
HAL Id: hal-03785808
https://hal.science/hal-03785808

Submitted on 29 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectropolarimetry and polarization-dependent fringes
Meir Semel

To cite this version:
Meir Semel. Spectropolarimetry and polarization-dependent fringes. Astronomy and Astrophysics -
A&A, 2003, 401, pp.1-14. �10.1051/0004-6361:20021606�. �hal-03785808�

https://hal.science/hal-03785808
https://hal.archives-ouvertes.fr


A&A 401, 1–14 (2003)
DOI: 10.1051/0004-6361:20021606
c© ESO 2003

Astronomy
&

Astrophysics

Spectropolarimetry and polarization-dependent fringes�

M. Semel��

LESIA, Observatoire de Paris, section de Meudon, 92195 Meudon, France

Received 3 January 2002 / Accepted 26 September 2002

Abstract. An account is given of the formation of polarization-dependent fringes, the “enemies” of spectropolarimetry, present
practically in all polarization devices. Typically, multiple reflections give rise to secondary beams coherent with the main
beam, but with wavelength-dependent phase differences. Polarized fringes may appear in any particular Stokes parameter or
their combinations, and may (or may not) be seen in the intensity. The mechanism of formation of fringes in polarization
is demonstrated. Fringes of analyzers, beam-splitter and retarders are evaluated. Flat-fielding techniques are discussed and
ways for the removal of polarized fringes are suggested. Techniques that are efficient in removing fringes in intensity may be
inadequate or insufficient for polarization. Anti-reflection coating, for instance, may reduce fringes, but not below 10−3 of the
intensity. This level would often be acceptable for intensity measurements but not necessarily for polarization, where one may
often need to evaluate signals down to the level of 10−5, as in the observation of resonance line polarization and the second
solar spectrum. Flat-fielding, by observing disk center, may be satisfactory to remove fringes for solar observations but this is
not appropriate for stellar observations. The understanding of how these fringes are formed is essential both for the design of
polarimeters and for their proper use.
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1. Introduction

The phenomenon to be treated in this paper has been encoun-
tered by almost any observer in the field of high resolution
spectropolarimetry, but the theory remained obscure for sev-
eral reasons, including beliefs. We must clarify some aspects,
doubts and erroneous convictions before we may proceed.

1.1. Prologue: Fringes or channels?

The topic treated in this paper has not been addressed in the
literature except for one contribution in a workshop, by Lites
(1991), apparently not known to most of the astronomers in
the field of spectropolarimetry. We must admit that even the
terminology is a problem. What should we call these periodic
spurious signals? Fringes or channels?

These terms, in general, point to particular structures or
shapes and were borrowed by opticians from elsewhere (fringes
of rug, hair etc.) in order to denominate similar forms in inter-
ference experiments. There are no formal definitions for these
terms beyond the common use.

Both terms describe various results of light interference
which look periodic, but channels appear in the spectrum as
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a function of the wavelength only (as in the case of Fabry-
Perot etalon combined with a spectrograph, for instance) while
fringes are attributed to the periodic features function of space,
as in Young’s experiments; colors are seen as well, but with a
weak wavelength dependence. (However, Hecht 1987, p. 379,
uses the term fringes also in the case of Fabry-Perot etalon! The
term Channels is not mentioned at all in his book.) See Jenkins
& White (1957) for a description of channeled spectrum. The
features we are treating in the present paper are functions of
both λ and space, and could be denominated Frinnels or better
Chingpols as they are often periodic in both dimensions and
are also polarized. In any case it is clear that these periodic fea-
tures are neither pure Channels nor pure Fringes. What to call
them? We leave this important question to the academy. Leroy
(2002) clarified the semantics as follows: Multiple reflections
in a plane parallel plate placed at the pupil of the spectrograph
would create pure channels, i.e. dependent only on λ and thus
oriented perpendicular to the dispersion; practically this will be
still the case even if the plate were perfect and placed anywhere
in the beam. However, if the plate is not perfectly plane parallel
and is placed at the image (the slit plane of a spectrograph), the
features may be periodic in an oblique direction, i.e. function
of both λ and the spatial coordinate along the slit. If the plate is
a retarder, then the features are polarized as well. In this paper,
whenever the term fringes is used we mean fringes-channels
features.
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1.2. Digression: Polarization and Fresnel-Arago rule
for the appearance of fringes

The rule in question can be found in “Optics” p. 339 (Hecht
1987). A coverage of this topic is given by Wood (1911), who
mentions five rules, including those concerning occurrence of
polarized fringes. The same author (Wood 1904) performed a
nice experiment in the same field. Polarized fringes are encoun-
tered in the context of “polariscopes à franges” as well (Leroy
1998, p. 44). The misunderstanding of this historical rule is
certainly a very serious flaw to be treated in some detail.

We therefore return to the pure fringes as seen in Young’s
experiment (Jenkins & White 1957, Fig. 13F, p. 236). Using
Stokes formalism, we will treat in detail the case where the
two interfering beams are polarized in two orthogonal states
(Sect. 2). Objectively, we are not concerned by this rule.
Fresnel and Arago meant only pure fringes, beyond any spec-
troscopy! The fringes we are interested in are of quite a differ-
ent nature. However, more than once, the interpretation of the
spurious and periodic spectropolarimetric signals in terms of
polarization dependent fringes faced serious objections.

1.3. The astronomical context

The use of spectropolarimetry in astronomy is related mainly
to the measurements of magnetic fields in the sun and stars.
Magnetic fields play an important role in solar activity and
therefore have been subject to much research since the begin-
ning of the last century. In recent years, stars were used to prove
that solar type activity is very important in young stars.

Very particular tools were developed for solar magnetic
field measurements, like radiative transfer equations of polar-
ized light starting with the pioneer work of Unno (1956). A
sophisticated code for the integration of these equations was
given by Rees et al. (1989). Numerous studies of solar Zeeman
effect have improved and refined Stokes polarimetry, see for
instance Skumanich & Lites (1987).

However, fringes in spectropolarimetry still pose a serious
problem. This paper is a study of their origin and their phe-
nomenology in spectropolarimetry both in stellar and solar ob-
servations.

One of the main difficulties in spectropolarimetry is para-
sitic light. Whatever the source of this parasitic light, if it is
coherent with the main beam, fringes will appear in the polari-
metric signals and may have important consequences for data
analysis.

There are only a few papers that deal with the problem of
multiple reflections inside a quarter wave plate. Lites (1991)
treats the case of the Advanced Stokes Polarimeter. Holmes
(1964) calculated the modifications of the phase retardation
due to multiple reflections. Makita et al. (1982) discussed
fringes due to multiple reflection in a quarter wave plate.
Nevertheless, the problem of polarization-dependent fringes
has remained baffling and still requires urgent elucidation.

The precision attained in the intensity spectrum measure-
ments is affected by the presence of fringes but also by other
phenomena such as poor calibration, undetermined scattered
light, difficulties to determine the true continuum, or spectral

blends. On the other hand, very weak polarization signals
can often be observed, however, their polarization-dependent
fringes may completely swamp these signals. Various efficient
techniques for removing fringes in intensity are insufficient for
polarization. For solar observations, it is often possible to flat-
field out fringes by the employment of unpolarized light at the
disk center or the use of de-focused solar images. This method
has the disadvantage of being time consuming, which is un-
desirable in the case of good seeing since flat-fielding should
be done close to the time of observation. Thus one needs to
consider alternative ways of reducing fringes since flat-fielding
through disk center observations, efficient for the sun, is not ap-
propriate for stellar observations. Finally, all flat-fielding with
artificial light sources is unsatisfactory beyond levels of 10−3 of
the intensity. It is still very difficult to produce (artificial) terres-
trial light for flat-fielding with the quality of the celestial one.
Spectropolarimetry must take into consideration the sources of
these fringes and the ways of reducing them, by methods other
than flat-fielding.

