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Abstract. L′-band (λ = 3.8 µm) and M′-band (λ = 4.8 µm) observations of the Galactic Center region, performed in 2003 at
VLT (ESO) with the adaptive optics imager NACO, have lead to the detection of an infrared counterpart of the radio source
Sgr A* at both wavelengths. The measured fluxes confirm that the Sgr A* infrared spectrum is dominated by the synchrotron
emission of nonthermal electrons. The infrared counterpart exhibits no significant short term variability but demonstrates flux
variations on daily and yearly scales. The observed emission arises away from the position of the dynamical center of the
S2 orbit and would then not originate from the closest regions of the black hole.
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1. Introduction

The conjugated increase in sensitivity and spatial resolution
provided since the end of the 90’s by adaptive optics (AO) sys-
tems on 8–10 m class telescopes has highly raised the expec-
tations to detect an infrared (IR) counterpart of Sgr A*, the ra-
dio source at the center of the Galaxy (Balick & Brown 1974).
The stellar proper motion studies performed for several years
by two competing groups, first through speckle imaging then
through AO at VLT and Keck, have made possible to trace or-
bits of several stars gravitationally bound to the central compact
mass and to confirm the black hole nature of the latter (Schödel
et al. 2002; Ghez et al. 2003).

Whatever mechanism is actually at work to produce the
radio, submm and X emission – synchrotron emission from
nonthermal electrons in a jet (Markoff et al. 2001) or a shock,
or synchrotron or even Bremstrahlung from thermal electrons
in the hot plasma of an ADAF disk (Yuan et al. 2002) –, an
IR counterpart is predicted, at flux levels which are within
reach of current infrared imagers on large telescopes. Detecting
this counterpart at several wavelengths is an important step
to strongly constrain the high frequency part of the spectrum
and thus the details of the accretion mechanism on the black
hole. Several attempts done during the past years in the L-band
around 3.8 µm have remained unsuccessful or with uncertain
results because of their lack of sensitivity (Forrest et al. 1986;

� Based on observations collected at the ESO VLT Yepun telescope,
proposal 71.B-0365(A).

Tollestrup et al. 1989; DePoy & Sharp 1991; Simons & Becklin
1996; Clénet et al. 2001).

Despite a spatial resolution insufficient to separate the pu-
tative Sgr A* IR emission from the one of S2, the closest star
to the black hole, 2002 AO L′-band observations have lead to
the detection of a possible emission from the black hole en-
vironment: from color excess derivation with NACO Science
Verification data (Genzel et al. 2003a; Clénet et al. 2004a),
from a comparison with S2 2003 photometric measurements
with Keck AO data (Ghez et al. 2004a). In 2003, S2 has suf-
ficiently moved away and the very first direct detection of an
IR emission coming from the black hole has been indeed ob-
served in the H-, Ks- and L′-bands as short duration flares of
90 min typically (Genzel et al. 2003b) and also as a more steady
emission (Clénet et al. 2004b; Ghez et al. 2004a). Together with
studies at other wavelengths (e.g., Bower et al. 2004; Eckart
et al. 2004), both results brought a confirmation of a moderately
active accretion process coupled to some mechanism, such as
a jet, to produce nonthermal electrons.

We report here the clear detection of an IR emission from
the central black hole environment at both L′ and M′ (3.8 and
4.78 µm) which brings an additional constraint on the spectrum
of the black hole emission.

2. Observations and data reduction

2.1. Observations

Observations of the Galactic Center region have been per-
formed with the 8 m VLT UT4 Yepun telescope equipped
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with NACO, the NAOS adaptive optics system coupled to
its IR camera CONICA (Lenzen et al. 1998; Rousset et al.
2000). L′-band (3.8 µm, 0.0271′′/pixel) images have been ob-
tained on 2 and 4 June 2003 and M′-band images (4.78 µm,
0.0271′′/pixel) on 3 and 8 June 2003. Thanks to the NACO
IR wavefront sensor and its ability to servo on IRS 7, the
achieved spatial resolution, measured on IRS 29N, 4.4′′ away
from the guide star, was close to the diffraction limit: 120, 132,
110, 132 mas for the June 2, 3, 4 and 8 images respectively.

At L′, on-source and on-sky images have been alternatively
acquired following an ABBA pattern, where the sky position
was 3′ away from the on-source one. A random jitter inside
a 6′′ width box was applied on both on-source and on-sky po-
sitions. Each of the two individual 1024 × 1024 pixel images
obtained at each position resulted from the mean of 60 subinte-
grations of 0.175 s. An on-source image and its corresponding
on-sky image were separated by about 75 s, for a total observ-
ing time of about 1.8 h on June 2 and 1.7 h on June 4.

