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ABSTRACT

Aims. In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive
Mesh Refinement framework and Constrained Transport.
Methods. The algorithm is based on a previous work in which the MUSCL-Hancock scheme was used to evolve the induction
equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss its properties.
Results. Through a series of test problems, we illustrate the performances of this new code using two different MHD Riemann solvers
(Lax-Friedrich and Roe) and the need of the Adaptive Mesh Refinement capabilities in some cases. Finally, we show its versatility
by applying it to two completely different astrophysical situations well studied in the past years: the growth of the magnetorotational
instability in the shearing box and the collapse of magnetized cloud cores.
Conclusions. We have implemented a new Godunov scheme to solve the ideal MHD equations in the AMR code RAMSES. We
have shown that it results in a powerful tool that can be applied to a great variety of astrophysical problems, ranging from galaxies
formation in the early universe to high resolution studies of molecular cloud collapse in our galaxy.

Key words. magnetohydrodynamics (MHD) – methods: numerical

1. Introduction

Developing efficient numerical algorithms for the equations of
magnetohydrodynamics (MHD) is of great astrophysical inter-
est. Magnetic fields are ubiquitous in a great variety of envi-
ronments. They are important components of the dynamics in
such places as the early universe, the interstellar and intergalactic
medium, the environment and interior of stars and the accretion
flow around young stellar objects.

In the last few decades, finite differences methods have been
widely used in investigations of a number of astrophysical situa-
tions in which the magnetic field is important with such codes
as ZEUS (Stone & Norman 1992a,b), NIRVANA (Ziegler &
Yorke 1997) or the Pencil Code (Brandenburg & Dobler 2002)
for example. Even though, as expected, the numerical method
breaks down in some circumstances (Falle 2002), a consider-
able amount of progress have been made in our understand-
ing of MHD in astrophysics. A few attempts have also been
made to try to extend the Smoothed Particle Hydrodynamics
(SPH) method to MHD (Phillips & Monaghan 1985; Price &
Monaghan 2004a,b). At the moment, it is not clear, however,
how efficient the resulting codes will prove to be in the future.

In the last few years, several attempts have been made
to try to extend the standard Godunov approach (Toro 1997),
initially designed to solve the Euler equations, to MHD. In

addition to the accurate description of new waves that are pe-
culiar to MHD (Alfvén waves, the slow and fast modes), one of
the most dramatic challenge in the development of such schemes
comes from the solenoidality constraint, which states that the di-
vergence of the magnetic field has to vanish everywhere at all
times. The first algorithms that attempted to solve this prob-
lem kept the cell centering strategy of the standard Godunov
approach. They used either a “divergence cleaning” step (see
for example Brackbill & Barnes 1980; or Ryu et al. 1998), or
various reformulations of the MHD equations including ad-
ditional divergence-waves (Powell et al. 1999) or divergence-
damping terms (Dedner et al. 2002) to enforce the solenoidal-
ity constraint. A novel cell-centered MHD scheme has been
recently developed by Crockett et al. (2005) that combines
most of these ideas into one single algorithm. Alternative ap-
proach used the “staggered” discretisation of the grid commonly
used in “ZEUS-like” codes along with the more geometrical
Constrained Transport (CT) algorithm (Evans & Hawley 1988).
This is for example the case of Balsara & Spicer (1999), Tóth
(2000) and Londrillo & Del Zanna (2000, 2004). Gardiner &
Stone (2005a) also explored the possibility of combining the
CT algorithm with the PPM scheme in the new code ATHENA.

Recently, we proposed to extend the well-known MUSCL-
Hancock algorithm originally designed for the Euler equation to
the induction equation (Teyssier et al. 2006). We showed that
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three variants of our scheme have good performances. Two are
compatible with the Adaptive Mesh Refinement (AMR) algo-
rithm implemented in RAMSES (Teyssier 2002). This first part
was limited to the induction equation, and could only be applied
to situations where the magnetic field does not affect the flow.
This is enough, however, to capture the physics of fast dynamos,
especially with the help of the AMR. Here we extend our ap-
proach to the full set of MHD equations and implement it in
RAMSES.

The plan of the paper is as follows: in Sect. 2, we present
the details of the numerical algorithm. The discussion is based
on our earlier work (Teyssier et al. 2006), where the technical
details of the scheme are presented. In Sects. 3 and 4, we illus-
trate the properties of the code on standard 1D and 2D test prob-
lems. In Sect. 5, it is used to study a few 3D flows of astrophys-
ical significance: the growth of the magnetorotational instability
in accretion disks and the collapse of magnetized cloud cores.
Finally, we summarise the properties of the code and highlight
future possible developments in Sect. 6.

2. The numerical method

2.1. Equations and notations

The equations we seek to solve are the usual MHD equations.
When written in conservative form, they read:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu

∂t
+ ∇ · (ρuu − BB) + ∇Ptot = 0, (2)

∂E
∂t
+ ∇ · [(E + Ptot)u − B(B · u)] = 0, (3)

∂B
∂t
+ ∇ · (uB − Bu) = 0. (4)

Here, ρ is the fluid density, u its velocity and B is the magnetic
field. Ptot stands for the total pressure, the sum of the thermal
pressure P and the magnetic pressure:

Ptot = P +
B · B

2
, (5)

and E is the total energy of the fluid

E = ε + ρ
u · u

2
+

B · B
2
, (6)

where ε denotes the internal energy. Unless otherwise stated, we
will assume throughout this paper that the equation of state is
that of a perfect gas, in which case P = (γ − 1)ε.