1.4. The Stokes formalism

Stokes vectors are obtained through statistical averaging over
the coherences of the electric components of the light. The
reader may find the definition of the Stokes vector and discus-
sions in numerous papers and it will not be repeated here in
detail. We want only to stress here two points concerning this
formalism. First, the averaging may depend on the spatial, tem-
poral, spectral or angular resolutions; while a perfectly quasi-
monochromatic beam may be unpolarized, monochromatic
light (an academic situation, indeed) is always completely po-
larized. Second, uncorrelated beams (no phase relation) may be
added easily, presenting an exceptional advantage of this for-
malism; indeed, in many cases it is well justified and it has been
applied abundantly in astrophysics. This applies to the fields of
radiative transfer of polarized light, solar magnetographs, de-
vices for spectropolarimetry, calculations of instrumental po-
larization, etc. (See for instance del Toro Iniesta et al. 2000 for
a lucid assessment of modern solar Stokes polarimeters; also
see references therein for the design of these instruments.)

Thus, most of the entities in spectropolarimetry are well
represented in the Stokes regime. To many it seems that every-
thing is covered by this formalism. However, not all the physics
of light is present in this space! There are some phenomena,
even very simple ones, like fringes, that have not received the
necessary attention!

Indeed, one of the difficulties encountered in spectropo-
larimetry is the appearance of various kinds of fringes in any
combination of the Stokes parameters. For fringes in a night-
time telescope see for instance Donati et al. (1999). Themis,
(Mein et al. 1985), a recent French-Italian solar telescope, en-
countered this problem as well. In general and erroneously
enough, fringes are considered as a technical problem. Indeed
they present a puzzle in the field of spectropolarimetry, eventu-
ally assumed to be due to a defect of manufacture, and are be-
lieved to be removable by some technical devices. We consider
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that the correct strategy would be to take them into account in
the initial design.

1.4.1. Beyond the Stokes regime

In optics we can distinguish three aspects: 1) the wave propa-
gation of light where phase and amplitude are important; 2) in-
coherent addition of light where phase relation is ignored – the
realm of Stokes vectors and Mueller matrices; and 3) the mea-
surements of light and Stokes polarimetry. Most work on so-
lar and stellar polarimetry focuses on the second one where
fringes are neglected. Retarders and beamsplitters, in common
use in polarimetry, are therefore succintly described by Mueller
matrices. But optical companies do not sell soft matrices, they
sell hard optics, whose behavior is only approximated by the
common matrices. We need an excursion out of the Stokes for-
malism to calculate fringes and fortunately, as will be shown,
we may go back and integrate them into the Mueller matrices.
This may open the way to deal correctly with polarimeters and
spectropolarimetry free of fringes.

Fringes and light interference are not the only exception.
The Polarimetry and the measurements of light, is part of the
third aspect which is beyond the scope of the present paper.

1.5. The structure of the paper

As a preliminary step we must mention the Fresnel-Arago rule
(Sect. 2) to make sure that this important condition for the ap-
pearance of fringes has no bearing on our “fringes”, which are
of quite different origin (see Sects. 3 and 4).

The following Sect. 3 treats scalar fringes and shows how
very a faint beam may produce serious spurious signals in the
spectrum. This problem is not encountered in broad-band spec-
troscopy or polarimetry. The origin of the (parasitic) beam is
not specified, it can be due to multiple reflections in a plane
parallel plate or to scattered light from the edges of the optical
piece or even to defects in the optics. Essentially, in an isotropic
medium, all states of polarization may propagate without any
change except for light losses, oblique reflection excluded. No
polarization effects are expected here. However, the significant
effects of a faint parasitic light are valid also for the polarization
signals as well.

Section 4 introduces the polarized fringes, eventually pro-
duced in uniaxial crystals, polarization analyzers or retarders.
Contrary to the experiments described when discussing the
Fresnel-Arago condition, such fringes are produced indepen-
dently in each one of the eigenstates of the light in the optical
elements. No phase relation between these eigenstates is nec-
essary for the formation of fringes.

The term eigenstate of the light needs to be explained.
Also we need to show how the formation of scalar fringes can
help us to understand the formation of non-scalar fringes in an
anisotropic medium for which we will need to apply the rules of
wave propagation of polarized light. The transition from scalar
to polarized fringes is justified in Sect. 4.1.

Typically, we concentrate on uniaxial crystals, an
anisotropic medium, where the ordinary and extraordinary rays

have different laws of propagation. There are, therefore, two
eigenstates of polarized light, ordinary and extraordinary. They
propagate independently of each other and create their own sys-
tem of fringes. The two states are orthogonal linear polariza-
tions of the light. The sum of the respective fringes will appear
in the intensity spectrum, and the difference in the polarization
spectrum. Since the frequencies, the phases or the amplitudes
of the two fringe systems are different, polarized fringes may
be created. No interference between the two different states of
polarization is considered here. Mueller matrices including the
parasites effects will be derived.

Commercial achromatic retarders are composed of two dif-
ferent uniaxial crystals and deserve a Sect. 5 devoted to this
polarimetric tool in very common use. A knowledge of the
characteristics of the commercial retarders may help us to pro-
pose procedures to remove spurious polarimetric signals. This
topic is beyond the scope of the present paper and will be the
subject of a forthcoming one.

2. Fringes in interference of polarized beam
and the Fresnel-Arago rule

2.1. The fundamental rule for interference with two
beams experiments and Young’s setup

The two beams should have a phase relation for fringes to
show up.

Practically the only way to satisfy this condition is to split a
light beam and make the split beams interfere. There are many
ways to split the beams. Young used a source S that illuminated
two adjacent slits, S1 and S2. The resultant diverging beams
have therefore a phase relation and interfere. Fringes appear
on the screen (Fig. 1). For the same purpose, Fresnel invented
the double mirrors and bi-prism techniques. Lloyd performed
a similar situation with his mirror. Assuming that the reader
is familiar with these experiments, we turn to the case of po-
larized beams. In Fig. 1, the polarizers p1, p2 are now put in
front of the slits S1, S2 respectively. The most interesting case
is certainly when the polarizers are set to orthogonal states.

Now, all depends on the nature of the light emitted by the
source S. If it is natural, no fringes may appear, as in this case
the orthogonal light vibrations are completely independent. No
phase relation occur in such a case.

If the light beam at S is polarized, there is a phase relation
between the orthogonal states.

We assume that p1 is a linear polarizer oriented parallel
to the plane of the figure and yielding +Q, p2 is orthogonal
to p1 and therefore perpendicular to the plane of the figure and
yielding −Q. If the light at S were circularly polarized, a phase
relation should exist between the two vibrations at p1 and p2,
i.e. a relative delay of 90◦.

