce a realistic turbulent mixing between the two flows. Such a method has been used in [START_REF] Cocks | DDES of a supersonic coaxial helium jet[END_REF]. However, these authors also report a strong overestimation of turbulent mixing which is attributed to the settings of turbulence generation and to the use of a too dissipative numerical scheme. Another attempt to improve RANS/LES prediction for supersonic coaxial jet was proposed in [START_REF] Charrier | Hybrid RANS/LES simulation of a supersonic coaxial he/air jet experiment at various turbulent lewis numbers[END_REF] with the use of a variable Sc t /P r t model. Such an approach led to an overestimation of turbulent mixing for locations after 10 center jet diameters.

1.2. Numerical strategy for RANS/LES computations of supersonic bi-species mixing layers

The choice of the numerical methods has a dramatic influence on the accuracy of RANS/LES computations of supersonic bi-species mixing layers. Two main opposite issues have to be dealt with. On the one hand, the numerical dissipation of the methods has to be as low as possible in order to enable the onset of resolved turbulent content in the early stages of the mixing layer [START_REF] Simon | Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations of supersonic base flow[END_REF], to resolve accurately the large turbulent eddies driving the mixing between the two fluids [START_REF] Roshko | Structure of turbulent shear flows: a new look[END_REF] and to properly convect the turbulent structures from the attached boundary layers when they are resolved. Among others, Simon et al. [START_REF] Simon | Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations of supersonic base flow[END_REF] have shown that the dissipation level of the spatial numerical scheme influences the size of the resolved turbulent scales and the time averaged properties of an axisymmetric mixing layer. On the other hand, as shock structures arise from the interaction between the two supersonic flows, the numerical methods have to be robust enough near these structures in order to capture discontinuities without triggering numerical instabilities [START_REF] Bogey | A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations[END_REF].

In order to contribute to the development of advanced numerical methods for bi-species supersonic mixing layers, two bi-species ZDES [START_REF] Deck | Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation[END_REF] computations are performed in this study on a well-known supersonic coaxial jets experiment run by Cutler et al. [START_REF] Cutler | Supersonic coaxial jet experiment for computational fluid dynamics code validation[END_REF][START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF] and reproduced numerically by several authors in the past with RANS [START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF][START_REF] Dharavath | Numerical exploration of dissimilar supersonic coaxial jets mixing[END_REF] or RANS/LES formulations [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF][START_REF] Charrier | Hybrid RANS/LES simulation of a supersonic coaxial he/air jet experiment at various turbulent lewis numbers[END_REF][START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF][START_REF] Cocks | DDES of a supersonic coaxial helium jet[END_REF]. To meet the numerical challenges described above, the computations are run with an original hybrid numerical scheme [START_REF] Reynaud | Numerical workflow for scale-resolving computations of space launcher afterbody flows with and without jets[END_REF] based on Ducros's sensor [START_REF] Ducros | Large-eddy simulation of the shock/turbulence interaction[END_REF] associated to a low dissipation version of the AUSM scheme [START_REF] Liou | A sequel to AUSM: AUSM+[END_REF][START_REF] Mary | Large Eddy Simulation of Flow Around an Airfoil Near Stall[END_REF]. This new scheme is able to switch automatically from a low-dissipation formulation in presence of vortical structures to a more robust formulation in presence of shock waves (see Sec. [START_REF] Dormieux | Numerical simulation of transverse jet flows by a nonreactive two species multidomain euler flow solver[END_REF] from mono-species to bi-species ZDES computations. The developments needed for such an extension are detailed in Sec.3.

Organization of the paper

The paper is organized as follows: The salient features of the physical modelling of the bi-species framework for compressible turbulent flows are firstly reminded in Section 2. The discretized form of these models is then thoroughly detailed in Section 3. Further practical details regarding the numerical implementation of the implicit convective and diffusive fluxes are provided in appendices A and B. The test case and the meshing strategy are presented in Section 4 and this new framework is finally exercised and compared with the experiments and numerical computations published in the literature in Section 5.

Governing equations

To describe an inert bi-species perfect gas flow, one can use the general conservative form of scale separated (averaged or filtered) Navier-Stokes equations:

∂w c ∂t + div(F) = div(G) (2) 
w c = t (ρ 1 , ρ 2 , ρV, ρE) denotes the vector of conserved quantities, containing 6 variables against 5 in a monospecies case. ρ 1 et ρ 2 are the two gases densities and ρ is the density of the mixture. V = t (u, v, w) is the velocity vector of the flow and E represents the mixture total energy. F and G are the convection and diffusion terms:

F = t (ρ 1 V, ρ 2 V, ρV ⊗ V + P I, (ρE + P )V) (3) 
G = t (J * 1 , J * 2 , τ * , τ * .V -q * -J * E ) (4) 
With P the mixture pressure, J * i = J i + J ti the total mass flux of the ith species with J i the laminar mass flux and J ti the unresolved turbulent mass flux , q * = q + q t the total heat flux with q the laminar heat flux and q t the unresolved turbulent heat flux, J * E the total energy flux. τ * is the combination of the viscous stress and the unresolved turbulent stress tensors:

τ * ij = 2(µ + µ t )(S ij - 1 3 δ ij S ii ) i, j = 1..3 (5) 
S ij = 1 2 ( ∂u i ∂x j + ∂u j ∂x i ) i, j = 1..3 (6) 
with µ being the molecular viscosity and µ t being the turbulent eddy (resp. subgrid scale) viscosity which is provided by the underlying RANS (resp. subgrid scale) model.

Thermodynamic Properties

Several equations describing the thermodynamic properties of the two calorically perfect gases and the transport properties of the flow are needed to close the governing equations. First, the density of the mixture is defined as:

ρ = ρ 1 + ρ 2 = ρ(Y 1 + Y 2 ) (7) 
with Y i the mass fraction of the ith species. As a consequence of this definition, one can note that:

Y 1 + Y 2 = 1 and ∇Y 1 = -∇Y 2 (8) 
The thermodynamic properties for each of the two gases (i=1,2) are defined as:

γ i = c pi c vi , c pi -c vi = r i (9) 
c pi et c vi being the constant pressure and the constant volume heat capacities, γ i the specific heat ratio and r i the specific gas constant. Supposing a thermal equilibrium between the two gases, the internal energy e i and the specific enthalpy h i are defined as:

e i = c vi T , h i = c pi T = γ i e i = e i + P i ρ i (10) 
Those quantities being extensive properties, one deduces:

ρe = ρ 1 e 1 + ρ 2 e 2 = ρ(Y 1 c v1 + Y 2 c v2 )T (11) ρh = ρ 1 h 1 + ρ 2 h 2 = ρ(Y 1 c p1 + Y 2 c p2 )T (12) 
Thus, for the mixture, one can define:

c v = Y 1 c v1 + Y 2 c v2 , c p = Y 1 c p1 + Y 2 c p2 (13) 
γ = c p c v = Y 1 γ 1 c v1 + Y 2 γ 2 c v2 Y 1 c v1 + Y 2 c v2 , r = c p -c v = Y 1 r 1 + Y 2 r 2 (14) 
Then, using Dalton's Law for calorically perfect gas, we obtain the mixture pressure as the sum of both partial pressures and the equation of state for the mixture. We finally relate the internal energy to the pressure and express the mixture total energy.

P = P 1 + P 2 = (ρ 1 r 1 + ρ 2 r 2 )T = ρrT (15) 
P = ρr e c v = ρ(γ -1)e, ρE = ρe + 1 2 ρV 2 , ρH = ρh + 1 2 ρV 2 (16) 
With H being the total enthalpy of the mixture. Assuming Eq. 17, the hyperbolicity of the implicit system is preserved. Indeed, the Jacobian matrix of the convective fluxes displayed in appendix A (see Eq. A.1) can be diagonalized with the eigenvalues (V.n -a, V.n + a, V.n), the latter being quadrupled. This ensures the hyperbolicity of the convective set of equations (see Abgrall [START_REF] Abgrall | Généralisation du schéma de Roe pour le calcul d'écoulement de mélanges de gaz à concentrations variables[END_REF]) and enables to define the mixture speed of sound (with frozen gas composition): An acknowledged approximation for binary gas mixture is to define the viscosity as a weighted sum of the two species viscosity [START_REF] Sainte-Rose | Simulations numériques d'écoulements réactifs massivement décollés par une approche hybride RANS/LES[END_REF]:

a 2 = γP ρ ( 
µ = Y 1 µ 1 + Y 2 µ 2 (18) 
For each species, the molecular viscosity µ i is given by a Sutherland's law:

µ i (T ) = µ 0i T T 0i 3 2 T 0i + S i T + S i (19) 
The total viscosity can thus be defined as µ * = µ + µ t .