As discussed in the introduction, this set of equations has to
be completed by the solenoidal constraint, to be satisfied at all
times:

∇ · B = 0. (7)

As in Teyssier et al. (2006), we will use throughout this paper the
CT scheme (Evans & Hawley 1988) to ensure that this condition
is fulfilled to machine-roundoff precision. It simply consists in
writing the induction equation in integral form:

∂Φs

∂t
=
∂

∂t

∫∫
B · dS =

∮
E · dl, (8)

where E is the electric field defined by the relation E = u×B.
While all the hydrodynamic variables (density, velocities, total
energy) are located at cell centers, this approach requires the
magnetic field components to lie on the cell faces. The grid struc-
ture that results is described in the following section.

2.2. The staggered mesh

In the followings, we describe our scheme using 3 dimensional
coordinates x, y and z. The physical variables are discretized on
a standard 3D Cartesian grid. The center of each cell is located
at the position (xi, y j, zk). In a given cell, faces normal to the
x-direction have coordinates x = xi±1/2 and cover a surface ele-
ment defined by y j−1/2 < y < y j+1/2 and zk−1/2 < z < zk+1/2. The
coordinates of the other faces, normal to the y and z direction,
can be similarly defined.

As for the Euler equations, the hydrodynamical variables
(density, momentum, energy) are volume-averaged over a cell
and the discretized values are defined at the cell center. For
example:

ρi, j,k =
1

∆x∆y∆z

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∫ zk+1/2

zk−1/2

ρ(x′, y′, z′)dx′dy′dz′. (9)

Because of the staggered mesh representation, magnetic fields
components are surface-averaged over the cell face to give:

Bx,i−1/2, j,k =
1
∆y∆z

∫ y j+1/2

y j−1/2

∫ zk+1/2

zk−1/2

Bx(xi−1/2, y
′, z′)dy′dz′. (10)

Here ∆x, ∆y and ∆z stand for the Cartesian mesh size in each
direction.

2.3. The Euler system

As outlined in Londrillo & Del Zanna (2000), the system of
MHD equations written in Sect. 2.1 can be broken in two
sub-systems. The first involved the time evolution of the cell-
centered, volume-averaged variables and is reminiscent of the
standard Euler equations, which includes mass, momentum and
energy conservation. This set of equations, quite naturally called
the “Euler system”, can be written in vectorial form

∂U
∂t
+
∂F
∂x
+
∂G
∂y
+
∂H
∂z
= 0, (11)

where

U = (ρ, ρvx, ρvy, ρvz, E)T (12)

and the flux function F is given by

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvx
ρv2x + Ptot − B2

x
ρvxvy − BxBy
ρvxvz − BxBz

(E + Ptot)vx − Bx(B · u)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

The expression for G for H are completely symmetric.
Integrating in space over a cell and in time between tn and tn+1,
Eq. (11) writes:

Un+1
i, j,k − Un

i, j,k

∆t
+

Fn+1/2
i+1/2, j,k − Fn+1/2

i−1/2, j,k

∆x

+
Gn+1/2

i, j+1/2,k − Gn+1/2
i, j−1/2,k

∆y
+

Hn+1/2
i, j,k+1/2 − Hn+1/2

i, j,k−1/2

∆z
= 0 (14)

where superscripts n and n + 1 refer respectively to time coordi-
nates tn and tn+1. Un

i and Un+1
i are the volume-averaged variables
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at time tn and tn+1. The time- and surface-averaged fluxes are de-
fined by

Fn+1/2
i+1/2, j,k =

1
∆t∆y∆z

∫ tn+1

tn

∫ y j+1/2

y j−1/2

∫ zk+1/2

zk−1/2
F(xi+1/2, y

′, z′, t′)dy′dz′dt′ (15)

where ∆t = tn+1 − tn. Similar time and surface-average quanti-
ties are written for the fluxes Gn+1/2

i, j+1/2,k and Hn+1/2
i, j,k−1/2 appearing

in Eq. (14).
In this paper, we intend to extend the well-known MUSCL-

Hancock scheme (van Leer 1977; Toro 1997) to the equations of
ideal MHD. When applied to the Euler equations, this method
performs the conservative update of the volume-average vari-
ables U in two steps: a predictor step and a corrector step.
In the former, the vector U is computed at the half time step
tn+1/2 = tn + ∆t/2 using a Taylor expansion of the underlying
hyperbolic system. It is also spatially reconstructed from the cell
center to the cell faces using a piecewise linear reconstruction
based on TVD slope limiters. In the predictor step, the fluxes
appearing in Eq. (14) are evaluated by solving a 1D Riemann
problem between the two (left and right) reconstructed states at
each cell interface.