To calculate the general case of partially polarized ellip-
tical light, we must turn to quasi-monochromatic light. We
therefore assume that the light has some spectral extension and
therefore contains a range of wavelengths λ k with the corre-
sponding amplitudes Ax,k and Ay,k for the polarization orienta-
tions x and y respectively. The phases are given naturally by ε x,k

and εy,k respectively. The two corresponding linear components



4 M. Semel: Spectropolarimetry and polarization-dependent fringes

X2S

S1

S2

Y

d

p1

p2 SC
R

E
E

N

L

X1

Fig. 1. A sketch of Young’s setup for Fringes: (di-
mensions are out of proportions) S is a source of
light projected onto the slits S1 and S2, that are,
therefore, coherent sources. But the polarizers P1
and P2 in front of the slits select perpendicular com-
ponents of the electric vector. This modifies com-
pletely the possible interferences on the screen. See
text for calculations.

are therefore given by a sum of plane-waves propagating in the
z direction:

Ex =
∑

k

Ax,k exp
[
i(2π(ct − z)/λk − εx,k

]
(1)

Ey =
∑

k

Ay,k exp
[
i(2π(ct − z)/λk − εy,k

]
(2)

c being the velocity of light assumed the same for the two vi-
brations in isotropic media. We define the Stokes parameters:

I = < E∗xEx > + < E∗yEy > (3)

Q = < E∗xEx > − < E∗yEy > (4)

U = < E∗xEy > + < ExE
∗
y > (5)

V = i−1(< E∗xEy > − < ExE
∗
y >) (6)

were <> means time averaging and E ∗x means the com-
plex conjugate of Ex. The product E∗xEx contains terms like
cos(2πct(λ−1

k − λ−1
j )). When j � k these terms are (time)-

averaged to zero. We can finally write:

I =
∑

k

A2
x,k +

∑
k

A2
y,k (7)

Q =
∑

k

A2
x,k −

∑
k

A2
y,k (8)

U = 2
∑

k

Ax,kAy,k cos(εx,k − εy,k) (9)

V = 2
∑

k

Ax,kAy,k sin(εx,k − εy,k). (10)

From the geometry of Fig. 1 one may calculate the phases as
modified along the paths X1 and X2:

[X1] = (L2 + (Y − d/2)2)1/2 (11)

[X2] = (L2 + (Y + d/2)2)1/2. (12)

We then get the corresponding phase changes:

ε(1)
k = 2π[X1]/λk (13)

ε(2)
k = 2π[X2]/λk. (14)

We may rewrite these relations in a more convenient form:

∆X = (2Yd)/([X1]+ [X2]) ≈ Yd/L (15)

X2 = X1 + ∆X (16)

ε(2)
k = ε(1)

k + 2π∆X/λk = ε
(1)
k + ∆εk. (17)

We now turn to the interference of the two beam experiment
with p1 and p2 corresponding to the x and y-polarizations, and
use the parameters in Fig. 1. At point Y on the screen, the
beams have extra paths X1, X2. We use Eqs. (1) and (2), assum-
ing the same weakening, W, for all amplitudes. For simplicity,
we keep the same z in both equations and we get

Ex = W
∑

k

Ax,k exp i[2π(ct − z)/λk − εx,k] (18)

Ey = W
∑

k

Ay,k exp i[2π(ct − z)/λk − εy,k]. (19)

We replace (2πc/λk) by the angular frequency ωk and we fur-
ther simplify the last equations by substitutingωkz by the retar-
dation effects of ε(1)

k and ε(2)
k and get for the screen pointY:

Ex(Y) = W
∑

k

Ax,k exp i
(
ωkt − εx,k − ε(1)

k

)
(20)

Ey(Y) = W
∑

k

Ay,k exp i
(
ωkt − εy,k − ε(2)

k

)
. (21)

We now reconstruct the Stokes vector at the point Y on the
screen.

IS(Y) = W2I (22)

QS(Y) = W2Q (23)

US(Y) = W22
∑

k

Ax,kAy,k cos(εx,k − εy,k − ∆εk) (24)

VS(Y) = W22
∑

k

Ax,kAy,k sin(εx,k − εy,k − ∆εk). (25)

Since we considered a quasi-monochromatic light, i.e.

(λmax − λmin)/(λmax + λmin) � 1,

we may define an average of ∆εk by using an average of λk, i.e.
λ: ∆ε = 2π∆X/λ.

We rewrite the trigonometric terms in Eqs. (24) and (25):

cos(εx,k − εy,k) cos(∆ε) + sin(εx,k − εy,k) sin(∆ε) (26)

sin(εx,k − εy,k) cos(∆ε) − cos(εx,k − εy,k) sin(∆ε) (27)
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Fig. 2. Modifications of the environments around the slits S1 and S2:
in 2A (on the left) we add a polarizer P3 in front of P1 and P2 oriented
at 45◦ with them and a similar one behind the slits S1 and S2. Should
that guarantees the appearance of fringes on the screen? In 2B (on
the right) we modify Fig. 1 by removing the polarizers P1 and P2 and
replace them by two linear retarders ±λ/4 in perpendicular (or orthog-
onal) orientations. How would that affect the appearance of Fringes?

and we obtain:

IS(Y) = W2I (28)

QS(Y) = W2Q (29)

US(Y) = W2(U cos(∆ε) + V sin(∆ε)) (30)

VS(Y) = W2(V cos(∆ε) − U sin(∆ε)). (31)

The setup discussed is equivalent to the effect of a linear re-
tarder, with the retardation ∆ε, well represented by the follow-
ing Mueller matrix:

Θ(Y) = W2


1 0 0 0
0 1 0 0
0 0 cos(∆ε) sin(∆ε)
0 0 − sin(∆ε) cos(∆ε)

 . (32)

When Θ(Y) operates on the Stokes vector [I,Q,U,V], it pro-
duces the same result as in Eqs. (28)–(31). Obviously I S and QS

are fringe-free in agreement with the rule in question. However
fringes appear in US and VS. They can be seen both by using
adequate polarimetric tools and they are not in the same phase
on the screen. However, the quantity (U 2

S + V2
S) is fringe-free.

In Fig. 2A, for example, the addition of the 2 polarizers P3
allow us to recover the polarized fringes in intensity.

2.2. Young’s setup with retarders

We consider now Fig. 2B. The orientation of the slow axis of
the λ/4 plate at S1 is made to coincide with the x-orientation
and with the orientation of the fast axis of the λ/4 plate at S2.
(the two identical λ/4 are at orthogonal orientations). The y ori-
entation is therefore the fast, slow axis of the two plates at S1,
S2 respectively.

The quasi-monochromatic light is now assumed unpolar-
ized, i.e. no coherence between E x and Ey but Ex1 and Ex2 are
still coherent. Equation (1) now reads:

Ex1 =
∑

k

Ax,k exp i(2π(ct − z)/λk − εx,k − φ1,x) (33)

Ex2 =
∑

k

Ax,k exp i(2π(ct − z)/λk − εx,k − φ2,x). (34)

All the terms are those as before, plus φ1,x which stands for the
x retardance due to the λ/4 plate at the slit S1, and φ2,x which
stands for the x retardance due to the λ/4 plate at the slit S2.
When the beams reach the screen at Y, we have to incorpo-
rate ε(1)

k and ε(2)
k into the expressions of Ex1 and Ex2 respec-

tively. With the same conventions as in Eq. (20), we write:

Ex1(Y) = W
∑

k

Ax,k exp i(ωkt − εx,k − φ1,x − ε(1)
k ) (35)

Ex2(Y) = W
∑

k

Ax,k exp i(ωkt − εx,k − φ2,x − ε(2)
k ) (36)

Ex (Y) = Ex1(Y) + Ex2(Y). (37)

The intensity at the screen due to the x vibrations, i.e. I x =

< Ex(Y)E∗x(Y) >, is:

Ix

2W2
=

∑
k

(Ax,k)2
[
1 + cos(φ1,x − φ2,x + ε

(1)
k − ε(2)

k )
]

(38)

+ <
∑
k� j

Ax,k[Ax, j exp i(ωk − ω j)t + · · ·] > .