Energy Flux

The heat flux q is given by Fourier's law:

q = -λ∇T (20) 
A thermal conductivity is defined for each species thanks to a constant Prandtl number P r i and the thermal conductivity of the mixture is then estimated as a viscosity-weighted average of both conductivities [START_REF] Sainte-Rose | Simulations numériques d'écoulements réactifs massivement décollés par une approche hybride RANS/LES[END_REF]:

λ i = µ i c pi P r i , λ = µ( λ 1 µ 1 Y 1 + λ 2 µ 2 Y 2 ) ( 21 
)
To account for the effect of unresolved turbulence on heat transfer, the unresolved turbulent heat flux q t is modelled thanks to a turbulent Prandtl number defined for the mixture flow:

q t = -λ t ∇T, λ t = µ t c p P r t (22) 
The total thermal conductivity is then defined as λ * = λ + λ t . In a mixture, the energy flux is moreover related to the diffusion of enthalpy:

J * E = J * 1 h 1 + J * 2 h 2 (23) 

Mass Diffusion

To model laminar mass diffusion fluxes, the Hirschfelder-Curtis approximation [START_REF] Hirschfelder | Molecular theory of gases and liquids[END_REF] is considered as the most accurate first-order approximation available. For a binary gas mixture, it resumes to Fick's diffusion law [START_REF] Poinsot | Theoretical and Numerical Combustion[END_REF]:

J 1 = -ρD∇Y 1 , J 2 = -ρD∇Y 2 (24) 
where D = D 12 = D 21 denotes the mixture diffusion coefficient. This formulation traduces the tendency to balance mass fractions as the fluxes are opposed to mass fraction gradients. The mass conservation condition can be verified:

J 1 + J 2 = -ρD(∇Y 1 + ∇Y 2 ) = 0 ( 25 
)
The diffusion coefficient D may be derived from particle collision models and thermodynamic variables, it is known to vary as D ∼ T 3/2 P [START_REF] Williams | Combustion theory[END_REF]. For fluid mechanics problems with inert gases, a simplified model is usually chosen. D is defined thanks to the Schmidt Number Sc expressing a ratio between viscous and mass diffusions:

D = µ ρSc (26) 
A common hypothesis, with good experimental support [START_REF] Faghri | Advanced heat and mass transfer[END_REF][START_REF] Martinez | Mass diffusivity data, Thermal Data[END_REF], is to consider Sc constant for a pair of gases.

As for heat transfer, a turbulent diffusion coefficient is furthermore defined to compute J ti = -ρD t ∇Y i the unresolved turbulent mass fluxes. This coefficient is expressed thanks to a turbulent Schmidt number to form the total diffusion coefficient:

D t = µ t ρSc t , D * = D + D t (27) 
As explained in Sec.1.1, Sc and Sc t are usually defined empirically with wind tunnel experiments and numerical simulations.

Turbulence modelling using Zonal Detached Eddy Simulation (ZDES)

ZDES is a multiresolution approach developed by ONERA [START_REF] Deck | Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation[END_REF][START_REF] Deck | Zonal-Detached-Eddy Simulation of the flow around a high-lift configuration[END_REF] which aims at treating in a single model all classes of flow problems indicated in Fig 1 . In this approach, three specific hybrid length scale formulations (see Eq.( 28)) also called modes are optimized to be used on three typical flowfield topologies as illustrated in Fig 1 . In the frame of the Spalart-Allmaras model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], dZDES replaces the distance to the wall d w according to:

dZDES = dmode ∆, d w , U i,j , ν, ν, ∂ ν ∂n , ∂||ω|| ∂n (28) 
mode = 1, 2, 3 (29) 
with ∆ denoting the subgrid length scale entering dZDES that depends on the grid cell size, U i,j the velocity gradients, d w the distance to the wall, ||ω|| the magnitude of vorticity, ν and ν the kinematic and pseudo eddy viscosity as well as ∂ ν ∂n the derivative in the wall-normal direction. The definition of dZDES is not a minor adjustment in the DES framework since the modified lengthscales depend not only on the grid but also on the velocity and eddy viscosity fields and their wall-normal derivatives. ZDES takes full advantages of its zonal nature since complex configurations can be accurately treated by the use of various fomulations within the same calculation (an example is provided in [START_REF] Deck | Numerical investigation of the flow dynamics past a three-element aerofoil[END_REF]). This mode of the ZDES approach is designed to treat attached boundary layers in RANS mode and to automatically switch to a LES mode to treat detached flows.

Then, to evaluate the influence of turbulent content coming from the attached boundary layer on the mixing process and to demonstrate the abilities of the ZDES, the framework of the ZDES Mode 3 [START_REF] Deck | Zonal Detached Eddy Simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range 3 150 ≤ Re θ ≤ 14 000[END_REF][START_REF] Renard | Improvements in zonal detached eddy simulation for wall modeled large eddy simulation[END_REF] has been used to provide stimulated boundary layers (SBL) referred to as (ZDES C2). With ZDES mode 3, the inner part of the boundary layer is treated with RANS equations and the outer part is treated in LES mode.

The separation between both parts is given by a RANS/LES interface defined by the user as a fraction of the RANS boundary layer thickness, typically d interf ace w = 0.125δ(x). Example of WMLES (Wall Modelled LES) use of ZDES are given in [START_REF] Deck | Zonal Detached Eddy Simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range 3 150 ≤ Re θ ≤ 14 000[END_REF][START_REF] Vaquero | Advanced simulations of turbulent boundary layers under pressuregradient conditions[END_REF]. A more detailed description of the boundary layer treatments applied is given in Sec.4.2.

Numerical Methods

The FLU3M solver [START_REF] Guillen | Design of a 3D multidomain Euler code[END_REF] developed by ONERA is used to solve the compressible Navier-Stokes equations on multiblock structured grids. An implicit finite volume form of the governing equations (Eq.( 2)), based on Gear's second-order accurate time discretization, yields for a hexahedral cell centered in (i,j,k) with a volume

Ω ijk : 3 2 ∆ (wc) n+1,p+1 ijk + ∆t Ω ijk 6 l=1 ∂F(wc) ∂wc - ∂G(wc) ∂wc n+1,p ijk,l ∆(wc) n+1,p+1 ijk = 3 2 (wc) n ijk - 3 2 (wc) n+1,p ijk + 1 2 ∆ (wc) n ijk - ∆t Ω ijk 6 l=1 (F(wc) -G(wc)) n+1,p ijk,l (30) 
Where p is the index of inner iteration, n and n+1 represent consecutive iterations in time and ∆ (w c )

n+1 ijk = (w c ) n+1 ijk -(w c ) n ijk .
The inner iterations are used to ensure the Newton convergence process (w c ) n+1,p+1 -(w c ) n+1,p = ∆ (w c ) n+1,p+1 → 0 leading to (w c ) n+1 = (w c ) n+1,p+1 ≈ (w c ) n+1,p for the last inner iteration for which Eq. 30 becomes:

3 2 ∆ (wc) n+1 ijk - 1 2 ∆ (wc) n ijk + ∆t Ω ijk 6 l=1 (F(wc) -G(wc)) n ijk,l = - ∆t Ω ijk 6 l=1 ∂F(wc) ∂wc - ∂G(wc) ∂wc n ijk,l ∆(wc) n+1 ijk ( 31 
)
For each interface l associated to a normal vector n= t (n x , n y , n z ) and a surface ∆S ijk,l , the discrete convective and diffusive fluxes F and G are defined as:

F(wc) ijk,l =               ρ1(V.n) ρ2(V.n) ρu(V.n) + P nx ρv(V.n) + P ny ρw(V.n) + P nz (ρE + P )(V.n)               ijk,l .∆S ijk,l (32) 
G(wc) ijk,l =               J * 1 .n J * 2 .n τ * xx nx + τ * xy ny + τ * xz nz τ * xy nx + τ * yy ny + τ * yz nz τ * xz nx + τ * yz ny + τ * zz nz (τ * .V -q * + J * E ).n               ijk,l .∆S ijk,l (33) 
Based on previous works [START_REF] Abgrall | Généralisation du schéma de Roe pour le calcul d'écoulement de mélanges de gaz à concentrations variables[END_REF][START_REF] Dormieux | Numerical simulation of transverse jet flows by a nonreactive two species multidomain euler flow solver[END_REF], several numerical methods of the FLU3M solver have been enhanced in order to achieve RANS and ZDES implicit computations of viscous and turbulent bi-species flows. These adaptations concern numerical methods designed for convective fluxes (Sec. 3.1), explicit diffusion fluxes (Sec. 3.2), implicit treatment (Sec. 3.3), boundary conditions treatment (Sec. 3.4), dynamic forcing (Sec.

3.5) and post-processing methods (not detailed here, see [START_REF] Reynaud | Towards binary gas mixture ZDES for space launcher base flow prediction[END_REF]).

Explicit convective fluxes

In order to test different numerical strategies, we have adapted three mono-species schemes to bi-species flow: the AUSM+ [START_REF] Liou | A sequel to AUSM: AUSM+[END_REF], a robust upwind scheme, an adapted low-dissipative AUSM+(P) [START_REF] Mary | Large Eddy Simulation of Flow Around an Airfoil Near Stall[END_REF] (called here AUSM+(P) L-D) and a hybrid shock-capturing scheme combining the two previous AUSM type schemes to perform high-fidelity, scale-resolving simulations of compressible flows [START_REF] Reynaud | Numerical workflow for scale-resolving computations of space launcher afterbody flows with and without jets[END_REF].