2.3.1. Cell-centered TVD slopes

The first step in the MUSCL approach is the computation of
finite-difference approximation of the spatial derivatives of all
cell-centered quantities. As usually done in higher order fi-
nite volume schemes, spatial derivatives are approximated using
slope limiters, in order to obtain positivity preserving, non os-
cillatory solutions. Except for the final conservative update, we
always use the primitive variables W = (ρ, vx, vy, vz, P)T in all in-
termediate calculations. In addition to these 5 cell-centered vari-
ables, we need to define volume-averaged magnetic field compo-
nents. We use for that purpose the average of their corresponding
face-centered components

Bn
x,i, j,k =

1
2

(
Bn

x,i−1/2, j,k + Bn
x,i+1/2, j,k

)
, (16)

and likewise for Bn
y,i, j,k and Bn

z,i, j,k. We finally augment the vec-
tor Wn with these 3 new components. We use in our cur-
rent implementation two standard slope limiters (used in many
fluid dynamics codes), the MinMod slope and the MonCen
(Monotonized Central) slope (Toro 1997). The MinMod limiter
is more diffusive than the MonCen limiter, so we use the lat-
ter for most applications. On the other hand, the MinMod lim-
iter is known to ensure the positivity of the solution in multiple
space dimensions. In difficult cases, we therefore switch to the
MinMod slope limiter.

2.3.2. The Euler predictor step

The standard MUSCL methodology can be applied to the Euler
sub-system, using the previously defined cell-centered vector W.
The solution is advanced in time up to tn+1/2 using a Taylor ex-
pansion of the Euler system in non-conservative form based on
the previously computed TVD slopes

Wn+1/2
i, j,k = Wn

i, j,k − Ax
n
i, j,k

(
∂W
∂x

)n

i, j,k

∆t/2

−Ayn
i, j,k

(
∂W
∂y

)n

i, j,k

∆t/2 − Az
n
i, j,k

(
∂W
∂z

)n

i, j,k

∆t/2 (17)

where the matrix Ax (resp. Ay and Az) is the Jacobian matrix
of the flux function in the x (resp. y and z) direction, evalu-
ated using the cell-averaged state Wn

i, j,k. At this stage, we have

cell-centered predicted states at time tn+1/2 for the 5 Euler vari-
ables Wn+1/2

i, j,k = (ρ, vx, vy, vz, P)T. Face-centered predicted values
for the magnetic field components are also computed using the
method described in details in Sect. 2.4. We compute the pre-
dicted cell-centered components of the magnetic field using the
average of their corresponding face-centered values. We finally
augment the vector Wn+1/2

i, j,k with these 3 new cell-centered pre-
dicted variables.

2.3.3. The Euler corrector step with 1D Riemann solvers

Using the TVD slopes computed at time tn, we reconstruct the
primitive variables at each cell-interface, except for the longi-
tudinal magnetic field component, since its predicted value has
been already computed at the correct location (see Sect. 2.4).
For example, at the two interfaces perpendicular to the x-axis,
we obtain the two following reconstructed states

Wn+1/2,L
i+1/2, j,k =Wn+1/2

i, j,k +

(
∂W
∂x

)n

i, j,k

∆x/2 (18)

Wn+1/2,R
i−1/2, j,k =Wn+1/2

i, j,k −
(
∂W
∂x

)n

i, j,k

∆x/2. (19)

These states will be used as input states for 1D Riemann
problems perpendicular to each interfaces. Note that for these
1D MHD Riemann problems, left and right states are de-
fined using only 7 variables, namely the 5 Euler variables and
the 2 magnetic field transverse components, thus the name
“seven waves Riemann solvers”. As far as the Riemann solver
is concerned, the longitudinal component of the magnetic field
is assumed to be constant in time and space, in order to enforce
the solenoidality constraint in one space dimension. This con-
stant value is taken equal to the predicted value at time tn+1/2,
namely Bn+1/2

x,i+1/2, j,k (resp. Bn+1/2
y,i, j+1/2,k and Bn+1/2

z,i, j,k+1/2) for the in-
terface perpendicular to the x (resp. y and z) axis. The out-
put of these 1D Riemann solvers are the time and surface
averaged fluxes at the same interface Fn+1/2

i+1/2, j,k (resp. Gn+1/2
i, j+1/2,k

and Hn+1/2
i, j,k+1/2). In our current implementation, we use two dif-

ferent Riemann solvers, namely a simple, local Lax Friedrich
(LLF) solver, for which the flux is given by

FLLF (WL,WR) =
1
2

(FL + FR) − 1
2

max
α=1,7
|λα| (UR − UL) (20)

and the MHD Roe solver described in Cargo & Gallice (1997)
and developped by Gardiner & Stone (2005a), for which the flux
can be written as

FRoe(WL,WR) =
1
2

(FL + FR)

−1
2

∑
α=1,7

Rα|λα|Lα · (UR − UL) (21)

where UL and UR are the conservative state on each sides of
the interface, FL and FR the associated fluxes, Rα and Lα are
respectively the right and left eigenmatrices of the Roe matrix
and λα its eigenvalues (wave speeds).
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2.4. The induction system