The last term is the time average of a sin and cos functions of
the time and thus averages out. As before we approximate ε (2)

k −
ε(1)

k ≈ −∆ε Also, in virtue of our assumption of identical and
orthogonal λ/4 plates, we have the following phase relations:

φ1,x − φ2,x = π/2 (39)

Ix = (Ix,max/2)(1 + cos(∆ε + π/2)). (40)

Note that, Ey1 and Ey2 are coherent as well and therefore

φ1,y − φ2,y = −π/2. (41)

Thus, the intensity of the y component is given by:

Iy = (Iy,max/2)(1 + cos(∆ε − π/2)). (42)

In the absence of polarization in the incoming beam:

Ix,max = Iy,max = Imax. (43)

The Stokes vector is given by:

I(Y) = Ix + Iy = Imax (44)

with no fringes in the intensity. However,

Q(Y) = Ix − Iy = Imax cos(∆ε + π/2) (45)

which means that polarized fringes in the linear polarization
appear in Q. It is easy to check that

U(Y) = V(Y) = 0. (46)

Fringes appear therefore in the linear polarization parallel to
the axis of the λ/4 plates.

Let us repeat the previous experiment with linear retarders,
of retardance ±θ and with the same orientation as before.
Equations (40) and (42) are replaced by:

Ix = Iy,max(1 + cos(∆ε + θ))/2 (47)

Iy = Iy,max(1 + cos(∆ε − θ))/2. (48)
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And Eqs. (44) and (45) by

I(Y) = Ix + Iy = Iy,max(1 + cos(∆ε) cos θ) (49)

Q(Y) = Ix − Iy = −Iy,max sin(∆ε) sin θ. (50)

Note that the fringes in Q(Y) are shifted relatively to those
in I(Y) by 90◦. They shift from one to the other of the Stokes
parameters according to the value of θ. However the total in-
tensity of the fringes is invariant.

[
(Q(Y)2 + (I(Y) − Iy,max)2

]1/2

=
Iy,max√

2
· (51)

The fringes may switch between I,Q,U and V, sometimes as a
function of wavelength. This phenomenon is the principal topic
of the present paper.

3. Scalar fringes

In this section we provide a simple demonstration of how the
fringes in question appear. We consider the case in which the
speed of light at a given wavelength is independent of the type
of vibrations of the electric vector (circular, linear, or elliptical)
This also implies the same index of refraction for all the states
of polarization. In such a case, the fringes are the same for all
the components of the Stokes vector and will be referred to as
“scalar fringes”.

Under certain circumstances (to be treated in the next sec-
tion), the speed of light, and therefore the refraction indices,
may be different for different types of vibrations of the elec-
tric vector. This is the case of double refractive media, where
polarization dependent fringes may appear.

Let us examine the interference of two light beams: a prin-
cipal one and a secondary one. It is shown that even a weak
and apparently insignificant secondary beam may lead to quite
significant spurious signals. At a given point, the electric fields
in the principal and secondary beams are denoted by A cos(ωt)
and B cos(ωt−φ) respectively where the usual symbols for am-
plitudes, angular frequency and time are used. The phase retar-
dance of the secondary beam is denoted by φ.

The addition of the electric vibrations of the two beams
yields

E = A cos(ωt) + B cos(ωt − φ). (52)

The total intensity is given, as usually, by

I = < E2 >= A2/2 + B2/2 + AB cosφ (53)

= IA + IB + AB cosφ.

As an illustration, consider the case where the secondary beam
is 106 times weaker than the principal one (IB = 10−6IA) and
therefore may be looked as negligible and bellow the tresh-
old of detection. However, B = 10−3A and therefore the third
term AB cosφ has an amplitude of 2 × 10−3I and cannot be
neglected.

The phase delay φ of the secondary beam may be wave-
length dependent, as will be shown in the next subsection, thus
explaining the appearance of fringes in wavelength or channels.

Amplitude and phase calculations

For the evaluation of fringes in polarization, later on we will
need to calculate changes in amplitude and phase caused by
the secondary beam. We rewrite Eq. (52) in complex notation

E = A exp(iωt) + B exp(iωt − φ). (54)

Consider now the expression:

E = C exp
[
i(ωt − ψ)

]
. (55)

Equating these last two equations we have

A + B exp(−iφ) = C exp(−iψ) (56)

which allow us to evaluate C and ψ. By equating the imaginary
parts,

B sinφ = C sinψ (57)

and using the relation |B/C| � 1 (as in last subsection exam-
ple), leading to | sinψ| � 1, one finds the phase modification

ψ ≈ sinψ =
B
C

sinφ. (58)

To complete this exercise we calculate the amplitude C by
equating also the real part,

A + B cosφ = C cosψ (59)

to obtain

C2 = A2 + B2 + 2AB cosφ (60)

corresponding to Eq. (53) We note the change in the amplitude
of the electric oscillation:

C
A
≈ 1 +

B
A

cosφ. (61)

Equations (58) and (61) that give the changes in phase and am-
plitude are the basic tools to evaluate fringes of all kinds.

3.1. Fringes in a plane parallel plate

Consider a beam of light passing through a plane parallel plate
(of glass) of thickness d and refractive index n. Let us call the
“main beam” the light that has been refracted at the first surface
and again at the second surface. However, some of the light
reflected at the second surface may be reflected again at the first
surface and then come out at the second one: we will call it the
“secondary beam”. We postpone the discussion of the higher
order beams i.e., those undergoing multiple reflections at both
surfaces of the plate. The secondary beam, resulting from two
reflections at normal incidence, is retarded relative to the main
one with a phase difference

φ/(2π) = 2dn/λ (62)

where λ is the wavelength in vacuum. We recall that cos φ
has maxima when φ/(2π) = m is integer, and minima when
φ/(2π) = m + 1/2. Thus, maxima occur at λm = 2dn/m and
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minima at λm+1/2 = 2dn/(m+1/2). The modulation of the light
as a function of λ has a period

P = λm − λm+1 ≈ λ2/(2dn). (63)

According to Fresnel, the reflected beam from a dielectric sur-
face at normal incidence has a reflection coefficient

R =
(n1 − n2)2

(n1 + n2)2
(64)

where n1, n2 are the indices of refraction of the two media. For
glass/air reflection, with indices n2 = 1.5 and n1 = 1 respec-
tively, one obtains R = .04. In the case of a plane parallel glass
the relative intensity of the secondary beam is I B/IA ≈ R2. The
third term in Eq. (53), 2RIA cos φ, indicates now that fringes
have quite a significant relative amplitude, 2R.

Indeed, the intensity of the fringes is related to the ratio
of the amplitudes of the electric vibrations of the two beams
B/A = R = 0.04.

Neglecting the second term in Eq. (53), we can replace this
equation by:

I ≈ IA(1 + 2R cosφ). (65)

The demonstration here is only indicative, as several other
factors may influence considerably the appearance of fringes.
Anti-reflection coating may reduce R by an order of magnitude,
the amplitude of the beam B is then reduced by the same factor.

3.2. Localization and apparent intensities of fringes

For fringes to be seen in the spectrum, we need to have the main
beam A and the secondary beam B in coherence. In our exam-
ple in the previous subsection we considered a thin and perfect
plane parallel plate perpendicular to the light beam. Take now,
for instance, a prismatic plate: the fringes are localized on the
plate, the direction of propagation of the beam B differs from
that of A. There is a shift between the images corresponding to
two beams when formed on the spectrograph slit, and thus the
beams A and B entering the slit are not coherent. Similarly, in
the case of solar observations, we cannot bring into coherence
beams originating from different parts of the image of the sun.
The same occurs with tilted plates: the beam B is displaced rel-
atively to A. In thick optical pieces, the additional round trip
of the secondary beam causes different results in different focii
for A and B. Tilted, prismatic or thick plates may reduce or
even make disappear fringes. In short, we have not considered
the details of the optical set-up: Convergent or divergent beams
may exhibit much fainter fringes. A tilt of an optical piece may
be effective to remove fringes, but may have other disadvan-
tages. In other words, we may explain the fringes we see, we
do not explain the fringes that we do not see, and we have only
a relative estimate of the intensity of those fringes. The same
comments are relevant also to polarized fringes.