AUSM+ 2S

The AUSM+ scheme has been proposed by Liou [START_REF] Liou | A sequel to AUSM: AUSM+[END_REF] for a mono-species flow, an adaptation to binary gas mixture (AUSM+ 2S) is presented here. The main idea here is to decompose the non-viscous fluxes F(w c ) between convective fluxes F (c) and acoustic fluxes P.

F(w c ) = F (c) + P (34) 
For a bi-species flow, these fluxes can be written as:

F (c) = M a. t (ρ 1 , ρ 2 , ρV, ρH), P = t (0, 0, P n x , P n y , P n z , 0) (35) 
assuming M= V.n a , a the speed of sound and H the total enthalpy, H = E + P ρ .

For the sake of explanation, suppose that we are willing to compute this AUSM+ (AU) flux F AU j+ 1 2 through the interface between the cell (i,j,k) and the cell (i,j+1,k). We need to express a convective numerical flux

f (c)
j+1/2 and a pressure numerical flux p j+1/2 . Defining a j+1/2 as the cell interface speed of sound one can write:

f (c) j+1/2 = m j+1/2 a j+1/2 Ψ j+1/2 , Ψ = t (ρ 1 , ρ 2 , ρV, ρH) (36) 
and

p j+1/2 = t (0, 0, P n x , P n y , P n z , 0) j+1/2 (37) 
Ψ j+1/2 is given by a basic upwinding procedure:

Ψ j+1/2 =    Ψ L if m j+1/2 ≥ 0 Ψ R otherwise (38) 
With Ψ L,R being the left and right states obtained for the interface j + 1 2 with the chosen MUSCL reconstruction. The terms m j+1/2 , p j+1/2 and a j+1/2 have yet to be defined. Liou [START_REF] Liou | A sequel to AUSM: AUSM+[END_REF] proposes a decomposition of those terms as the sum of two contributions:

m j+1/2 = M + (M j ) + M -(M j+1 ) ( 39 
)
p j+1/2 = P + (M j )p j + P -(M j+1 )p j+1 (40) 
with:

M ± (M ) =      1 2 (M ± |M |), if |M | ≥ 1 ± 1 2 (M ± 1) 2 ± 1 8 (M 2 -1) 2 otherwise (41) 
P ± (M ) =      1 2 (1 ± sign(M )), if |M | ≥ 1 ± 1 4 (M ± 1) 2 (2 ± M ) 2 ± 3 16 M (M 2 -1) 2 otherwise (42) 
For the common speed of sound, a simple arithmetic average at the interface yields satisfying results:

a j+1/2 = 1 2 (a j + a j+1 ) (43) 
The adaptation to binary gas mixture mostly consists in the definition of Ψ and in the use of local mass fractions for the computation of thermodynamic variables at the center of cells (a j , p j ) as in equations ( 7),( 14), ( 15) and ( 17). The AUSM+ 2S numerical flux F AU j+ 1 2 is finally computed as:

F AU j+ 1 2 = m j+1/2 a j+1/2 Ψ j+1/2 + p j+1/2 (44) 
This scheme is known for its good shock-capturing properties but is too dissipative for high-fidelity scale-160 resolving simulations [START_REF] Laraufie | A dynamic forcing method for unsteady turbulent inflow conditions[END_REF].

AUSM+(P) L-D

Mary and Sagaut [START_REF] Mary | Large Eddy Simulation of Flow Around an Airfoil Near Stall[END_REF] proposed a simplified formulation of the AUSM+(P) scheme designed to ensure a low numerical dissipation for scale-resolving simulations. We recall here the main features of this scheme and the adjustments needed for binary mixture flow. The Euler fluxes are approximated by:

F LD j+ 1 2 = V 1 Ψ L + Ψ R 2 -|U dis | Ψ R -Ψ L 2 + P 1 (45) With V 1 the interface fluid velocity, P 1 =[0, 0, P L +P R 2 n x , P L +P R 2 n y , P L +P R 2
n z , 0] and Ψ L,R being the left and right states obtained with the chosen MUSCL reconstruction. U dis is a parameter based on the local fluid velocity to control the numerical dissipation. More precisely, V 1 is computed with a pressure stabilization term:

V 1 = (V L + V R ).n 2 -c 2 (P R -P L ) ( 46 
)
U dis is defined as: U∞ρ∞ ) and ζ ∈ {0; 1} is a sensor used to minimize dissipation by enabling a fully centered scheme in monovariant zones [START_REF] Mary | Large Eddy Simulation of Flow Around an Airfoil Near Stall[END_REF]. The adaptation to binary gas mixture here again stands in the definition of Ψ = t (ρ 1 , ρ 2 , ρV, ρH) and the computation of thermodynamic quantities.

U dis = ζ * max(| (V L + V R ).n 2 |, c 1 ) (47) 
The sensor formulation ζ is adapted from [START_REF] Mary | Large Eddy Simulation of Flow Around an Airfoil Near Stall[END_REF] to be active on six equations rather than five for the mono-species. To detect spurious oscillations at the interface j + 1 2 , the definition of ζ is based on two functions, ∆ j ξ to detect changes in the sign of the slopes of a variable ξ and W wp k applied on primitive variables w p = T (ρ 1 , ρ 2 , V, P ) to detect consecutive sign changes corresponding to oscillations:

∆ j ξ =    -1 if (ξ j+2 -ξ j+1 )(ξ j+1 -ξ j ) < 0 1 otherwise (48) 
W wp k =    1 if ∆ j wp k + ∆ j+1 wp k < 0 or ∆ j wp k + ∆ j-1 wp k < 0 0 otherwise (49) 
ζ = max[(W wp k ) k=1..6 ] (50) 
This scheme has been used with success on various configurations for scale-resolving computations ( [START_REF] Larchevêque | Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number[END_REF][START_REF] Laurent | DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation[END_REF][START_REF] Deck | Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to 13650[END_REF][START_REF] Renard | On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number 13000[END_REF][START_REF] Weiss | On the coupling of a zonal body-fitted/immersed boundary method with ZDES: Application to the interactions on a realistic space launcher afterbody flow[END_REF] among others), but is not adapted for flow configurations leading to the formation of shock waves.

Hybrid shock-capturing scheme

Based on the two numerical schemes presented above, a hybrid scheme has been recently proposed in [START_REF] Reynaud | Numerical workflow for scale-resolving computations of space launcher afterbody flows with and without jets[END_REF].

This scheme blends the two previously described formulations to ensure both a low numerical dissipation and good local shock-capturing properties. The chosen formulation is:

F j+ 1 2 = F LD j+ 1 2 + βF AU j+ 1 2 (51) 
With β a sensor designed to detect shocks, based on Ducros's [START_REF] Ducros | Large-eddy simulation of the shock/turbulence interaction[END_REF] sensor Φ:

Φ = (∇.u) 2 (∇.u) 2 + (∇ ∧ u) 2 + ϵ ϵ = 1.10 -32 s -2 (52) 
∇.u is the divergence of the velocity vector, it takes high values near shocks and ∇ ∧ u evaluates the vorticity of the flow, it takes high values in vortical regions. Thus, Φ ∈ [0; 1] and it takes values close to one near a shock wave and close to zero in vortical regions. A more complete formulation has been derived to enhance dissipation near shocks, to maintain β between 0 and 1 and to ensure a smooth variation of β limiting sensitivity to numerical wiggles:

β(Φ) = tanh(3 * Φ) (53) 
The spatial accuracy of the present schemes is finally extended thanks to the MUSCL approach. A secondorder Minmod MUSCL reconstruction [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] is employed with the AUSM+ scheme for the internal flows and a third-order Koren-type MUSCL reconstruction [START_REF] Collercandy | An improved approach for the computation of transonic/supersonic flows with applications to aerospace configurations[END_REF] is used with the hybrid scheme to treat the mixing and the stimulated boundary layers. See [START_REF] Reynaud | Numerical workflow for scale-resolving computations of space launcher afterbody flows with and without jets[END_REF] for more details on these MUSCL procedures as the adaptation to bi-species flows only consists in the straightforward extension of these procedures to six equations instead of five.

Explicit Diffusive fluxes

To assess the diffusion flux vector G (see Eq.33), values of ρ, D * , µ * , λ * , V, h i at the cell interface are needed. They are estimated by taking the average of the center values in the right and left cells. Estimations of velocity, mass fraction and temperature gradients are also required. To this end, a corrected Green-Gauss mono-species approach described in [START_REF] Manueco | On the coupling of wall-model immersed boundary conditions and curvilinear body-fitted grids for the simulation of complex geometries[END_REF] is adapted to include mass fraction gradient computations. It is designed to prevent numerical instabilities that can arise due to odd-even decoupling oscillations allowed by the original Green-Gauss approach.