To form the full set of MHD equations, Eq. (11) has to be com-
pleted by the induction equation, called here the induction sub-
system. As for the Euler system, the induction equation can be
written in conservative form by a straightforward integration in
space-time

Bn+1
x,i−1/2, j,k − Bn

x,i−1/2, j,k

∆t
−

En+1/2
z,i−1/2, j+1/2,k − En+1/2

z,i−1/2, j−1/2,k

∆y
(22)

+
En+1/2
y,i−1/2, j,k+1/2 − En+1/2

y,i−1/2, j,k−1/2

∆z
= 0,

with similar expressions for Bn+1
y and Bn+1

z . Here conventions
are similar to the ones used in Sect. 2.3 above, except that
one defines now a time- and edge-averaged electromotive force
(EMF) as

En+1/2
z,i−1/2, j−1/2,k =

1
∆t∆z

∫ tn+1

tn

∫ zk+1/2

zk−1/2

Ez(xi−1/2, y j−1/2, z
′, t′)dz′dt′, (23)

and similar expresions can be derived for En+1/2
x and En+1/2

y .
As for the Euler system, the numerical evaluation of the EMF
proceeds in two steps: a predictor step followed by a corrector
step. The MUSCL methodology can be extended to the induction
system and this extension was extensively discussed in Teyssier
et al. (2006). We recall here only the basic ingredients.

2.4.1. Face-centered TVD slopes

In order to obtain a second-order accurate and non-oscillatory
solution, we need to use spatial reconstruction of the magnetic
field components based on TVD slope limiters. The main dif-
ference arises because of the finite-surface representation of the
magnetic field. Indeed, we need a piecewise linear representation
of Bx within the y−z plane. For that purpose, we use the same
TVD slopes (MinMod and MonCen) as above, using the face-
averaged value of the 3 magnetic field components at time tn.
For Bx, we need to compute only the 2 transverse slopes ∂Bx/∂y
and ∂Bx/∂z. A similar property holds for By and Bz.

2.4.2. The induction predictor step

Various methods to perform the predictor step for the induction
system were recently explored by Teyssier et al. (2006) for the
kinematic case. These methods were referred to as Runge-Kutta,
U-MUSCL and C-MUSCL. The extension of the first two to
the full set of MHD equations, while possible, is computation-
ally expensive because they require to solve one (U-MUSCL)
or two (Runge-Kutta) Riemann problems in the predictive step.
Moreover, the large stencil of the Runge-Kutta scheme is not
compatible with the compact stencil required by our tree-based
AMR implementation. For these various reasons, we decide to
use only the C-MUSCL scheme in our current MHD applica-
tion. It combines the nice properties of being computationnally
efficient and compatible with the AMR requirements. The price
to pay is a reduced stability range for the time step, since the
Courant factor has to be less than 2/(

√
2 + 1), instead of 1 for

the other schemes (see Teyssier et al. 2006, for details).

The purpose of the predictive step is to advance the solution
between tn and tn+1/2 using the CT algorithm. For that, EMF
need to be spatially interpolated on cell edges at time tn. The
idea of C-MUSCL is to do it by simple arithmetic averages of
the magnetic field and velocity components. For example, the
EMF En

z,i−1/2, j−1/2,k is calculated by:

En
z,i−1/2, j−1/2,k = v̄xB̄y − v̄yB̄x, (24)

with

v̄x =
1
4

(
vnx,i, j,k + v

n
x,i−1, j,k + v

n
x,i, j−1,k + v

n
x,i−1, j−1,k

)
, (25)

v̄y =
1
4

(
vny,i, j,k + v

n
y,i−1, j,k + v

n
y,i, j−1,k + v

n
y,i−1, j−1,k

)
, (26)

B̄x =
1
2

(
Bn

x,i−1/2, j,k + Bn
x,i−1/2, j−1,k

)
, (27)

B̄y =
1
2

(
Bn
y,i, j−1/2,k + Bn

y,i−1, j−1/2,k

)
. (28)

This spatial reconstruction is second order in space, al-
tough TVD slopes have not been used at that time. The
EMF En

x,i, j−1/2,k−1/2, En
y,i−1/2, j,k−1/2 and En

z,i−1/2, j−1/2,k are then
used to update the solution between tn and tn+1/2 using the CT al-
gorithm (see Eq. (22)). Because only one EMF is calculated
per cell edge, the predicted face-centered magnetic field (Bn+1/2

x ,
Bn+1/2
y and Bn+1/2

z ) satisfies the solenoidality constraint exactly.
The properties of C-MUSCL and their comparison with the
U-MUSCL and Runge-Kutta schemes are described in Teyssier
et al. (2006). It was found that C-MUSCL behaves essentially
similarly to these two other schemes, with a lower computational
cost and a slightly stronger Courant condition.

2.4.3. The induction corrector step with 2D Riemann solvers

As described above, after the predictor step, we have obtained
the 5 cell-centered Euler variables Wn+1/2

i, j,k = (ρ, vx, vy, vz, P)T

and the 3 face-centered magnetic field components Bn+1/2
x , Bn+1/2

y

and Bn+1/2
z . Using Eq. (16) at time tn+1/2, we have also obtained

the 3 predicted cell-centered components of the magnetic field.
We finally augment the vector Wn+1/2

i, j,k with these 3 new cell-
centered predicted variables.