4. Polarization-dependent fringes

So far, we sketched the formation of scalar fringes, where the
state of polarization was not relevant. We will now turn to

the Stokes vector. A Stokes vector must obey the conditions:
I2 ≥ Q2+U2+V2, but the ensemble of fringes in all the parame-
ters do not form a four-vector with appropriate conditions for a
norm; there may be no Stokes vector representing the polarized
fringes. Nevertheless, a Stokes vector describing polarized light
may include the effect of fringes in each of its components.
Also, an optical device which is at the origin of fringes may be
represented by a Mueller matrix operating on Stokes vectors
and display the formation of polarized-dependant fringes.

4.1. On the origins of the polarization in fringes

Uniaxial crystals are used for both retarders and beam-splitters
(analyzers). For the definitions of uniaxial and birefringent
crystal, see Hecht (1987) p. 288. These crystals have refraction
indices that are a function of the orientation of the vibrations
of the electric field relative to the optical axis. For vibrations
perpendicular or parallel to the optical axis, the refraction in-
dices are the ordinary nO and the extraordinary nE, respectively.
For an arbitrary direction of vibration the refractive index is in-
termediate between nO and nE. Expressions for the indices of
refraction of the two vibrations as well as for the phase retar-
dances may be found in Semel (1987). A beam of light pass-
ing through a plane parallel plate of a birefringent crystal will
be accompanied by secondary beams due to the reflections at
the surfaces of the plate. Because of the double refraction, the
indices of refraction are dependent on the orientation of the
light vibrations and we may anticipate two types of secondary
beams – one for each vibration but with different intensity and
phase retardation. They yield different fringes in intensity and
frequency, and hence polarization-dependent fringes.

4.2. Analyzers

There exists a variety of beam-splitters for the purpose of polar-
ization analysis. They often split the light into two orthogonal
states, in general linearly polarized and create fringes as well.
We will comment here on the simplest and most common.

4.2.1. The single-piece calcite

The analyzer, extensively used in the past and described in text-
books on optics consists of a single calcite with its optical axis
cut nearly to 45◦ with the surface. A beam of light passing
through the crystal is split and appears as ordinary and ex-
traordinary rays, in two orthogonal states of linear polarization.
The main limitation of this simple solution concerns imaging.
Whenever the latter can be neglected (say just one point is ana-
lyzed) this device may be safely used. When a two dimensional
image has to be analyzed and spatial resolution is important (as
in many problems in solar physics) image distortion may be a
heavy handicap. Here, we will deal only with the fringes asso-
ciated with this device. The electric vibrations of the ordinary
beam are in the plane perpendicular to the optical axis and those
of the extraordinary one are in the plane including this axis.
Each of the rays will display fringes with different amplitudes
and periods. In calcite, where nO > nE the amplitude and the
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period of those pertaining to the ordinary ray are significantly
greater than those of the extraordinary one. To calculate the pe-
riods of the fringes one can use Eq. (63) and replace n by n O

for the ordinary ray, and by n̂ = nOnE/n̄ for the extraordinary
one (see Semel 1987 for the definitions of these terms).

In general the light to be analyzed is processed through a
series of unspecified retarders and becomes a Stokes vector I
to be analyzed by the beam-splitter into IO and IE. Neglecting
light losses, the ordinary and extraordinary beams may now be
replaced respectively by

IO(1 + 2RO cos φO) (66)

IE(1 + 2RE cos φE) (67)

where RO,RE are the reflection coefficients and φO, φE are the
retardations for the ordinary and extraordinary beams, while I O

and IE are the incoming intensities of the ordinary and extraor-
dinary beams respectively.

Polarimetry in this context should be the comparison of
the two beams, i.e., IO and IE, but here, undesired terms ap-
pear,namely

IORO cosφO (68)

IERE cos φE. (69)

Their sum would be the origin of fringes in the intensity and
their difference would be the source of polarized fringes due to
this type of beamsplitters.

This single calcite has also several disadvantages as, for
instance, different foci for the two rays. It has often been used
in the past, but replaced nowadays by better combinations.

4.2.2. The two crossed crystals (Semel 1980)

Improved beam-splitters arise from this combination and are
currently in use in many astronomical sites. They have better
focii for the two beams, that are now both ordinary and ex-
traordinary in a sequential way, as we will see. Moreover, they
have a better symmetry since the states of the linear polariza-
tion of the two beams are at 45◦ with the splitting direction and
with the axes of symmetry of the spectrograph, for instance.
Residual astigmatism may be reduced by several means, for in-
stance, a special cut creating a small angle of the optical axis
with the normal to the surface (see Semel 1987, for other solu-
tions).

Whether these plates are cemented, coated or in immersion,
reflections cannot be avoided, since the refractive indices in-
volved are different, corresponding to the ordinary and extraor-
dinary rays of the crystals, the cement used or the immersion
liquid. All these create fringes that are polarization-dependent
and with quite different frequencies.

We suggest a reference system (not-specified here), where
angles may be measured; second, in this system we take the

angles: 0◦ and 180◦; 90◦,−90◦; 45◦ and−135◦; −45◦ and 135◦
to correspond to Q,−Q; U and −U,

Φ Stokes
0◦ Q

90◦ −Q
45◦ U

135◦ −U.

A perfect analyzer with a separation of the beams in the di-
rection of θ = 0◦, 180◦ and the states of polarization at ±45◦
(i.e., ±U) can be described by the two matrices, for I ± U:

A(±U) =
1
2


1 0 ±1 0
0 0 0 0
±1 0 1 0
0 0 0 0

 . (70)

For simplicity, we neglect the difference in transmissions of the
two beams and concentrate on the formation of polarization-
dependent fringes. The ordinary and extraordinary beams I O

and IE in the preceding example are now replaced by I OE

and IEO. The first, IOE, is the ordinary ray in the first crys-
tal and the extraordinary one in the second one. The second
beam IEO is the converse case. While the two crystals may be
similar enough to guarantee imaging and other advantages of
this combination, they cannot guarantee the same phases for
the various fringes. It is enough that they have a difference of
thickness of 0.05 µ for the respective fringes to be shifted rela-
tively by a significant amount.

Similar to the first example we replace the first beam by

IOE(1 + 2RO cos φO1)(1 + 2RE cosφE2) (71)

and the second beam by

IEO(1 + 2RE cosφE1)(1 + 2RO cos φO2), (72)

with similar meaning as before, except that this time, the in-
dices 1 and 2 point to one or other crystal. φO2 etc. are all dif-
ferent, as explained.