Implicit fluxes

As seen in equation ( 31), Jacobian matrices of the fluxes are needed for the implicit formulation of the time scheme:

A = ∂F ∂w c n ijk,l , B = ∂G ∂w c n ijk,l (54) 
To compute A and B at a cell interface, the procedure exposed in [START_REF] Pechier | Prévisions numériques de l'effet Magnus pour des configurations de munitions[END_REF] has been adapted. A convenient first step is to express the matrix M -1 = ( ∂wp ∂wc ) transforming partial derivatives with respect to the primitive variables w p = T (ρ 1 , ρ 2 , V, P ) into partial derivatives with respect to conservative ones and its inverse M = ( ∂wc ∂wp ). In particular, for a bi-species flow, variations of P with respect to ρ 1 and ρ 2 require some developments. From ( 15) and ( 14) we write:

P = Y 1 c v1 (γ 1 -1) + Y 2 c v2 (γ 2 -1) Y 1 c v1 + Y 2 c v2 (ρE - 1 2 ρ 2 V 2 ρ 1 + ρ 2 ) ( 55 
)
Assuming:

X = P c v1 c v2 (γ 1 -γ 2 ) (ρ 1 c v1 + ρ 2 c v2 )(ρ 1 r 1 + ρ 2 r 2 ) (56) 
One can show that:

∂P ∂ρ 1 = ρ 2 X + 1 2 (γ -1)V 2 , ∂P ∂ρ 2 = -ρ 1 X + 1 2 (γ -1)V 2 (57) 
The matrix M -1 can then be expressed as:

M -1 =              1 0 0 0 0 0 0 1 0 0 0 0 -u ρ -u ρ 1 ρ 0 0 0 -v ρ -v ρ 0 1 ρ 0 0 -w ρ -w ρ 0 0 1 ρ 0 ρ 2 X + 1 2 (γ -1)V 2 -ρ 1 X + 1 2 (γ -1)V 2 -(γ -1)u -(γ -1)v -(γ -1)w γ -1              ( 58 
)
And M is then found as:

M =              1 0 0 0 0 0 0 1 0 0 0 0 u u ρ 0 0 0 v v 0 ρ 0 0 w w 0 0 ρ 0 1 2 (γ-1)U 2 -ρ 2 X γ-1 1 2 (γ-1)U 2 +ρ 1 X γ-1 ρu ρv ρw 1 γ-1              (59)

Convective flux

After re-writing the convective fluxes with the explicit appearance of the conservative variables:

F(wc) =              ρ 1 V.n ρ 2 V.n
ρuV.n + P nx ρvV.n + P ny ρwV.n + P nz

(ρE + P )V.n              .∆S ijk,l =              ρ 1 ρ 1 +ρ 2 ρV.n ρ 2 ρ 1 +ρ 2 ρV.n ρu ρ 1 +ρ 2 ρV.n + P nx ρv ρ 1 +ρ 2 ρV.n + P ny ρw ρ 1 +ρ 2 ρV.n + P nz (ρE+P ) ρ 1 +ρ 2 ρV.n              .∆S ijk,l (60) 
One can use M -1 to derive the Jacobian matrix A with respect to the conservative variables (shown in Tab.A.4 in Appendix A).

Viscous Fluxes

For the implicit part of the viscous fluxes, a five-step procedure is applied to approximate the contribution of the Jacobian matrix of G. Only the last step corresponds to a program implemented in the solver. These steps are listed here but the details of the operations are displayed in Appendix B:

1. Express explicitly the viscous flux vector G (B.1) and detail the spatial derivatives contained in this vector with respect to primitive variables.

Compute the matrix ( ∂G ∂wp a

) ijk,l for a = x, y, z. The example for a = x is given in (B.6)

3. Compute the Jacobian matrix ( ∂G ∂wp ) ijk,l thanks to the approximation:

( ∂G ∂w p ) ijk,l =   a∈(x,y,z) ( ∂G ∂w pa ). ∂η ∂a   ijk,l (61) 
With η being the normal component in a local frame linked the cell interface l (B.8) and using the approximation ( ∂η ∂a ) ijk,l = Sa Ω with S a the surface normal to the a direction, Ω the volume of the cell and S = S 2

x + S 2 y + S 2 z . 4. Compute the Jacobian matrix of G with respect to conservative variables (B.7):

( ∂G ∂w c ) ijk,l = ( ∂G ∂w p M -1 ) ijk,l (62) 
5. Use Coakley's method [START_REF] Coakley | Implicit upwind methods for the compressible Navier-Stokes equations[END_REF] to estimate the contribution of this matrix by the maximum of its eigenvalues

B ≈ (δ. S 2 Ω ) ijk,l .I 6 with: δ ijk,l = max(D * , 4 3 ν * , λ * ρc v ) ijk,l (63) 
The 6 × 6 matrix (instead of 5 × 5 for a mono-species flow) obtained for the left term of Eq.31 will finally be inverted thanks to a lower-upper (LU) resolution algorithm [START_REF] Pechier | Magnus effect over finned projectiles[END_REF].

While the discretization of the explicit part of the Navier-Stokes conservative variables consists in a second order scheme through the MUSCL approach, the treatment of the explicit part of the ρν equation is based on a first order upwind scheme. The implicit step is based on a LU-SGS algorithm is thus decoupled between the conservative variables and the turbulent one ( [START_REF] Deck | Development and application of Spalart-Allmaras one equation turbulence model to three-dimensional supersonic complex configurations[END_REF][START_REF] Deck | Simulation numérique des charges latérales instationnaires sur des configurations de lanceur[END_REF]).

Boundary conditions

In the FLU3M solver, the boundary conditions are treated with ghost cells [START_REF] Pechier | Magnus effect over finned projectiles[END_REF] (cell 0 in Fig. 2) placed at the frontier of the domain and parametrized to compute adequate fluxes at the interface with the frontier (cell 1 on Fig. 2).

Figure 2: Schematic of a ghost cell approach. Here n is the external normal vector for cell 1

Adiabatic wall

To simulate an adiabatic wall in a mono-species computation (5 equations), one has to ensure several conditions at the interface between the fluid and the wall, that is to say at the interface between the frontier cell and the ghost cell:

• the no-slip condition V = t (u, v, w) = (0, 0, 0)

• a null normal pressure gradient ∂P ∂n = 0

• a null normal thermal gradient ∂T ∂n = 0 This is done by setting 

V 0 = -V

Free surface

As described in [START_REF] Pechier | Prévisions numériques de l'effet Magnus pour des configurations de munitions[END_REF], free surface boundary conditions are treated using the resolution of a linearized Riemann problem. Indeed, neglecting viscous terms and using the hypothesis of a one-dimensional flow in the direction normal to the interface (n) one can linearise Eq.2 in the form:

∂w c ∂t + A ∂w c ∂n = 0 ( 64 
)
An efficient way of computing the solution is to rewrite Eq.64 using the primitive variables w p thanks to the previously defined matrices M -1 = ( ∂wp ∂wc ) and M = ( ∂wc ∂wp ), one can thus obtain:

∂w p ∂t + M -1 AM J ∂w p ∂n = 0 (65) 
With J the Jacobian matrix of the convective fluxes with respect to the primitive variables detailed in the Appendix A.5. One can see that this matrix has the form J = (V.n) × I 6 + J 0 where J 0 does not depend on speed components. The left and right eigenvectors of J can thus also be chosen as independent of V.n. The matrices of the right eigenvectors R and left eigenvectors L (With LR = I 6 ) can be expressed as: 

230 R =               1 
or 1 n y -n y 0 0 -N xy 0 n z -n z 0 0 0 0 ρa ρa               (66) 
L =               1 0 0 0 0 -ρ1 a 2 0 1 0 0 0 -ρ2 a 
0 0 -1 2 n x -1 2 n y -1 2 n z 1 2ρa               (67) 
With N xy = n 2

x + n 2 y when 1 Nxy is defined and N xy = n z , 0 or 1 otherwise. For R, the first two columns correspond to the species transport with the eigenvalues α 1 = α 2 = V.n, the next two to the transport of the interface speed components normal to n, with the eigenvalue α 3 = α 4 = V.n, and the two last columns corresponds quantities transported by the acoustic eigenvalues α 5 = V.n + a and α 6 = V.n -a. The left eigenvector matrix L has a strictly similar structure by lines. One can see that the extension to multispecies flow is straightforward.

Defining the Jacobian matrix J for the average state w cavg = wc 0 +wc 1 2

to evaluate the matrix L and the eigenvalues α i at the cell interface, the left (0) and right (1) states at the frontier can be projected on the eigenvector basis to form characteristic variables: ω = Lw p . Eq.65 then becomes:

∂ω i ∂t + α i ∂ω i ∂n = 0 i = 1...6 (68) 
The characteristic state at the interface 0, 1 between the ghost cell and the frontier cell are then chosen as:

ω i0,1 =    ω i1 if α i > 0 ω i0 otherwise (69) 
The flux corresponding to the state (w p ) 0,1 = Rω 0,1 obtained with the chosen characteristics variables are then computed at the interface according to Eq.32. This way, any subsonic or supersonic entrance/exit can be treated in a non-reflexive way with a correct input of information.

User's input

In the bi-species numerical framework implemented, the user has to define Sutherland's laws constants (see Eq.19) [µ 0i ,S i ,T 0i ] and [γ i , c vi , P r i ] for the two gases (i=1,2) involved in the simulation and [P r t , Sc, Sc t ] for the mixture. These quantities enable to initialize the conservative variables (ρ

1 = ρ * Y 1 , ρ 2 = ρ * Y 2 , ρV, ρE)
and the transport coefficients in any zone of the computational domain.