Following again the MUSCL methodology, we now need to
reconstruct complete MHD states at each cell-edge, in order to
compute the EMF for the final conservative update of the mag-
netic field components. This reconstruction will produce 4 dif-
ferent states in the 4 cells adjacent to the edge. For obvious rea-
sons, these 4 states, separated by 4 boundaries (labelled N for
North, S for South, W for West and E for East) will be labelled
in clockwise order by NE, SE, SW and NW.

We first reconstruct the cell-centered state to the cell edges
using

Wn+1/2,NE
i−1/2, j−1/2,k =Wn+1/2

i, j,k −
(
∂W
∂x

)n

i, j,k

∆x
2
−

(
∂W
∂y

)n

i, j,k

∆y

2
(29)

and similar relations that defines Wn+1/2,S E
i−1/2, j−1/2,k, Wn+1/2,S W

i−1/2, j−1/2,k and

Wn+1/2,NW
i−1/2, j−1/2,k. Since the 2 longitudinal magnetic field compo-

nents (Bn+1/2
x and Bn+1/2

y ) are already defined at the 4 adjacent



S. Fromang et al.: A high order Godunov scheme for astrophysical MHD 375

interfaces, we only need the cell-centered transverse compo-
nent Bn+1/2

z in the above reconstruction. Bn+1/2
x and Bn+1/2

y are
reconstructed using face-centered TVD slopes as

Bn+1/2,S
x,i−1/2, j−1/2,k = Bn+1/2

x,i−1/2, j−1,k +

(
∂Bx

∂y

)n

i−1/2, j−1,k

∆y

2
(30)

Bn+1/2,W
y,i−1/2, j−1/2,k = Bn+1/2

y,i−1, j−1/2,k +

(
∂By
∂x

)n

i−1, j−1/2,k

∆x
2

(31)

and similar relations defining Bn+1/2,N
x,i−1/2, j−1/2,k and Bn+1/2,E

y,i−1/2, j−1/2,k.
The four corner states, with 6 variables each, and the
4 longitudinal magnetic field components entirely define a
2D MHD Riemann problem, which satisfies the solenoidality
constraint in a 2D sense. Londrillo & Del Zanna (2000) have
shown that the EMF entering in the final Contrained Transport
update should be obtained as the solution of this 2D Riemann
problem, in order to obtain a stable numerical solution, with a
proper upwinding of all MHD waves. While a very simple exact
solution exists in the kinetic case (Teyssier et al. 2006), design-
ing 2D Riemann solvers for the full set of MHD equations is an
ambitious task that is beyond the scope of this paper. An approx-
imate solution, proposed by Balsara & Spicer (1999) and Ziegler
(2004), is based on averaging the flux given by the four adjacent
1D Riemann problems. The solution E2D

z of the 2D Riemann
problem writes in that case:

E2D
z (WNE ,WS E ,WS W ,WNW ) =

1
4

(E1D
z (WNW ,WNE) + E1D

z (WS W ,WS E)

+E1D
z (WS W ,WNW ) + E1D

z (WS E ,WNE)), (32)

where the quantities E1D
z stands for the solution of the

1D Riemann problems defined by the four states. This solution
relies on 4 Riemann solvers per cell edges and turns out to be
quite expensive. Following the ideas of Londrillo & Del Zanna
(2000, 2004), we exploit the fact that in our current implementa-
tion, we use only linear Riemann solvers (namely Lax-Friedrich
and Roe). In this case, the flux can be written as in Eq. (21). If
we now use 2 Roe matrices, one for each direction, instead of 4,
the EMF function can be written as

E2D
z (WNE ,WS E ,WS W ,WNW ) =

1
4

(Ez(WNE ) + Ez(WS E) + Ez(WS W ) + Ez(WNW ))

−1
2

∑
α=1,7

Rx
α|λx
α|Lx
α · (UE − UW )

+
1
2

∑
α=1,7

Ryα|λyα|Lyα · (UN − US ) (33)

where UE , UW , UN and US are averaged conservative variables
defined at the interfaces of the four 1D Riemann problems. One
intersesting property in the above expression is the explicit con-
tribution of the 2 diffusive terms coming from the 2 Roe matri-
ces. For non-linear Riemann solvers, such as HLL, it is prefer-
able to use the 4 Riemann solvers approximation (Londrillo &
Del Zanna 2004; Ziegler 2004).