The two Mueller matrices are now:

A(+U) =
1
2

(1 + 2RO cos φO1)(1 + 2RE cos φE2)

×


1 0 +1 0
0 0 0 0
+1 0 1 0
0 0 0 0


(73)

and

A(−U) =
1
2

(1 + 2RE cosφE1)(1 + 2RO cos φO2)

×


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 .
(74)

The two crystalline plates will make possible the appearance of
two different systems of polarization-dependent fringes.
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4.3. Linear retarders and the reconstruction of Mueller
matrices

Assume a pure linear retarder, with the ordinary axis parallel
to x and made to increase by θ the phase difference between
the electric vibrations parallel to x (Φ = 0◦), Ex and those
parallel to y (Φ = 90◦), Ey. Neglecting multiple reflection and
light losses inside the retarder, the Mueller matrix looks like:

Θ =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

 . (75)

In the following we will use the abridged notation of 2 × 2
matrices,

M(θ) =
( cos θ sin θ
− sin θ cos θ

)
, (76)

N =
(

0 0
0 0

)
, (77)

U =
(

1 0
0 1

)
, (78)

Θ =

(U N
N M(θ)

)
. (79)

This matrix changes U and V but does not affect I or Q (with
the usual notation of the Stokes vector: (I,Q,U,V)). We now
add the effects of double reflections between the two optical
surfaces of the retarder and modify the Mueller matrix Θ to
include these effects. First, we calculate the secondary beams
for each one of the vibrations. For the x vibrations (E x) of the
secondary beam, the phase difference, according to Eq. (62) is:

φO = 4πdnO/λ. (80)

For the extraordinary vibrations we obtain:

φE = 4πdnE/λ. (81)

The retardance of this plate is simply related to these phases as
follows:

θ = (φE − φO)/2 = 2πd(nE − nO)/λ. (82)

Note that θ is the phase retardance of the main beam due to
its unique pass through the plate, while φE,O were defined for
a round trip in the plate for the secondary beams, hence the
division by 2 in Eq. (82). Let us call

Ixin = (I + Q)/2 (83)

Iyin = (I − Q)/2 (84)

the incoming intensities of the vibrations parallel to x and y
which may also be called ordinary and extraordinary, respec-
tively. Also we call RO and RE the coefficients of reflection at
the plate surface for the two beams O and E, respectively. They
may be different since the indices that enter the Fresnel formula
are not the same for the ordinary and extraordinary beams.

Including the effects to the first order in RO and RE, the
outgoing intensities are (light losses at the plate surfaces in-
cluded):

Ixout = Ixin
[
1 + 2RO(−1 + cos φO)

]
(85)

for the x or O vibrations and

Iyout = Iyin
[
1 + 2RE(−1 + cosφE)

]
(86)

for the y or E vibrations.
Let us call the outgoing Stokes parameters Iout, Qout etc.

Then

Iout = Ixout + Iyout (87)

Qout = Ixout − Iyout. (88)

We have to modify the matrix Θ in Eq. (75) to include these
effects as follows:

Θ11 = Θ22 = (1 + RO(cosφO − 1) + RE(cos φE − 1)) (89)

Θ12 = Θ21 = RO(cosφO − 1) − RE(cosφE − 1)). (90)

When (nE − nO) is small we may anticipate that
RO ≈ RE, and therefore

Θ11 = Θ22 ≈ 1 − 2RO + RO(cosφE + cos φO)

Θ12 = Θ21 ≈ RO(cosφE − cosφO).

For a quarter wave plate one has θ = π/2 and therefore,
in virtue of Eq. (82), cosφO = − cosφE. Thus Θ11(π/2) =
Θ22(π/2) are free of fringes but Θ12(π/2) = Θ21(π/2) are rich
sources of fringes, mainly in Q “contributed” by I.

On the contrary, in a half wave plate, θ = π, the fringes
appear in the intensity I only, as well as in the case of a full
wave plate. The other Stokes parameters are free of fringes.
If a polarimeter includes several retarders, one may expect all
kinds of fringes, in any of the Stokes parameters and (or) in
linear combinations of them. These fringes do depend on the
orientations of the retarders and change upon rotation. (This
has a serious bearing on the actual polarimetry.)

The other terms in the matrix Θ are also affected by the
double reflection. To show this, one has to consider the new
modified phases and amplitudes upon the addition of the sec-
ondary beam.

We apply Eqs. (58) and (61) to our retarder, and, to the
first order in RO and RE, the amplitudes of the ordinary and
extraordinary vibrations are modified by the factors:
[
1 + RO(cosφO − 1)

]
and

[
1 + RE(cosφE − 1)

]
(91)

respectively.
The terms cos θ and sin θ in the matrix Θ should be there-

fore multiplied by
[
1 + RO(cosφO − 1)

] [
1 + RE(cosφE − 1)

]
(92)

the angle θ should be replaced by

θ + RE sin φE − RO sinφO. (93)
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This represents a quite different kind of periodicity, in a new
dimension: fluctuations of the retardance with wavelength, see
Holmes (1964). Indeed, it is known as the effect of multiple
reflection on the retardation.

For illustration, we present here the calculation of these ef-
fects for a particular orientation of the device. Note that the
matrix constructed is still a Mueller one and is subject to ro-
tation through the usual matrix algebra. (See Shurcliff 1966,
p. 116.)

5. The achromatic quarter wave plate – the Fichou
type in the visible

In the case of a perfect λ/4 plate, one has

Θ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 . (94)

However, in practice we can only approach it. Fichou’s com-
mercial achromatic λ/4 is commonly used in astrophysics and
deserves special attention1.

It is composed of two plane parallel uniaxial crystals MgF2

and Quartz. They are made to compensate the wavelength de-
pendence and obtain a nearly achromatic plate in the visible.
Let us represent the incoming light by the components of its
electric vector along the x and y axes, as

Ex cos(ωt) (95)

Ey cos(ωt + ψ) (96)

where ω is the angular frequency and ψ the phase difference
between the two components. After passing through a uniaxial
crystal plate the components are:

Ex[cos(ωt − φx) + αx(cos(ωt − 3φx)] (97)

Ey[cos(ωt + ψ − φy) + αy cos(ωt + ψ − 3φy)] (98)

where the retardation phase changes are, respectively

φx = 2πnxd/λ (99)

φy = 2πnyd/λ (100)

nx,y being the respective indices of refractions and d the thick-
ness of the plate. We neglect the losses of the main beams but
consider the contribution of the additional beams, due to reflec-
tions at each surface, with the relative amplitudes α x,y < 10−2,
(the relative smallness is due to anti-reflection coatings, usually
applied to these commercial achromatic retarders). Since these
secondary beams pass the plate three times, the phase retarda-
tion is, consequently, three times that of the main beam. Higher
order beams are neglected. The two electric components are
now approximated by:

Ex(1 + αx cos 2φx) cos(ωt − φx + φxx), (101)

Ey(1 + αy cos 2φy) cos(ωt + ψ − φy + φyy), (102)

1 Optique de Précision. Jean Fichou, 30 rue de la Garenne, 94260
Fresnes, France.

where

sinφxx = −αx sin 2φx. (103)

A similar expression holds for φyy. The effects of these terms
will be additional small fluctuations of the retardation phase.
We now construct the Mueller matrix that describes the ef-
fects of this uniaxial plate. From the last expressions, we derive
the factors by which the amplitudes of the electric vibrations
change: for the x and y vibrations:

Cx = (1 + αx cos 2φx) (104)

Cy = (1 + αy cos 2φy). (105)

At the same time, the phase difference between the two vibra-
tions changes by the amount of:

γ = −φy + φyy − (−φx + φxx). (106)

In order to replace U in Eq. (78), it is convenient to define a
sub-matrix CX,Y as follows:

CX,Y =
1
2

(
C2

x +C2
y C2

x − C2
y

C2
x −C2

y C2
x + C2

y

)
, (107)

Then, one obtains the compact presentation to replace Eq. (79):

Θ =

(CX,Y N
N CxCyM(−γ)

)
. (108)

One can easily verify that in absence of reflections, i.e., α x =

αy = 0 the last matrix is reduced to the standard Mueller ma-
trix of a linear retarder. However, in the case of very low polar-
ization the cross-talk from I to Q in the shape of fringes may
become very important. To complete the construction of the
achromatic λ/4 one has to “add” the two plates. Thus, we de-
note a Mueller matrix ΘM for the crystal MgF2 and ΘQ for the
quartz. According to the instructions of the maker we should
allow for a possible misalignment of the order of 15 min. The
thickness of the two plates (dM = 187.9 µ and dQ = 227.1 µ) is
chosen so as to obtain by subtraction 90◦ retardation at λ = 425
and 625 nm. In between, the deviation may reach 4.5 ◦ at most.