Dynamic forcing

As explained in Sec.2.3, the ZDES mode 3 framework is built to treat the outer part of a boundary layer in LES mode. As discussed by Laraufie et al. [START_REF] Laraufie | A dynamic forcing method for unsteady turbulent inflow conditions[END_REF], such framework has to be fed with turbulent content. In this study, we chose to use the method described in [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF] that is based on a physics motivated combination of white noise to generate fluctuations at the inlet of the boundary layer domain together with a dynamic forcing method processing the inlet velocity fluctuations. The dynamic forcing, based on the idea proposed by Spille-Kohoff and Kaltenbach [START_REF] Spille-Kohoff | Generation of turbulent inflow data with a prescribed shear-stress profile[END_REF], consists in the addition of a source-term to the momentum equations in order to increase the resolved turbulent kinetic energy. This source term is built as a closed-loop controller adjusting the velocity components to match the target wall-normal Reynolds stress levels prescribed by a previously performed RANS computation of the current configuration. As for the adaptation of numerical schemes to bi-species flow, the modification of dynamic forcing consists in the use of the mixture properties to compute the source term.

Test case

The test case is based on the coaxial jet experiment presented by Cutler and coworkers in [START_REF] Cutler | Supersonic coaxial jet experiment for computational fluid dynamics code validation[END_REF][START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF] which was designed for CFD code validation. A summary of previous computational studies of this case found in the literature is presented in Table 1. In the version studied here, two co-flowing supersonic jets of argon (center jet) and air (outer jet) discharge in a quiescent atmosphere. The short review (see Table 1) reveals that only few hybrid RANS/LES approaches with stimulated incoming boundary layers have been used to study this case.

Experimental setup

The axisymmetric geometry of the coaxial jet experiment by Clifton and Cutler is shown in Fig. (Re D cof low = 4.8.10 5 ) for the outer air jet and thus to a velocity ratio r u = Uo Ui = 1.2. The jets discharge in a cylindrical plenum (40 cm diameter and 110 cm length) filled with air at atmospheric pressure. The initial 275 flow conditions in terms of total pressure (P tot ) and total temperature (T tot ), including the coflow jet total pressure taken as a reference P ref , are presented in Tab.2. Pitot pressure probes and gas composition probes were used to measure Pitot pressure (P pitot ) and argon mass fraction (Y Argon ) distributions in several normal planes at different X/D cj downstream locations.

Center jet

Coflow jet Ambient Ttot(K) 297.9(±3. To cope with the axisymmetric geometry of the experiment, an O-H grid topology is adopted to avoid a singularity on the axes (see Fig. 4c). N θ =360 points are clustered in the azimuthal direction yielding an angular resolution ∆θ = 1 • . The grid point distribution is refined in the mixing layer areas (see Fig. 4b), especially for the air/argon one, with N > 50 points in the thickness of the mixing layer δ argon (where δ argon denotes the thickness of the zone where 0.01 < Y argon < 0.99) to ensure a good resolution of the large turbulent scales driving its dynamics. The computational domain is extended to 150 center jet diameters (D cj ) along the streamwise direction and more than 20D cj radially (see Fig. 4a). The mesh contains 165.10 6 cells overall.

To assess the importance of the incoming boundary layers in the development of the jets, two computations were run, one (called ZDES C1) using ZDES mode 2 (2020) [START_REF] Deck | Towards an enhanced protection of attached boundary layers in hybrid RANS/LES methods[END_REF] everywhere and another one using mode 3 of 290 the ZDES (called ZDES C2) including special treatments to provide stimulated boundary layers (SBL).

As mentioned in Sec.2.3, within ZDES mode 2 (2020) the whole attached boundary layers are treated in RANS mode and the switch from RANS to LES in free shear layers is set automatically by the model itself. Conversely, ZDES mode 3 is built to treat the outer part of a boundary layer in LES mode. Thus, in order to compute an attached boundary layer (with a thickness δ(x)) with this method, the meshing of the boundary layer areas have to respect several requirements classical of WMLES approaches [START_REF] Deck | Zonal Detached Eddy Simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range 3 150 ≤ Re θ ≤ 14 000[END_REF][START_REF] Renard | Improvements in zonal detached eddy simulation for wall modeled large eddy simulation[END_REF]. First, one has to ensure that around 100 cells are clustered in the boundary layer thickness, then criteria such as ∆x + ≤ 200, ∆(rθ) + ≤ 100 and ∆x δ ≤ 0.1 (the superscript '+' denotes wall units which correspond to the adimensionalization performed using the mean shear stress τ w , the kinematic viscosity ν w and the density ρ w , taken at the wall) have to be fulfilled in the boundary layer. Furthermore, it has been shown in [START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF] that the combination of a simple white noise at the inlet of the attached boundary layers with the dynamic forcing method proposed by Laraufie et al. [START_REF] Laraufie | A dynamic forcing method for unsteady turbulent inflow conditions[END_REF] permits to obtain a self-sustained turbulent boundary layer.

Besides, as recommended by the authors [START_REF] Laraufie | A dynamic forcing method for unsteady turbulent inflow conditions[END_REF], the length of the forcing domain has to be L f orcing = 8δ in where δ in is the local boundary layer thickness at the inlet of the domain. Finally, the RANS/LES interface is set at 0.125δ(x) where δ(x) is the boundary layer thickness provided by a preliminary RANS computation. This value ensures that the whole inner layer of the turbulent boundary layer is treated in RANS mode as advocated in [START_REF] Deck | Zonal Detached Eddy Simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range 3 150 ≤ Re θ ≤ 14 000[END_REF][START_REF] Renard | Improvements in zonal detached eddy simulation for wall modeled large eddy simulation[END_REF][START_REF] Deck | A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers[END_REF][START_REF] Vaquero | Advanced simulations of turbulent boundary layers under pressuregradient conditions[END_REF].

As shown in figure 5a, three attached boundary layers are involved in the present coaxial jets configuration. BL1 is the argon boundary layer developing on the center nozzle wall, BL2 is the air boundary layer developing on the lower wall of the coaxial nozzle and BL3 is the boundary layer developing on the upper wall of the coaxial nozzle. The ∆y + ≈ 1 condition is satisfied for all these attached boundary layers but they are treated First, as we are particularly interested in the study of the mixing between argon and air, the upper air boundary layer BL3, which is assumed to have a weak impact on this mixing as it is not directly involved in the formation of the bi-species mixing layer with the center jet, is treated in URANS mode as in the ZDES 315 C1 computations. Then, as preliminary RANS computations showed that the thickness of BL1 (δ 1 (x)) was around 8 times smaller than the thickness of BL2 (δ 2 (x)), the Mode 3 meshing requirements are retained only for the lower air boundary layer BL2. As reminded earlier, one of the asset of the ZDES lies in its capability to combine several modes (i.e. several levels of description) within the same calculation. In the present case, the grid in the azimuthal direction satisfies ∆(rθ) + ≤ 250 for BL2 which is still coarse in a WMLES exercise 320 [START_REF] Deck | Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer[END_REF], the objective is here more to assess the effect of turbulent inlet fluctuations on the development of mixing layers than the study of wall turbulence in the nozzle. Note that the cost of a WRLES (Wall-Resolved LES needing ∆(rθ) + ≤ 10 and ∆x + ≤ 40 [START_REF] Simon | Simulations numériques hybrides RANS/LES de l'aérodynamique des projectiles et application au contrôle des écoulements[END_REF]) would be roughly 

Numerical setup

As explained in Sec.3.4.3, several thermodynamic properties have to be defined in order to run a bi-species computation (see Table3). Furthermore for the mixture, the Schmidt number Sc between air and argon is set to 0.8 [START_REF] Han | Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution[END_REF][START_REF]Air -Diffusion Coefficients of Gases in Excess of Air[END_REF] and as suggested in [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF] the turbulent Prandtl number P r t is set to 0.9. Sc t is set to 0.5 knowing that a previous study has shown that conversely to RANS methods, a weak dependence to Sc t values is observed for scale resolving simulations [START_REF] Reynaud | Towards binary gas mixture ZDES for space launcher base flow prediction[END_REF].

Air Argon For the ZDES computations, the convective fluxes are computed thanks to the presented hybrid scheme [START_REF] Reynaud | Numerical workflow for scale-resolving computations of space launcher afterbody flows with and without jets[END_REF] and a Koren MUSCL reconstruction. The timestep for ZDES is set to ∆t CF D = 5.10 -8 s thus enabling to ensure that CF L = |u+c|∆t CF D ∆n < 10, with ∆ n the radius of the inscribed sphere inside a cell, everywhere in the inner mixing layer. Note that the same time-step was retained by Baurle et al. [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF]. Besides, 5

µ 0 (N.s/m 2 ) [
sub-iterations (n si ) are used for each iteration to obtain a decrease of inner residuals of at least one order.

Transient and useful data sampling chosen for this coaxial jet flow vary between authors. As an example, Baurle et al. [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF] The simulations are performed on 336 Intel Xeon "Broadwell" processors and the CPU cost per cell per iteration is about 4.86.10 -6 s.