2.5. The AMR scheme

The AMR algorithm used in RAMSES is described in
details in Teyssier (2002) and its extension to MHD in

Teyssier et al. (2006). We briefly recall the main features here.
It is a tree-based AMR code originally designed for cosmolog-
ical applications. The data structure is a “Fully Threaded Tree”
(Khokhlov 1998). The grid is divided into groups of 8 cells,
called “octs”, that share the same parent cell. Each oct has access
to its parent cell address in memory, but also to neighboring par-
ent cells. When a cell is refined, it is called a “split” cell, while
in the opposite case, it is called a “leaf” cell. The computational
domain is always defined as the unit cube, which corresponds in
our terminology to the first level of refinement in the hierarchy
� = 1. The grid is then recursively refined up to the minimum
level of refinement �min, in order to build the coarse grid. This
coarse grid is the base Cartesian grid, covering the whole com-
putational domain, from which adaptive refinement can proceed.
This base grid is eventually refined further up to some maximum
level of refinement �max, according to some user defined refine-
ment criterion. When �max = �min, the computational grid is a
traditional Cartesian grid, for which the previous scheme apply
without any modification. When refined cells are created, how-
ever, some issues specific to AMR must be addressed.

2.5.1. Divergence-free prolongation operator

When a cell is refined, eight new cells (i.e. a new “oct”) are cre-
ated for which new cell-centered variables and new magnetic
field components are needed. This operation is usually referred
to as the “prolongation operator”. The traditional approach re-
lies on a conservative interpolation of the 5 cell-centered conser-
vative variables U = (ρ, ρvx, ρvy, ρvz, E)T. For the face-centered
variables, each of the six faces of the parent cell are split into
4 new fine faces. Three new faces, at the center of the parent
cell, are also split into four new children faces. The resulting
magnetic field components, fine or coarse, need to satisfy the
divergence-free constraint in integral form.

This critical step has been solved by Balsara (2001) and Tóth
& Roe (2002) in the CT framework. We recommend both of
these articles for a detailed description of the method. The idea
is to used slope limiters to interpolate the magnetic field com-
ponent inside each parent face, in a flux-conserving way, and
then to use a 3D reconstruction, which is divergence-free in a lo-
cal sense inside the whole cell volume, in order to compute the
new magnetic field components for each central children faces.
In our case, the same slope limiters as in the Godunov scheme
(MinMod or MonCen) can be used.

This prolongation operator is used to estimate the magnetic
field in newly refined cells, but also to define a temporary “buffer
zone”, two “ghost cells” wide, that set the proper boundary for
fine cells at a coarse-fine level boundary. This is the main reason
why compact stencils are needed for the underlying Godunov
scheme.

2.5.2. Magnetic flux corrections

The other important step is to define the reverse operation, when
a split cell is de-refined, and becomes a leaf cell again. This op-
eration is usually called the Restriction Operator in the multigrid
terminology. The solenoidality constraint needs again to be sat-
isfied, which translates into conserving the magnetic flux. The
magnetic field component in the coarse face is just the arith-
metic average of the 4 fine face values. This is reminiscent of
the “flux correction step” for the Euler system (Berger & Oliger
1984; Berger & Colella 1989; Teyssier 2002).
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Fig. 1. Amplitude (upper panel) and phase velocity (lower panel) of the
circularly polarized Alfvén wave as a function of time. The full lines
display result using a Roe solver whereas the dotted lines show results
obtained with a Lax-Friedrich solver. The resolutions are from top to
bottom, 100, 30 and 10 grid points per wavelength.

2.5.3. EMF corrections

The “EMF correction step” is more specific to the induction
equation. For a coarse face which is adjacent, in any direction, to
a refined face, the coarse EMF in the conservative update of the
solution needs to be replaced by the arithmetic average of the
two fine EMF vectors. This guarantees that the magnetic field
remains divergence-free, even at coarse-fine boundaries.

3. Numerical tests in 1D

3.1. Non-linear Alfvén wave test

The first test we present is the propagation of non-linear cir-
cularly polarised Alfvén waves. Such waves, which are exact
solution of the MHD equations, propagate in a gas of uniform
density, ρ0 and along a uniform magnetic field, B0z. They are
given by: Bx = B⊥ cos(ωt − kz), By = B⊥ sin(ωt − kz), Vx =

V⊥ cos(ωt − kz), Vy = V⊥ sin(ωt − kz) where ω/k = B0z/
√

4πρ0

and B⊥/V⊥ =
√

4πρ0.
We have simulated the propagation of these waves on a uni-

form grid, for B0z =
√

4π, B⊥ =
√
π, and k = 0.1. This leads

to a wave period equal to 0.1. The agreement between the ana-
lytical and numerical solutions depends on the numerical reso-
lution. Figure 1 displays the wave amplitude (upper panel) and
phase velocity (lower panel) as a function of time for the Roe
and Lax-Friedrich solvers and different resolutions, namely 10,
30 and 100 points per wavelength. With 10 grid points per wave-
length, the amplitude quickly decays because of numerical dis-
sipation and in about 5 wave periods, the amplitude of the waves
is only 40% of its initial value. With 30 and 100 grid points per
wavelength the agreement is much better and almost no decay
has occurred even after 50 wave periods in the latter case. In
the lower panel, the wave velocity is also seen to agree better
and better with its theoretical value, vw = 1, as the resolution
is increased (note that for 100 grid points, the wave velocity

Fig. 2. Solution to the MHD shock tube showing the density as a func-
tion of x, obtained with RAMSES when α = π. The code uses 400 grid
points in that case and the Roe Riemann solver.

obtained with the Roe solver is not represented as it is indistin-
guishable from the Lax-Friedrich results). As expected the Roe
solver leads to slightly better results in both cases than the Lax-
Friedrich solver.