Here, we will evaluate each of the effects as if it were pos-
sible to neglect all the others. This is justified because all of the
effects are small. First, we will present the result of the mis-
alignment. Next, we will assume perfect alignment and con-
sider the two plates as if they were cemented and that the
phase differences are the results of the algebraic addition of
the phases of the individual plates and thus given by:

φx = φxM + φxQ (109)

φy = φyM + φyQ (110)

where the indices M and Q stand for MgF2 and Quartz, respec-
tively. The two plates being crossed, the ordinary ray for the
first plate is the extraordinary for the second. The resultant γ
corresponds approximately to a quarter wave plate,

γ ≈ π/2 (111)

and in the following we will assume that

φx − φy ≈ π/2. (112)
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With the approximation

αx ≈ αy = α (113)

we obtain

C2
x + C2

y ≈ 2 (114)

C2
x − C2

y ≈ −2α sin(φx + φy). (115)

We now define

β = −α sin(φx + φy), (116)

and use the relation

CxCy ≈ 1. (117)

We abridge

Uβ =

( 1 β
β 1

)
(118)

to obtain finally,

Θ =

(Uβ N
N M(−γ)

)
. (119)

The term that causes linearly polarized fringes parallel to the
optical axis is β. At λ = 5000 Å, the expected periods are
roughly 3.5 Å for the Quartz and 4.8 Å for MgF 2. The dif-
ferences of periods of the ordinary and extraordinary rays are
roughly∆PQ = 0.02 Å for Quartz and∆PM = 0.02 Å for MgF2.
These differences correspond to fringes created in each of the
crystals separately. When the crystals are cemented, the fringes
created by the outer surfaces have roughly the period of 2 Å.

We can comment here on the different effects present (see
Appendix B):

– Alignment: The axis of the composite λ/4 is λ dependent
and it will pivot around the axis of the second plate encoun-
tered by the light in a swing of ±15 min, at least.

– Internal reflections: It may be the most troublesome, mainly
in the case of weak polarization. The fringes in linear polar-
ization parallel (or perpendicular) to the axis of the crystals,
with a relative amplitude α of the order of 10−3 to 10−2, may
be hard to remove. The usual technique of flat-fielding may
be of great help, but will fail if the flat-field exposures are
distant in time from the observation. If, for instance, each
plate is cut and polished to λ/10, the fluctuations of the
thickness d are

δd ≈ ±λ/(10(n − 1)) (120)

and the corresponding phase differences, in units of λ, are

δφ = 2δdn/λ = ±2n/(10(n− 1)).

For n = 1.5, δφ ≈ ±0.6 there are little or no phase cor-
relations for fringes due to different parts of the λ/4 plate.
The frequency of the fringes might be the same all over the
λ/4 retarder, but the phase may fluctuate by ±200 degrees.
In other words the fringes are the same for two exposures
only if the light goes through the same part of the plate each
time.

– Fluctuations in retardation they are due to multiple reflec-
tions, Holmes (1964).

6. Conclusions

1. For fringes to appear, we need two coherent beams that
may interfere. We anticipater that optical path differences
between the two beams lead to positive and negative inter-
ferences successively and create fringes.

2. In this paper we first discussed the formation of fringes in
a two beam set-up as introduced by Young and realized by
Fresnel, Arago and many others. In this first type of fringes,
the path differences (and phases) are due to geometrical dif-
ferences.

3. When the beams are coherent, the two perpendicular vi-
brations of the light may or may not have a phase relation
(the condition necessary for fringes). When the two beams
are linearly polarized in orthogonal states, there will be
no fringes in intensity, in full agreement with the Fresnel-
Arago law. But polarized fringes are possible, depending
on the polarization of the light at the source.

4. Finally, we simulate a new “experiment” that it shows
fringes of an intermediate character between the Fresnel-
Arago type and the multiple reflection type which is the
subject of this paper.

5. The second type of interference, and the resulting fringes,
are of a quite different nature. Typically, multiple reflec-
tions in a plane parallel plate create secondary beams with
phase differences due the excess of crossings inside the
plate. Scalar fringes are described first. Next, we find a tran-
sition to polarized fringes.

6. In birefringent media and, in general in all retarders a quite
different process is invoked. The eigenstates of the light in
general are polarized in anisotropic media. They also have
different light velocities. Each eigenstate develops its own
pattern of fringes. The sum of the two eigenstates may show
fringes in intensity or in polarization depending on the fre-
quencies and the phases of the fringe pattern of each one
of the eigenstates. Particularly, their phase fluctuates con-
siderably over each of the optical components. Therefore,
the necessary condition for using flat-fielding techniques is
that the light beams during the exposures for flat-fielding
and for real observations go in an identical way through all
the optical components. It is therefore desired to develop
an adequate concept of polarimetry for both solar and stel-
lar objects; the calculations presented here will prove to be
useful for this purpose. One may anticipate the successful
use of the concept of polarimeters free of fringes and the
establishment of suitable observational procedures for the
removal of fringes in actual polarimeters.

7. Epilogue: Stokes polarimetry, fringes
and the related phase relations

Stokes polarimetry requires the consideration of three cate-
gories of phase relations:

1. The historical definition of a Stokes vector: phase
relations are defined locally and simultaneously between
orthogonal components of the light and lead to the usual
Stokes vector (or parameters). The polarization in the stellar
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atmosphere is due to various physical process like light diffu-
sion, Zeeman and Hanle effects and impact polarization.

2. Phase modifications are introduced successively or non-
locally to perform measurements. The technology of polarime-
try does not simulate the phase relations as in the first kind, but
it changes the state of polarization by using Mueller matrices
to allow for the desired measurements.

3. Interference effects (and polarized fringes) due to un-
avoidable secondary beams in the optics depend on the phase
relations. Here, the phase relations concern any component in
one of the beams with any other component in another beam,
even in the absence of any particular polarization. Usually the
two interfering beams are originally beamsplit from one origi-
nal. The phase differences may be due to optical effects in the
set up.

It looks like most of the efforts and attention of the po-
larimetrists are directed to the formalism of Stokes vectors and
Mueller matrices: the formalism of the Minkowski space López
(1999). Indeed, it is a fancy space in Wonderland governed
by elegant and sophisticated algebra. Prisoner of this formal-
ism, the polarimetrist neglects the other optical effects. We find
no comments on polarization dependent fringes in books like
Shurcliff (1966). True, the problem does not appear in broad
band polarimetry. However, nature speaks also in the language
of polarized fringes and we must admit that the realm of light
interferences and phase relations concerns us as well when we
use spectropolarimetry in high spectral resolutions. It may be
claimed that the Jones calculus takes into account any interfer-
ence effect. As will be shown in Appendix C, the Jones calculus
is definitely insufficient and does not solve the problem.

Now, when we turn to the spectropolarimetric measure-
ments we must face considerations that do not appear in either
Stokes or Jones calculus.

When we contemplate spectropolarimetric measurements,
we must admit two different methods: 1) the common de-
structive methods, 2) the non-destructive methods. Minkowski
space, where four-vectors are best described, does not postulate
how to measure Stokes Vectors.