At M′, acquisitions have been performed combining sec-
ondary mirror chopping and telescope nodding. By chopping
with a 11′′ or 15′′ throw to the North, an ABBA pattern has
been followed to get on-source and on-sky images, the latter
being then directly consecutive to the former. At each position,
the resulting 512 × 512 pixel image is the mean of 89 subinte-
grations of 0.056 s. Two successive ABBA patterns have been
done before randomly jittering inside a 6′′ width box. The total
observing time was about 3.2 h on June 3 and 2.8 h on June 8.

For both filters, the on-sky images have been subtracted
from the corresponding on-source ones. The resulting im-
ages have been corrected from flat-field, then from bad pixels
and finally from jittering by recentering them after a cross-
correlation analysis. Data cubes of the Galactic Center region
at different dates are thus obtained (after an image selection
at L′, based on an image quality estimation from the central
flux of IRS 29N). For each observing night, the final L′ and
M′ images have been built by applying a clipped mean on the
time series of each pixel of the field. The resulting on-source
integration times are 178.5 s (2 June) and 346.5 s (4 June) at L′,
and 224.3 s at M′ (3 and 8 June).

We also use L′-band data obtained on 30 August 2002,
during NACO Science Verification (SV), which weren’t avail-
able when writing our last article (Clénet et al. 2004a) on
the Galactic Center SV observations. Randomly jittered im-
ages have been collected within a jitter width box of 10′′. The
1024 × 1024 image recorded at each jittered position is the
mean of 150 subintegrations of 0.2 s. The jittered images have
been then corrected from flat-field and bad pixel. Each jittered
image has been subtracted of its median value to account for
large amplitude variations of the sky and stored as the succes-
sive planes of a data cube. A sky map has been built as follows:
for each pixel, the sky value is computed by averaging the val-
ues along the third direction of the data cube after rejecting the
lowest and the highest values in order to account for uncor-
rected bad and hot pixels and for stars. This sky map has been
subtracted to each data cube image. These images have been
then recentered. We have selected the images with the best im-
age quality, estimated from the central flux of IRS 29N and

Fig. 1. NACO images of the Galactic Center region at M′

(2003 June 8). Left: the field of view is 7.9′′ × 10.5′′. Right: A 2′′ ×
2′′ close up on the Sgr A* cluster. The white cross marks the position
of S2, the black cross the position of Sgr A*/IR.

Fig. 2. Same as Fig. 1 at L′ (2003 June 4).

finally averaged them. The final image corresponds to a total
on-source integration time of 28 min.

2.2. Photometry

The procedure followed to perform the absolute calibra-
tion from the relative L′-band photometry obtained with the
PSF-fitting code Starfinder (Diolaiti et al. 2000) has already
been explained in Clénet et al. (2004a). The non variable
stars used for the calibration are IRS 16C, IRS 29N and
IRS 33SE. Their absolute photometry is from Blum et al.
(1996). The M′-band calibration has been done assuming that
the following four non variable (according to Ott et al. 1999)
blue supergiants stars have a zero (L′ −M′)0 index: IRS 16NE,
IRS 16NW, IRS 16C and IRS 33SE. At L′, we estimate the
resulting photometric error to be 0.15 mag, 0.18 mag and
0.20 mag for the June 2, June 4 and the SV night respectively.
At M′, the estimated photometric error is 0.12 for the June 3
and 8 nights.
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Table 1. Astrometry and photometry of Sgr A*/IR and S2. Offsets are given in mas relatively to the dynamical center of the S2 orbit. Values
in bracketts are the offsets expressed in units of the diffraction limit. 2002 photometry has been computed assuming for S2 the 2003 weighted
mean photometry. Ref – Gh: Ghez et al. (2004a), Cl1: Clénet et al. (2004a), Cl2: this work, Ge: Genzel et al. (2003b). Sgr A*/IR and S2 being
superimposed in 2002, the offsets have been set to 0.