3.2. MHD shock tube test

An interesting application of the AMR scheme is the study of
the development of compound waves in shock tube calculations.
It has been analysed with finite volume schemes by Torrilhon
(2004), through the analysis of the MHD shock tube whose ini-
tial state is:

WL = (1, 0, 0, 0, 1, 1, 1, 0)T (34)

WR = (0.2, 0, 0, 0, 0.2, 1, cosα, sinα)T (35)

where W = (ρ, vx, vy, vz, P, Bx, By, Bz)T. When α = π, there are
two solutions to the Riemann problem: the first is regular, which
means that it contains only shocks and contact discontinuities.
The second, however, features a compound wave which is a com-
position of an Alfvén and a slow wave. Torrilhon (2004) showed
that finite volume schemes converge toward the second. When α
is different from π, the solution is regular and should only
contain shocks and contact discontinuities. However, Torrilhon
(2004) found that finite volume codes still tend to exhibit the
compound wave for low and moderate resolutions. The solution
converges toward the regular solution only when very large res-
olutions are used.

Here, we use RAMSES to illustrate how the AMR scheme
can help to solve this problem. Figure 2 shows the density vs.
position when α = π at time t = 0.4. The grid is composed
of 400 cells evenly distributed between −1 and 1.5. The AMR
is switched off in this first run. The compound wave is clearly
visible at x � −0.25. The whole solution looks identical to pre-
vious results published in the literature with similar codes (Ryu
& Jones 1995; Cargo & Gallice 1997; Londrillo & Del Zanna
2000).

Taking now α = 3 and computing the solution of the
MHD shock tube on a uniform grid, we also found that the com-
pound wave remains for low resolution as described by Torrilhon
(2004). This is illustrated in Fig. 3, which is a zoom on the
structure of the solution in the neighbourhood of the compound
wave. The black lines are computed on a uniform grid and cor-
respond to increasing resolution. Namely, from top to bottom
(at x ∼ −0.24), the number of cells are 800, 1200, 1600, 2000,
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Fig. 3. Zoom on the region in which the compound wave develops when
α = 3. Black curves are obtained on a uniform grid. From top to bottom
(at x ∼ −0.24), they correspond to 800, 1200, 1600, 2000, 3000, 5000,
10 000 and 20 000 grid points respectively. The red curve was calcu-
lated after switching on the AMR scheme and using a similar CPU time
as for the 20 000 grid points curve. Its maximum resolution is equiv-
alent to using about 106 cells on a uniform grid and show a dramatic
improvement toward the regular solution.

Fig. 4. Complete solution of the MHD shock tube when α = 3, with
the AMR scheme turned on. The solid line is a plot of the density as a
function of position while the dashed line (whose scale is given on the
right axis) illustrates the level of refinement the code uses for each cell.

3000, 5000, 10 000 and 20 000. The red line shows the result
of the same model computed using the AMR scheme with a re-
finement strategy based on the magnitude of the gradient of all
7 flow variables. The finest resolution in this run is equivalent to
having 106 cells on a uniform grid. We found the result of this
model to be almost indistinguishable from the regular solution
(remember that this is the ONLY physical solution to this prob-
lem). Interestingly, this is not the case for the uniform runs. Even
though the compound wave is seen to gradually disappear as the
resolution is increased, features departing from the correct so-
lution are still observed even when 20 000 grid zones are used.
This illustrates the extremely large resolution needed to accu-
rately calculate the solution of this problem and shows the inter-
est of using AMR. Indeed, the AMR run used only 10 000 cells
for the same equivalent resolution as 106 grid cells, which cor-
responds to a gain of about 2500 in CPU time.

The complete solution of the AMR model is shown in Fig. 4.
As is Fig. 2, the solid line represents the density as a function of
position. The dashed line shows the corresponding refinement
level. It scale is indicated on the right axis. As expected, the
grid is highly refined at the location of the shocks and contact

Fig. 5. Time history of the magnetic energy in the magnetic loop ad-
vection test. The different curves are obtained using the Roe Riemann
solver (solid line) and the Lax-Friedrich solver (dashed line).

discontinuities. It is important to understand that the AMR is not
just a fancy tool for this test, but is actually essential to solve
it properly. One might indeed think that increasing the order of
the numerical scheme would help to converge to the regular so-
lution at lower resolution. Torrilhon & Balsara (2004) actually
showed that the improvement when using third or fourth order
WENO schemes is small. This is because the accuracy of any
such schemes breaks down to first order close to discontinuities,
which is precisely where the compound wave lies.