1) The common destructive methods
By using a linear polarizer we may measure, for instance, I+Q.
By using a beamsplitter we may even measure simultaneously
two beams I ± Q. After the measurements we lose the light.
In order to measure all Stokes parameters, we need to repeat
the measurements for I±U and I±V, assuming that the source
is constant, including atmospheric and instrumentation effects.
We call these destructive methods because after each operation
the light is lost. Can we measure each of the Q,U and V directly
inside the Minkowski space and keep the light?

2) The non-destructive option
In principle it is possible. When a beam of light goes through
a λ/2 plate, its V and therefore also its angular momentum
changes its sign. By the physical principle of angular momen-
tum conservation, the λ/2 plate has acquired the angular mo-
mentum corresponding to 2V. We may measure it and not lose
the light. Therefore, we call the measurement non-destructive.
The physics is perfect, but there is no industry to invent the in-
strumentation. We are not able to assess the methods without
intensive experimentation.

But, even the destructive methods have their shortcomings,
constraints and parasite effects like polarized fringes.
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Appendix A: A justification of the application
of the scalar method to polarized fringes

For calculations of phases, one may use each one of the eigen-
states as if it were propagating in an isotropic plate, but with
the adequate refraction coefficient or light velocity. The term
eigenstate of light needs to be explained. Let us take, for in-
stance, a quarter wave plate: a beam of light may penetrate the
plate in a circular polarization state and exit in a linear one.
Circular polarization is, therefore, not an eigenstate in this case.
When the linear polarization is parallel, either to the fast or to
the slow axis, it travels unchanged, while for any other orien-
tation it will come out elliptic. Thus a linear retarder has two
eigenstates of linear polarization, one parallel and another one
perpendicular to the optical axis. The ordinary beam (electric
vector always perpendicular to the optical axis of the crystal)
propagates according to the same rules as for light in isotropic
media and Sect. 3 applies.

The extraordinary beam is still linearly polarized. However,
the refraction is not the same as for isotropic media, also the ve-
locity of light is direction-dependent. It is easy to find out ex-
perimentally what the eigenstates in question are. The optical
piece in question is placed between two linear polarizers that
are turned until extinction is obtained. Its level can reach 10−5

with little difficulty depending on the quality of the polariz-
ers and the alignment. In the limits of normal incidence on re-
tarders, the method is perfect.

Appendix B: Some properties of the Fichou’s
achromatic λ/4 plate

We skip the case of cemented plate and discuss the laser qual-
ity λ/4 case. Following the discussion in Sect. 5, we may inte-
grate all the defects. Thus the total matrix ΘT should look like:

ΘT = [ΦM][ΘM][ΦM]−1[ΦQ][ΘQ][ΦQ]−1. (B.1)

Assuming that all errors are small, we keep only linear terms
and neglect quadratic or mixed terms. The last expression may
be developed easily as follows: If the alignment were perfect,
the matrices [ΘM] and [ΘQ] should be in orthogonal orienta-
tions for subtraction, i.e. at 90◦. However a mis-alignment of 2δ
is considered with the following symmetric orientations: the
two crystals are misaligned relatively to the zero-axis (or axis
of symmetry) by ±δ:

[ΦM]−1 = [ΦQ] = [δ] ≈


1 0 0 0
0 1 2δ 0
0 −2δ 1 0
0 0 0 1
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Fig. B.1. The absolute value of the fringes in Stokes I, between 4000
and 8000 Å as created by the quartz plate. Having too small periods (3
to 6 Å roughly) to be resolved in the figure, the bulk of fringes coincide
with the dark area. The amplitude, at the peak, was taken arbitrarily
to 1% of the local intensity (i.e. of the Stokes parameter I), and for
both I and Q0 in all figures.

where for |δ| � 1, we have substituted cos δ ≈ 1 and sin δ ≈ δ.
Thus Eq. (B.1) reads:

ΘT = [−δ][ΘM][2δ][ΘQ][−δ]. (B.2)

The effect of δ has been explained in the first item in Sect. 5 as
the pivoting of the axis of the λ/4 plate with wavelength.

We therefore continue with the other effects by neglecting δ
and beyond the pivot effect:

ΘT ≈ [ΘM][ΘQ]. (B.3)

If we neglect fringes for a moment, and we assume that ΘT

should be a nearly perfect λ/4 plate, with a small error of retar-
dance ε:

ΘT ≈


1 0 0 0
0 1 0 0
0 0 cos(π/2 + ε) sin(π/2 + ε)
0 0 − sin(π/2 + ε) cos(π/2 + ε)

 (B.4)

that we approximate

ΘT ≈


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 −


0 0 0 0
0 0 0 0
0 0 ε 0
0 0 0 ε

 . (B.5)

The first matrix is the ideal λ/4 plate, let us call it the ideal
or the [SOFT] matrix, the one that is mentioned in textbooks.
The second matrix, [ε], describes the effect of a small excess of
retardation. The effects due to multiple reflections, i.e. fringes
and the modification of the retardation due to each of the crys-
tals, may be expressed by the difference of the matrix Θ in
Eq. (108) and the matrix [SOFT]. Here, we are interested in
particular in fringes. They are best expressed by the differ-
ence sub-matrix for quartz when the entries in C X,Y , Eq. (107),
are taken for this crystal: [SUB]Q = CX,Y − U, and similarly
[SUB]M for the other one. We then define the total fringes ma-
trix for quartz as

FQ =
( [SUB]Q U
U U

)
(B.6)

Fig. B.2. The same as Fig. B.1 but for Stokes Q0. Note the shift of the
envelopes for fringes in Stokes I and Q0.

Fig. B.3. The same as Fig. B.1 for the Stokes I, but for the MgF2 plate.

and the same for FM. The total fringes for Fichou’s λ/4 plate
are FF = FQ − FM. The difference stands for the subtraction
of the orientations of the two crystals. The sign of FF is imma-
terial since the phase of the fringes is not relevant. To the level
of accuracy needed here we may approximate Eq. (B.1) by

ΘT = [SOFT] − [ε] + FF + δ effects.

B.1. More on δ effects

We remove all the other effects and keep only those due δ.
Originally the rotation matrix read:

[Rδ] =


1 0 0 0
0 cos 2δ sin 2δ 0
0 − sin 2δ cos 2δ 0
0 0 0 1

 . (B.7)

We keep the approximations cos(2δ) ≈ 1 and sin(2δ) ≈ 2δ
Also, we define [δ]0 = [Rδ] − [1] and we get

[δ]0 = 2δ


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 . (B.8)
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Fig. B.4. The same as Fig. B.1 for Stokes Q0, due to the MgF2 plate.
Note the similarities of the Figs. B.1 and B.4 on one hand and of B.2
and B.3 on the other hand.

We remove all the other effects and keep only those due to δ:

[δ]0[SOFT] + [SOFT][δ]0 − 2[ΦM][δ]0[ΦQ]

= 2δ


0 0 0 0
0 0 −S M −CM

0 CM 0 0
0 −S M 0 0

 (B.9)

where

S M = 2 sinφM − 1

CM = 2 cosφM − 1

and φM is the retardation of the MgF2 plate.
In Figs. B.1 and B.2 we plot the fringes in I and Q0 arising

from a Fichou’s λ/4 achromatic visible and laser type (non-
cemented plates). We take the interesting case where the inci-
dent beam is completely unpolarized. Fringes appear in both I

and Q0, but there are no fringes in U0 or V. Here we use the
subindex Q0 and U0 to remind that they refer to the axis of
the λ/4 plate: ±Q0 are parallel and perpendicular to this axis.
But these axes may coincide with those of Q and U in our po-
larimeter. Therefore, U0 has no fringes, while U may have them
as a result the rotation between the two different reference sys-
tems, etc.
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