Computational Results

General description

In the study of the present configuration, the observation of the mixing layers developing between the argon center jet and the air coaxial jet (inner mixing layer) with a convective Mach number M ci = 0.16 and between the air coaxial jet and the ambient air (outer mixing layer, M co = 0.77) is of primary interest. To do so, a pseudo-schlieren snapshot of the flow where the locations of experimental probing stations used in this study are identified with vertical rakes is first presented in Fig. 6. Note that this overall view has been obtained with the ZDES C1 computation (though not shown here, similar snapshots are provided by the ZDES C2 computation). This view first enables to distinguish the formation of shock/expansion wave patterns tending to equalize the pressure between the two jets at the exit of the center nozzle. This compressible flow structure justifies the use of the hybrid scheme presented in Sec.3.1.3. Indeed, the numerical methods employed for such a flow have to be locally robust enough to capture the shocks while ensuring a low numerical dissipation in the vortical areas to properly resolve turbulent structures. Then, one can observe the growth of the two annular mixing layers driven by the formation of large scale structures. Due to a greater nozzle exit diameter and a higher velocity difference between its upper (ambient air) and lower (coaxial jet) streams, the outer mixing layer presents a growth rate significantly larger than the one for the inner mixing layer. Indeed, the inner mixing layer appears to be gradually perturbed by the outer mixing layer from X/D cj ≈ 20 (between the 4 th and the 5 th stations) until it is completely merged into a single wake flow for X/D cj > 35.

An overview of the turbulent content in the mixing layers generated by the simulations is displayed in Fig. 7 showing an iso-contour of the Q-criterion [START_REF] Hunt | Eddies, streams, and convergence zones in turbulent flows[END_REF] coloured by the mass fraction of argon. The annular outer mixing layer has been cut to reveal the inner one. For the outer mixing layer, the observed coherent structures in its early stages can be related to the descriptions given in [START_REF] Yule | Large-scale structure in the mixing layer of a round jet[END_REF][START_REF] Ball | The flow field in turbulent round free jets[END_REF] for round jets mixing layers driven by Kelvin-Helmotz instabilities. Indeed, one can distinguish vortex-ring structures from the nozzle with the scale of these rings and the separation between the rings increasing as they move downstream. This growth is generally attributed to the coalescence of neighbouring rings. This pattern is however rapidly distorted as rings break up into three dimensional structures convected in the streamwise direction. As the convective Mach number of the outer mixing layer can be estimated as M co = 0.77, this rapid loss in azimuthal coherence may be attributed to oblique instabilities characterizing compressible mixing layers (e.g. M c > 0.6) [START_REF] Simon | Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge[END_REF][START_REF] Freund | Compressibility effects in a turbulent annular mixing layer. part 1. turbulence and growth rate[END_REF].

It is worth noticing that there is no delay in the formation of instabilities with the present ZDES Mode 2 (2020).

To assess the extent of these two mixing layers, Clifton and Cutler [START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF] provided Pitot pressure (P pitot ) radial distributions at several X/D cj stations. The local Pitot pressure is indeed relevant to examine shear flows as it is related to the local pressure, Mach number and specific heat ratio of the flow P pitot = f (P, M, γ) through the isentropic definition of stagnation pressure and through the Rayleigh Pitot tube formula [START_REF] Drela | Fluids[END_REF] downstream a normal shock. As an example, the relative Pitot pressure distribution at a station located at X/D cj =4.3 is shown in Fig. 8. In this figure, the inner mixing layer corresponds to the Pitot pressure deficit occurring in the 0.3 ≤ r/D cj ≤ 0.7 range between the argon jet and the air jet. This deficit is due to the convection of low total pressure flow from the nozzles boundary layers and from a small recirculation zone developing behind the center nozzle base [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF]. The outer mixing layer corresponds to the Pitot pressure drop occurring in the 2.6 ≤ r/D cj ≤ 3.4 zone between the air jet and the ambient air. One can observe that both present computations provide very satisfactory predictions for this station in comparison to experimental results. As the focus is put here on the evaluation of a bi-species numerical framework, Pitot pressure distributions presented for the following stations in the next sections are zoomed around the inner mixing layer area (r/D cj ≤ 2).

The inner mixing layer developing between the argon jet and the air jet presents a lower convective Mach number M ci = 0.16 than the outer one. An average view of argon mass fraction distribution obtained with the ZDES C1 computation shown in Fig. 9a enables to visualize the gradual mixing occurring at the interface between the two gases. To compare the predicted growth of the inner mixing layer with the experimental results of Clifton and Cutler [START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF], Fig. 9b presents the radial locations of the 1% and 99% argon mass fraction boundaries of the inner mixing layer for the six studied stations. It can be noticed that both C1 and C2 computations provide predictions in good agreement with experimental results for the outer boundary (Y Argon = 0.01) and for the near field of the inner boundary (Y Argon = 0.99) whose extent is however underestimated for x/D cj ≥ 18.1.

As indicated in Fig. 7, to provide a thorough investigation of the flow, the analysis will be divided in three parts corresponding to three characteristic zones of the inner mixing layer. The focus is first put on the near field area (I) (0 < X/D cj < 10) where an inner Air/Argon mixing layer develops. Then, the intermediate region (II) (10 ≤ X/D cj < 20) is briefly considered before getting interested in the interference area (III) 2 for the definition of P ref .

(20 ≤ X/D cj ) where the Air/Argon mixing layer is gradually perturbed by the outer mixing layer. The experimental time averaged Pitot pressure and argon mass fraction measurements obtained in [START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF] are 410 used to appraise the computational results at two stations for each mentioned zone. Present results are also compared with previously published RANS/LES results from Baurle et al. [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF] and SST-DDES results from Troshin et al. [START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF].

5.2. Near field (0 < X/D cj < 10)
This section concerns the investigation of the inner mixing layer development in the proximity of the 415 center nozzle (see region I in Fig. 7).

Flow topology

Let us be reminded that the thickness of the center nozzle lip is nearly equal to two times the inner boundary layer thickness (see Fig 5b) and is thus around 4 times smaller than the air boundary layer. As described in [START_REF] Segalini | Experimental analysis of dominant instabilities in coaxial jets[END_REF], for coaxial jets with a velocity ratio r u close to unity and separated by a thick wall, a wake instability (causing a vortex shedding phenomenon) may compete with the K-H instability and modulate the dynamics of the flow. A small recirculation region may furthermore form behind the lip base [START_REF] Laizet | Direct numerical simulation of a mixing layer downstream a thick splitter plate[END_REF]. Figure 10 displays the instantaneous distribution of relative velocity (u/U i ) in the very first stages of the inner mixing layer. In particular, one can recognize the formation of a recirculation bubble and alternate vortices characteristic of the vortex shedding phenomenon. 

Time averaged results

In this section, the predictions obtained with the two computations C1 and C2 in terms of averaged results are assessed in order to investigate how the generation of turbulent content affects the mixing process between the two gases.

Time averaged results are first displayed at two stations located in the near field region at X/D cj = 1.8 (Fig. 14) and X/D cj = 4.3 (Fig. 15). The structure of the mixing layer in this area can be inferred from the radial distribution of axial velocity displayed in Fig. 13. Due the merging process of the two boundary layers and the total pressure loss caused by the recirculation zone behind the nozzle lip, a low velocity zone u Ui < 1, corresponding to the wake of the nozzle lip, exists between the two jets. Moving radially from the center line a velocity decrease ( ∂u ∂r < 0) precedes the expected velocity increase ( ∂u ∂r > 0) due to the entrainment by the outer jet. Such a velocity profile is coherent with the experimental results of Mehta [START_REF] Mehta | Effect of velocity ratio on plane mixing layer development: Influence of the splitter plate wake[END_REF] who studied the influence of a wake of the splitter plate on the development of mixing layers for velocity ratios r u < 2.

Those experimental results furthermore showed that the velocity defect, increases when the velocity ratio gets closer to 1, as does the streamwise distance over which it is still discernible. For coaxial jet set-ups with thick nozzles and velocity ratios r u < 2, other authors [START_REF] Ribeiro | Turbulent mixing of coaxial jets with particular reference to the near-exit region[END_REF][START_REF] Buresti | Experimental investigation on the turbulent near-field of coaxial jets[END_REF] also reported the presence of a low velocity region dividing the mixing layer into two zones with different turbulent mixing properties.