Date Filter
Sgr A*/IR S2

Ref.
∆α ∆δ mJy mag

2002 May 31 L′ 0 ± 6 –7 ± 7 8.2 ± 0.6 13.27 Gh
2002 Aug. 19 L′ 0 ± 3 0 ± 3 14.7 ± 6.7 12.82 ± 0.12 Cl1
2002 Aug. 30 L′ 0 ± 3 0 ± 3 14.3 ± 3.8 12.82 ± 0.12 Cl2
2002 Aug. 30 L′ 0 ± 30 0 ± 30 17.5 ± 5 12.92 Ge
2002 Aug. 30 L′ 0 ± 30 0 ± 30 30.1 ± 4 12.92 Ge
2003 May 9 L′ –9 ± 15 –4 ± 20 6.4 ± 1.9 12.92 Ge
2003 Jun. 2 L′ −12 ± 21 (0.12) −11 ± 23 (0.11) 3.2 ± 0.5 12.80 ± 0.15 Cl2
2003 Jun. 3 M′ −51 ± 19 (0.41) −5 ± 23 (0.04) 4.5 ± 0.5 12.38 ± 0.12 Cl2
2003 Jun. 4 L′ −32 ± 36 (0.33) −10 ± 17 (0.10) 3.1 ± 0.4 12.86 ± 0.18 Cl2
2003 Jun. 8 M′ −27 ± 25 (0.22) −43 ± 42 (0.35) 3.5 ± 0.4 12.36 ± 0.12 Cl2
2003 Jun. 10 L′ –8 ± 9 –1 ± 10 16.4 ± 0.8 13.27 Gh
2003 Jun. 16 L′ –15 ± 9 9 ± 8 12.9 ± 0.6 13.27 Gh
2003 Jun. 17 L′ –12 ± 13 –7 ± 18 5.9 ± 0.2 13.27 Gh

The L′ zero-point offset found by Ghez et al. (2004a) be-
tween their photometry and the one of our previous work
(Clénet et al. 2004a), L′Keck = L′Clénet + 0.37, is persisting for the
present work: from the mean S2 2003 photometry (L′ = 13.27
for Ghez et al. 2004a and L′ = 12.82 for our present work),
we find now L′Keck = L′this work + 0.45. This offset cannot come
neither from the choice of the reference stars or from the abso-
lute photometry of these reference stars: adopting the same ref-
erence stars (IRS16 NE, IRS16 SW-E, IRS16 NW, IRS16 C)
and the same absolute photometry (Simons & Becklin 1996)
as Ghez et al. (2004a), our L′ zero point is offset by only
−0.04 mag. A tentative explanation of this offset could be ei-
ther (i) the difference in location of the sky positions; (ii) or the
time delay between the acquisitions of the on-sky frames and
the on-source ones: no precision is given on this point in Ghez
et al. (2004a) and the time scale of sky emission variations can
be significantly different from the one we had. Though, dered-
dened fluxes from the different works are directly comparable
since this L′ zero point offset is compensated by an equivalent
difference of the extinction values: AL′ = 1.30 for this work
(see below) and AL′ = 1.83 for Ghez et al. (2004a).

By interpolating the extinction law values of Moneti et al.
(2001), which result for λ > 2.5 µm from the modelisation
of ISO SWS measurements (Lutz 1999), and using AK = 2.7
(Clénet et al. 2001), we obtain AL′ = 1.30 and AM′ = 1.21.
Dereddened fluxes are computed assuming zero magnitudes
values from Cox (2000): F0(L′) = 248 Jy and F0(M′) = 160 Jy.
A distance to the Galactic Center of 7.94 kpc was assumed
(Eisenhauer et al. 2003).

2.3. Astrometry

The astrometry, also obtained from Starfinder, has been per-
formed relatively to the dynamical center of the S2 orbit: us-
ing the S2 orbital parameters (Eisenhauer et al. 2003), we have
computed the offsets between S2 and the dynamical center
(e.g., ∆α = 36.1 mas, ∆δ = 75.5 mas for 2003 June 4) to
localize the latter on our images. Adopting the parameters of
Ghez et al. (2004b) would have shifted the astrometry of only
−2 mas in right ascension and +3 mas in declination. Assuming

Gaussian distributions for the S2 orbital parameters, simulating
several S2 orbits leads to uncertainties of 3 mas in right ascen-
sion and declination for the offset between S2 and the dynami-
cal center.

Astrometric errors in Table 1 result from the uncertainties
of the offset between S2 and Sgr A*/IR, computed by running
Starfinder on subdivided data cubes, and from the uncertainties
of the offset between S2 and the dynamical center (see above).

3. The L ′- and M′-band emission from Sgr A*

3.1. Detection of Sgr A*/IR

In 2002, the angular resolution delivered by AO systems on
8–10 m telescopes was not sufficient to spatially separate
Sgr A* from S2, the star at closest approach. In 2003, despite
a Sgr A*-S2 distance (85 mas) still smaller than the achieved
spatial resolution (cf. Sect. 2.1), this was no longer the case: on
all our L′ and M′ images, Starfinder detects south west to S2 a
second source with a L′ dereddened flux of 3.2 ± 0.5 mJy on
June 2, 3.1 ± 0.4 mJy on June 4, and a M′ dereddened flux of
4.5 ± 0.5 mJy on June 3, 3.5 ± 0.4 mJy on June 8 (Table 1).
This additional source appears to be located south-west from
the dynamical center. The longer the wavelength, the larger the
distance: 16 ± 22 mas and 34 ± 35 mas at L′, 52 ± 19 mas and
51 ± 38 mas at M′. This is not unexpected because the con-
fusion with S2 is less severe at M′ relative to L′ thanks to the
better colour contrast. Then the Sgr A*/IR astrometry is less
affected by the S2 brightness at M′ compared to L′.