The radial distributions of Reynolds stresses provided by the present computations compare qualitatively with the ones obtained by Mehta on a similar configuration [START_REF] Mehta | Effect of velocity ratio on plane mixing layer development: Influence of the splitter plate wake[END_REF] and enable to distinguish these two zones. Indeed in Fig. 14c and Fig. 15c, one can observe that, as described by Mehta [START_REF] Mehta | Effect of velocity ratio on plane mixing layer development: Influence of the splitter plate wake[END_REF] for mixing layers influenced by the splitter plate wake, the streamwise velocity fluctuations (u rms ) profiles exhibit two distinct peaks. The radial velocity fluctuations (v rms ) profiles are asymmetric and the levels of both these velocity fluctuations decrease in the streamwise direction (from Fig. 14c to fig. 15c). The Reynolds shear stress profiles shown in Fig. 14d and Fig. 15d are also coherent with the profiles reported in [START_REF] Mehta | Effect of velocity ratio on plane mixing layer development: Influence of the splitter plate wake[END_REF] as they are divided into two shear zones < u ′ v ′ >≥ 0 and < u ′ v ′ >≤ 0 and the peak values of which decrease in the direction of the flow. The comparison of current computations with RANS/LES results from Baurle et al. [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF], indicates a better agreement with the experimental Y argon (Fig. 15b) distribution at the station X/D cj =4.3, though an 480 overestimation of the Pitot pressure drop (Fig. 15a). This can be related to the fact that in [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF], fully 3-D turbulent structures are only observed in the mixing layer for X/D cj > 10 whereas such structures are already found in the near field with the present computations (Fig. 11). Let us be reminded that ZDES mode 2 (2020) has been designed to allow a fast development of resolved turbulence when switching in LES mode. The use of a finer grid may also explain the differences between present results and those published in [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF]. In this zone, located at more than 10 diameters downstream of the nozzle area, the low velocity region between the two jets is almost recovered and the velocity grows radially from U i to U o as in a canonical developing mixing layer (see Fig. 17). Looking at the normal (Fig. 18c and Fig. 19c) and the shear stresses (Fig. 18d and Fig. 19d) distributions, one can acknowledge that they tend towards classical gaussian-like curves expected in developed self-similar mixing layers [START_REF] Yoder | Modeling of turbulent free shear flows[END_REF]. In addition, the observed peak levels obtained for second order statistics can be compared with data from literature on fully developed mixing layers with similar convective Mach numbers (M ci = 0.16). Such a comparison is achieved thanks to the review of experimental results provided by Tan et al. [START_REF] Tan | Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer[END_REF] for M c =0.2 mixing layers. First, the peak values of Reynolds shear stress provided by the present computations in the intermediate area are ) max = 0.15 measured in [START_REF] Goebel | Experimental study of compressible turbulent mixing layers[END_REF]. Overall, the level of turbulent intensity computed by the two ZDES computations in the intermediate region of the inner mixing layer appears coherent with the experimental measurements for fully developed mixing layers. The minor discrepancies can be first attributed to the higher convective Mach number of the mixing layers described in [START_REF] Tan | Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer[END_REF]. Second, it is shown in [START_REF] Mehta | Effect of velocity ratio on plane mixing layer development: Influence of the splitter plate wake[END_REF] that the turbulent intensity level of a mixing layer grows as the velocity ratio r u gets closer to 1. The present velocity ratio r u (=1.2) may thus be closer to 1 than the velocity ratios of the mixing layers studied experimentally (r u >1.2). Then, the mixing layers studies reported in [START_REF] Tan | Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer[END_REF] all used air as the flowing gas for both streams. Thus, in the present study, the differences in density between the argon jet and the air jet might enhance the mixing between the two flows as mentioned in [START_REF] Brown | On density effects and large structure in turbulent mixing layers[END_REF].

( |<u ′ v ′ >| (Uo-Ui) 2 ) max =
The observation of Reynolds stresses furthermore shows that for both stations studied in this region of the flow (X/D cj =12.1 and 18.1), the introduction of turbulent content in the boundary layers induces a slight rise in turbulent mixing intensity but does not modify the shape of the turbulent fluctuations distribution as it was the case in the near field region. The effects of this increased turbulent mixing intensity can also be observed on time averaged Pitot pressure distributions (Fig. 18a and Fig. 19a) and on the time averaged argon mass fraction distributions (Fig. 18b and Fig. 19b) where ZDES C2 features a faster diffusion of argon particles into air than found with the ZDES C1 computation. Both present ZDES computations provide good agreements with experimental Pitot pressure profiles as they allow for improved predictions in comparisons with previous computations [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF][START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF]. The computed argon mass fraction profiles provide a good agreement with measures from [START_REF] Clifton | A supersonic argon/air coaxial jet experiment for computational fluid 595 dynamics code validation[END_REF] in the inner part of the mixing layer (r/D cj ≤ 0.6) but overestimate Y argon in the outer part of the mixing layer. This local overestimation is in contrast with the overall under-prediction of turbulent mixing intensity reported in previous calculations [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF][START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF]. As previously discussed in Sec.5.2.2, such differences can be linked to the faster development of 3-D turbulent structures observed in the present computation in comparison with studies [START_REF] Baurle | Hybrid Reynolds-averaged/large-eddy simulations of a coaxial supersonic freejet experiment[END_REF][START_REF] Troshin | Large-eddy simulation of helium and argon supersonic jets in supersonic air co-flow[END_REF].

Interference area (20 ≤ X/D cj )

This section is devoted to the investigation of the last zone of this flow mixing process. In the case of a single jet, the argon-air mixing layer would develop towards a self-similar turbulent flow. However, in the present case of coaxial jets, the development of the inner mixing layer is perturbed by the interaction with the outer mixing layer. More precisely, the inner mixing layer observed in Fig. 20 appears to undergo large scale radial oscillations, breaking free from its quasi-cylinder external shape observed in the intermediate region. The increase in both Reynolds shear stress levels in the region r/D cj >1.1 (Fig. 22d and Fig. 23d) and radial velocity fluctuations (( vrms (Uo-Ui) ) max > 0.15 in Fig. 22c and Fig. 23c) in comparison with the intermediate region also shows the influence of the outer mixing layer on the mixing process between argon and air.

Looking at the averaged Pitot pressure distribution in this area (Fig. 22a and Fig. 23a), experimental results display an important decrease of the Pitot pressure in the core of the center jet (r/D cj <0.25) in comparison with almost constant levels observed in the near field and intermediate regions. This decrease, associated with a strong reduction of the pressure deficit zone, can be attributed to two major effects. First, due to the previously mentioned radial oscillations of the whole inner mixing layer, a fixed experimental probe used for time-averaged measurements may acquire values corresponding to different relative radial positions inside the mixing layer. The sensitivity to the probe location may produce a radial averaging flattening extrema Step 2: Compute the matrix ( ∂G ) ijk,l

Step 3: Compute the Jacobian matrix of G with respect to the primitive variables

We can now add the three matrices derived in the previous step to form: ( Step 4: Compute the Jacobian matrix of G with respect to convective variables Step 5: Use Coakley's method [START_REF] Coakley | Implicit upwind methods for the compressible Navier-Stokes equations[END_REF] to estimate the contribution of the matrix G

The contribution of the almost triangular matrix obtained in step 4 is evaluated as (δ. 
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 1 Figure 1: Classification of typical flow problems. I: separation fixed by the geometry, II: separation induced by a pressure gradient on a curved surface, III: separation strongly influenced by the dynamics of the incoming boundary layer

c 1 and c 2

 2 are constant parameters based on the flow reference values (c 1 = 0.04 * U ∞ and c 2 = 0.04 * 1

1 ,

 1 P 0 = P 1 and e 0 = e 1 . The adaptation to bi-species flow (6 equations) lies in the computation of the mixture pressure P and the mixture internal energy e thanks to relations described in Sec.2.1 and in the addition of a null normal mass fraction condition ∂Yi ∂n = 0 ensured by forcing Y 10 = Y 11 which implies Y 20 = Y 21 according to Eq.8.
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 5 Ptot(P a) 615.86(±5.5) P ref =580.68(±4.4) 101.32(±0.6)
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 3 Figure 3: Clifton & Cutler [1] experimental setup.

  Mesh distribution in the nozzles exit area (c) O-H topology around the center nozzle axis

Figure 4 :

 4 Figure 4: Mesh description
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 10 125 times (i.e.(N xyz ) W RLES ≈ 20.10 9 ) more expensive than the present calculation (i.e. (N xyz ) ZDES ≈ 165.10 6 )). To sum up, for the ZDES C2 computation, the air boundary layer BL2 is thus computed with a ZDES Mode 3 framework together with a dynamic forcing and the argon boundary layer BL1 is treated in URANS mode with the introduction of scaled white noise in the last cells before the nozzle exit to emulate turbulent fluctuations. The differences in boundary layer turbulent content between the ZDES C1 and the ZDES C2 computations can be clearly seen in Fig.5b showing pseudo-schlieren instantaneous visualizations of the flow in the center nozzle area.
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 5 Figure 5: Treatment of the nozzles boundary layers
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 6 Figure 6: Instantaneous visualisation of the coaxial jets (ZDES C1)
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 7 Figure 7: Instantaneous visualisations of the coaxial jets thanks iso-Q criterion surfaces: Q×U 2 o δ 2 BL2

Figure 8 :

 8 Figure 8: Radial distributions of relative Pitot pressure obtained with ZDES computations at the station X/D cj =4.3. See Table

  (a) Averaged Yargon distribution (ZDES C1) (b) Radial locations of the 1% and 99% argon mass fraction boundaries. See Fig6 for locations.

Figure 9 :

 9 Figure 9: Averaged Yargon distributions obtained with the ZDES computations

Figure 10 :

 10 Figure 10: Distribution of relative velocity at the onset of the inner mixing layer.

Figure 11 :Figure 12 :

 1112 Figure 11: Iso-surfaces of Q criterion colored by Y Argon in the boundary layer (0) and near field (I) regions. See Fig.7 for the location of these regions. The indicated transversal slices are shown in Fig.12.

Figure 13 :

 13 Figure 13: Radial distribution of axial velocity at X/D cj = 4.3

Figure 14 :

 14 Figure 14: Radial distributions of relative Pitot pressure (a), argon mass fraction (b), rms velocities (c) and total Reynolds shear stress (d) obtained with ZDES at the station X/D cj =1.8.