For the following reasons, we claim that this source is most
probably the IR counterpart of Sgr A*, whose detection has
been also reported from IR observations in 2003 (Genzel et al.
2003b; Clénet et al. 2004b; Ghez et al. 2004a):

– the dispersion of the positions is small: for instance, the
largest distance between measured locations of this second
source is typically one third of the corresponding diffrac-
tion limit;

– this second source is very red with an intrinsic L′−M′ color
index larger than 0.65, a value much too high to be ex-
plained by a background star;
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Fig. 3. L′-band dereddened flux of Sgr A*/IR since mid 2002, from the gathering of all published measurements: this work (stars), Genzel et al.
(2003b) (squares) and Ghez et al. (2004a) (diamonds).

– this source demonstrates a significant variability on yearly
scale at L′ (between 2002 and 2003 photometry) and even
on day scale at M′ (between the 2003 June 3 and 8). Note
that Sgr A*/IR 2002 photometry has been computed by
subtracting the contribution of S2, assuming that it is non-
variable and correctly measured with the 2003 data.

3.2. Spectrum of Sgr A*/IR

The clear detection of the IR emission of Sgr A* at L′ (Genzel
et al. 2003b; Clénet et al. 2004a,b; Ghez et al. 2004a and
this work) must be considered as an important first step: the
flux level agrees reasonably well with the prediction for a
synchrotron emission from hot electrons (Yuan et al. 2003,
2004) and is far above the Bremsstrahlung emission of a stan-
dard ADAF model. This result tends then to support the claim
that the same population of nonthermal electrons is responsi-
ble for both the excess radio emission at low frequency (ν <
1010.5 Hz) and the IR emission, while the sub-mm bump and
the steady state X-ray emission would come respectively from
synchrotron emission by thermally distributed electrons and its
inverse Compton component.

The exact origin of the nonthermal electrons component is
not totally certain and models either point at the nozzle of a jet
where a shock delivers the energy (Markoff et al. 2001) or at
some MHD turbulence phenomenon (Yuan et al. 2003, 2004),
but in all cases, only few per cent of the energy should be in
this power law tail of nonthermal electrons.

The constraint brought by our new measurements is thus of
great importance to assess the nonthermal electrons model. If
we first consider the quiescent emission model of Yuan et al.
(2003), the agreement appears fairly good, especially at L′:
ν Lν = 1.90 × 1034 erg s−1, below the theoretical curve by
a factor 1.2. At M′, the average luminosity (ν Lν = 1.90 ×
1034 erg s−1) is below the theoretical curve by a factor of 1.5.

Our measurements indicate a flat spectrum in ν Lν, while
Yuan et al. (2003) predict a slope of synchrotron emission
of ∼0.77 around 4 µm. If we assume no significant variation
during our observations, we can explore the compatibility of
a flat spectrum with the models. The emission from thermal

electrons is excluded since the predicted flux is much below
the observed one and the slope is in addition too steep (Fig. 5
in Yuan et al. 2003). A flat spectrum at 4 µm is predicted for a
power-law index of the nonthermal electrons distribution of 2.5
(Fig. 4 in Yuan et al. 2003), but the predicted flux is too high
at 4 µm, by a factor ∼5, and in the X-rays. The model and the
observations would agree if only 0.3% of the energy were in the
nonthermal component, instead of 1.5%, but the low frequency
radio part of the spectrum could then not be fitted.

More recently, Yuan et al. (2004) have adjusted the param-
eters of their model to mainly account for the H- and Ks-band
quiescent emission of Sgr A*. Though, this updated model
underestimates the L′-band fluxes considered in their work,
which are among the highest values from Genzel et al. (2003b)
and Ghez et al. (2004a), and overestimates our quescient L′
and M′ measurements more than their precedent model.

A significant variation of the emission between the obser-
vations at L′ and M′ would more easily explain the difference
in slope between our observations the modelled spectrum: an
even larger magnitude of variation has already been observed
in a single night by Ghez et al. (2004a). In the future, obtaining
simultaneous IR measurements will be extremely valuable to
assess both the variability behaviour and to constrain the non-
thermal electron population.

3.3. Variability of Sgr A*/IR

During a night, our 2003 L′ and M′ measurements exhibit no
significant short time scale variability or periodicity, on the
contrary to what has been observed at L′ by Genzel et al.
(2003b) and Ghez et al. (2004a). Though, collecting all the
L′-band flux measurements of Sgr A* published so far (Table 1)
demonstrates that the black hole environment can experience
three types of variability in this wavelength range (Fig. 3):
(i) on a short time scale, typically 30 min (2002 Aug. 30 flare,
Genzel et al. 2003b), similarly to the near-IR and X-rays obser-
vations, with a flux amplification of a factor ∼1.5; (ii) on a day
time scale, as shown by the burst observed between 2003 June 2
and 17 (Ghez et al. 2004a and this work) where the flux varied
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by a factor ∼5; (iii) and on a year time scale with an ampli-
fication factor from 2.5 to 4.5 as observed between the 2002
and 2003 quiescent fluxes. In addition, we have observed a sig-
nificant variation in the M′ photometry of Sgr A*/IR with a
reduction of more than 20% of its flux in 5 days.

At L′, the shortest time scale variability appears then to
have the lowest amplitude and should be related to the syn-
chrotron emission of non thermal electrons accelerated in the
first few Schwarzschild radii of Sgr A*, as confirmed by the
good agreement between our flux measurements and the corre-
sponding models (Sect. 3.2).

Concerning the longer time scale variability, a star close
to the black hole, passing through an inactive accretion disk,
as proposed by Nayakshin et al. (2003) to explain the X-ray
flares, would hardly account for the bright burst observed in
June 2003: the authors claim that the typical duration of a flare
would be a few tens of kiloseconds, much shorter than the ob-
served burst, and that the longer the flares the weaker they are.

Similarly, a variability of S2 could be responsible for
the yearly variability of Sgr A*/IR we have observed be-
tween 2002 and 2003: to compute the 2002 L′ photometry of
Sgr A*/IR, we have assumed that the S2 contribution to the
unresolved S2+Sgr A*/IR source was its averaged 2003 mag-
nitude. Cuadra et al. (2003) have shown that the eclipse of S2
on its orbit by an inactive accretion disk could result in S2 flux
variations at L′ but not at H or Ks (as reported in the literature).
Though, this L′ flux variation would not occur at the observed
date, before mid 2001 instead of mid 2002, and the inner radius
of this solution (Rin = 0) would differ from the value adopted
to explain the Sgr A* X-ray flares (Nayakshin et al. 2003). An
exploration of the parameter space may account for all these
observational constraints.

The longer time scale variability should then be intrinsic to
Sgr A*/IR. The dissimilar characteristics (intensity, time scale)
of this variability compared to the shortest one suggest it could
be related to a mechanism different from the one invoked for
the short flares: either a long term enhanced accretion or a vari-
ability in the jet emission through some injection of electrons.

3.4. Position of Sgr A*/IR

Till now, it has been claimed that all IR detections of Sgr A*
were directly related to the closest parts to the black hole.
Though, for our four observing nights, whatever the filter is,
the second source detected by Starfinder is offset to the west
and more negligibly to the south with respect to the dynam-
ical center of the S2 orbit (Table 1). The previous detections
of Sgr A*/IR (Genzel et al. 2003b; Ghez et al. 2004a) show a
similar trend but with lower offset values (Table 1).

This offset is of the same order as the corresponding astro-
metric error at L′ (16 ± 22 mas and 34 ± 35 mas) and a bit
larger at M′ (52 ± 19 mas and 51 ± 38 mas). Its measurement
has therefore a rather small degree of confidence (down to 53%
at L′, 82% at M′) and may not be significant. It could result
from the still closeliness of Sgr A* to S2 in 2003 (84.6 mas,
86% of the diffraction limit at L′, 69% at M′) conjugated to the
low contrast between the two sources.

Though, if confirmed, this overall offset would trace an
emission far away from the inner parts of the black hole: the
mean location at L′ is at 3 × 103 Schwarszchild radius (RS) of
the black hole, 6 × 103 RS at M′. These emissions could still
come from the accretion disk since its outer radius (the Bondi
accretion radius) is about 105 RS but the large variation of flux
observed at L′ during the 2003 June burst may hardly origi-
nate from a region with such a weak density. Alternatively, the
emission could come from the interaction of a jet with the ma-
terial surrounding the black hole and the difference of emission
locations between L′ and M′ could then trace the different tem-
peratures of the gas and dust heated by the jet. The shift of S2
on its orbit around Sgr A* should give the opportunity to assess
this putative offset in 2004.
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