Figure 15 :

 15 Figure 15: Radial distributions of relative Pitot pressure (a), argon mass fraction (b), rms velocities (c) and total Reynolds shear stress (d) obtained with ZDES at the station X/D cj =4.3.

Figure 16 :

 16 Figure 16: Coherent structures inside the mixing layers in the intermediate region (II) (ZDES C1 computation). See Fig.7 for the location of this region.

Figure 17 :

 17 Figure 17: Radial distribution of axial velocity at X/D cj = 18.1
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 1819 Figure 18: Radial distributions of relative Pitot pressure (a), argon mass fraction (b), rms velocities (c) and total Reynolds shear stress (d) obtained with ZDES at the station X/D cj =12.1

Figure 20 :

 20 Figure 20: Coherent structures inside the mixing layers in the interference area (III) (ZDES C1 computation). See Fig.7 for the location of this region.

Figure 21 :

 21 Figure 21: Radial distribution of axial velocity at X/D cj = 22

Figure 22 :

 22 Figure 22: Radial distributions of relative Pitot pressure (a), argon mass fraction (b), rms velocities (c) and total Reynolds shear stress (d) obtained with ZDES at the station X/D cj =22

Figure 23 :

 23 Figure 23: Radial distributions of relative Pitot pressure (a), argon mass fraction (b), rms velocities (c) and total Reynolds shear stress (d) obtained with ZDES at the station X/D cj =26.1.
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  We now have to multiply the previously obtained matrix by M -1 = ( ∂wp ∂wc ) to obtain the Jacobian matrix of the viscous flux G with respect to the conservative variables ( ∂G ∂wc ) ijk,l . It is shown in Tab.(B.7), only the terms necessary for the computation of eigenvalues are displayed.

  S 

2 Ω 1 r 2 µ * (-λ * T ρ r 2 r 1 3 1 3 1 3

 2122111 ) ijk,l .I 6 with 795δ ijk,l = max(D * , 4 3 ν * , λ * ρcv ) ijk,l . + Y2D * (h1 -h2)) S + Y1D * (h2 -h1)) (uS2 x + vSxSy + wSxSz) + uS 2 (uSxSy + vS 2 y + wSySz) + vS 2 (uSxSz + vSzSy + wS 2 z ) + wS 2 λ

Table 1 :

 1 3 (dimensions provided in mm). It consists of a center body and a concentric outer body. The center body contains Overview of numerical studies of the supersonic coxial experiments of Cutler et al. [27, 1]. SBL: Stimulated Boundary Layers.

	Study	Center jet gas Turbulence modelling	S ct	N xyz	∆θ
	Clifton and Cutler (2007) [1]	Ar and He-O 2	RANS k -ω	0.1/0.25/0.5/0.9 0.19.10 6	2D-axi
	Baurle et al. (2010) [17]	Ar and He-O 2	RANS/LES	0.25/0.5/1	43.10 6	-
	Cocks et al. (2012) [21]	He-O 2	SST DDES + SBL	0.5/1	22.10 6	-
	Dharavath et al. (2015)[18]	Ar and He-O 2	RANS k -ϵ	constant	0.45.10 6 0.8 • on a 10 • angular slice
	Charrier et al. (2016) [23]	He-O 2	DDES (k -ϵ)	variable	14.10 6	1.5 •
	Troshin et al. (2019) [19]	Ar and He-O 2	SST DDES	constant	10.10 6	-
	Reynaud et al. (2020) [16]	Ar	RANS S-A and ZDES	0.25/0.5/1	65.10 6	1.8 •
	Present study	Ar	ZDES Mode 2 + SBL	0.5	165.10 6	1 •

a supersonic nozzle for the argon jet with an exit diameter D cj =10 mm and the gap between the center and outer bodies creates a supersonic nozzle for the coflow air jet with an exit outer diameter D cof low =60.47 mm. The two nozzles were designed to provide a nominal Mach number of 1.8 at the exit. This corresponds to a velocity U i = 400 m/s (Re Dcj = 1.3.10 5 ) for the inner argon jet and a velocity U o = 480 m/s

Table 2 :

 2 

Clifton & Cutler [1] initial flow conditions 4.2. Description of the computation 280

  67] 1.716.10 -5 2.125.10 -5

	T 0 (K) [67]	273	273
	S (K) [67]	110.4	144
	γ [68]	1.4	1.67
	c v (J/kg) [68]	717.5	312.4
	P r [68]	0.72	0.67

Table 3 :

 3 Properties of the two exhaust gases

  chose to let the flow develop during two whole domain flow-through time (T transient * Uo D cof low ≈ 48 i.e. T transient =6 ms) before computing statistics over a 1.5 ms period (T average * Uo D cof low ≈ 12).Troshin et al. [19] chose a 2.4 ms transient period (T transient * Uo D cof low ≈ 19) and a 12 ms period (T average * Uo D cof low ≈ 96) for ensemble average. In this study we chose to let the flow develop during 6 ms (T transient * Uo D cof low ≈ 48) before using another 6 ms period (T average * Uo D cof low ≈ 48) to perform time average. The flow field was then averaged azimuthally for comparison with experimental measurements and previous computations.

  Reynaud is funded by CNES and ∂Y 1 ∂x nx + ∂Y 1 ∂y ny + ∂Y 1 ∂w nz] ρD * [ ∂Y 2 ∂x nx + ∂Y 2 ∂y ny + ∂Y 2We rewrite some spatial derivatives present in G in order to show explicitly the primitive variables:

			     µ * [( µ * [( 4 3 ∂u ∂u ∂x ∂z + -∂w 2 3 σ 11 ∂v ∂y ∂x σ 31 )nx + ( ρD ∂w nz] -2 3 ∂w ∂z ) nx] + ( ∂u ∂y + ∂v ∂x σ 12 )ny] + ( ∂w ∂y + ∂v ∂z σ 32 )ny + ( 4 3 ∂w ∂z -2 3 ∂u ∂u ∂z ∂x -σ 22 µ * [( ∂u ∂z + ∂w ∂x σ 31 )nx + ( ∂w ∂y + ∂v ∂z σ 32 )ny + ( 4 3 ∂w ∂z -2 3 ∂u ∂x -σ 22	+ σ 13 2 3 ∂v ∂w ∂x ∂y ) 2 3 ∂v ∂y )	)nz] ny] ny]	                       	(B.1)
															G6		
	With G6:																	
	G6 = [µ ∂T ∂w	]nz	(B.2)
			+D * (h1[	∂Y1 ∂x	nx +	∂Y1 ∂y	ny +	∂Y1 ∂w	nz]] + * h2[	∂Y2 ∂x	nx +	∂Y2 ∂y	ny +	∂Y2 ∂w	nz])
					∂T ∂a	=	∂ P ρr ∂a		=	∂P ∂a	1 ρr	-	P (ρr) 2 (r1	∂ρ1 ∂a	+ r2	∂ρ2 ∂a	)	(B.3)
	∂Y1 ∂a	=	∂ ρ 1 ρ 2 +ρ 1 ∂a	=	1 (ρ1 + ρ2) 2 (	∂ρ1 ∂a	(ρ1 + ρ2) -ρ1(	∂ρ1 ∂a	+	∂ρ2 ∂a	)) =	1 ρ	(Y2	∂ρ1 ∂a	-Y1	∂ρ2 ∂a	)	(B.4)
	ONERA.																	

* [ * (σ11u + σ12v + σ13w) + λ * ∂T ∂x ]nx + [µ * (σ21u + σ22v + σ23w) + λ * ∂T ∂y ]ny +[µ * (σ31u + σ32v + σ33w) + λ *

Table B .

 B 6: Partial Jacobian matrix in the x direction ( ∂G ∂wp x

  ∂G ∂wp ) ijk,l . It is shown in Tab.(B.8). S 2 -Y 1 D * S 2 -Y 2 D * S 2 Y 1 D * S 2Table B.7: Jacobian matrix of the viscous flux G with respect to the conservative variables ( ∂G ∂wc ) ijk,l

			Y 2 D 0	0	0	0		
	1 Ω	            	----	----	0 x + S 2 3 S 2 ν * ( 4 y + S 2 z ) ---	0 0 x + 4 ν * (S 2 3 S 2 y + S 2 z ) --	0 0 0 x + S 2 ν * (S 2 y + 4 3 S 2 z ) -	0 0 0 0 (γ -1)λ * T p S 2	            	(B.6)

* 

  Table B.8: Jacobian matrix of the viscous flux G with respect to the primitive variables ( ∂G ∂wp ) ijk,l
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Overall, the bi-species ZDES framework presented in this paper provides satisfying predictions of the mixing process occurring in the near field area of the argon-air mixing layer.

Appendix A. Implicit convective fluxes

The Jacobian matrix of convective fluxes writes as:

Table A.4: Jacobian matrix A of the convective flux with respect to conservative variables ( to be multiplied by ∆S ijk,l )

Table A.5: Jacobian matrix J = M -1 AM of the convective flux with respect to primitive variables ( to be multiplied by ∆S ijk,l ).

Appendix B. Implicit diffusive fluxes

Step 1: Diffusion flux vector G 