4. Numerical tests in 2D

4.1. Advection of a magnetic loop

As a first 2D test, we now consider the simple advection of a
magnetic loop that has recently been proposed by Gardiner &
Stone (2005a). It simply consists in the evolution of a weak
magnetic field in an initially uniform velocity field. Since the
thermal pressure is much larger than the magnetic pressure, the
magnetic field can be considered as a passive tracer advected in
a time independent flow. The initial setup is exactly the same
as in Gardiner & Stone (2005a) and Teyssier et al. (2006). The
velocities are set up to vx = 2, vy = 1 and vz = 0. The initial
magnetic field is such that Bz = 0, while the components Bx

and By are defined using the z-component of the potential vec-
tor A (B = ∇×A):

Az =

{
A0(R − r) for r < R,

0 otherwise, (36)

with A0 = 10−3, R = 0.3 and r =
√

x2 + y2. The computational
domain is defined as −1 < x < 1 and −0.5 < y < 0.5. There
are 128 cells in the first direction and 64 in the second. The so-
lution is evolved between t = 0 and t = 2 and we analyzed the
results obtained by our scheme using the MonCen slope limiter,
comparing explicitly the Roe solver to the local Lax-Friedrich
solver.

A simple way to evaluate the efficiency of the scheme is to
compare the time history of the magnetic energy Em. This is
done in Fig. 5, where Em is represented as a function of time
for the Roe solver (solid line) and for the Lax-Friedrich solver
(dashed line). We first note that the results are very similar to
those published by Gardiner & Stone (2005a). This demonstrates
that, using only TVD linear reconstruction, our scheme pro-
vides comparable accuracy to the piecewise parabolic scheme
of Gardiner & Stone (2005a). As expected, the Lax-Friedrich
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Fig. 6. Snapshot of the density at time t = 0.5 resulting from the Orszag-
Tang test. The grid is uniform and composed of 5122 cells. The result is
computed using the Roe Riemann solver and the C-MUSCL predictive
step.

solver is more dissipative, while the results obtained using the
Roe solver exactly reproduce the results obtained in the pure ad-
vection case (Teyssier et al. 2006), to which we refer the reader
for more details, especially regarding the AMR scheme.

4.2. The Orszag-Tang vortex

One of the most well-known 2D MHD test is the Orszag-Tang
test. The initial condition of the flow create a vortex that is un-
stable and quickly breaks down into turbulence. Although no
analytical solution is known for this test, it has been so widely
documented in the literature that it is now very useful as a first
2D benchmark for a code.

The initial state is defined as

ρ = γP0, (37)

u = (− sin 2πy, sin 2πx), (38)

B = (−B0 sin 2πx, B0 sin 4πy). (39)

The different parameters are defined by

γ =
5
3
, P0 =

5
12π

and B0 =
1√
4π
·

The grid extends from 0 to 1 in both directions and we use
5122 cells uniformly distributed over the computational domain.
The solution is evolved between t = 0 and t = 0.5 using the Roe
solver and the MonCen slope limiter. The density distribution in
the (x, y) plane at the end of the simulation is shown in Fig. 6.
The agreement between our result and previous published work
is excellent (Ryu et al. 1998; Londrillo & Del Zanna 2000). The
complex pattern of interacting waves is perfectly recovered.

4.3. The current sheet

Gardiner & Stone (2005a) recently described a 2D test that fol-
lows the time evolution of a current sheet created by a magnetic
field discontinuity. Reconnection occurs at the location of the
discontinuity. Because no explicit dissipation is included in the
code, the entire evolution is driven by the numerical resisitivity
of the scheme, and, as such, is sensitive to every details of the
algorithm. The initial setup is described in the followings.

The computational domain lies in the domain 0 ≤ x ≤ 2 and
0 ≤ y ≤ 2 and is divided in 256 uniform cells in each direc-
tions. At time t = 0, density and pressure are uniform: ρ = 1
and P = 0.1. The magnetic field components vanish in the x
and z direction and By is defined by

By =

{−1 if |x − 1| ≤ 0.5,
+1 otherwise. (40)

Similarly, vy = vz = 0 and vx = v0 sin (πy).
We first present our numerical results using the Roe solver

with the MonCen slope limiter. They are represented in Fig. 7.
The magnetic field lines are plotted at times t = 0, 0.5, 1, 1.5, 2,
2.5, 3, 3.5 and 4. As reported by Gardiner & Stone (2005a), mag-
netic islands form, grow and eventually merge with each other.
At the end of the simulation, four islands are clearly visible at
the location of each discontinuity. A direct comparison between
our results and Fig. 12 of Gardiner & Stone (2005a) shows that
both codes agree almost perfectly up to time t = 2.5. On the
other hand, at later time, no strong evolution is observed in our
case, while for the ATHENA code, the flow symmetry is bro-
ken and the two islands merge into a single large one (Gardiner
& Stone 2005a). As discussed above, this difference is an in-
dication that both codes, although very similar, have different
dissipative properties.

The next step is to test our AMR scheme in 2D: we perform
the same exact simulation, except that now we use a base grid of
nx = ny = 32, which corresponds to �min = 5, with 3 additional
levels of refinement, so that �max = 8. The formal resolution is
thus equivalent to the first test with a regular Cartesian grid. We
use a refinement strategy based on the gradient of the thermal
pressure:

max
(
|∆xP| , ∣∣∣∆yP∣∣∣)

P
> 0.05, (41)

associated with a similar criterion based on By. In Fig. 8, we
show the magnetic field lines at time t = 2 obtained with the Roe
solver (upper right plot): it is indistinguishable from the previous
result obtained with a Cartesian grid. For sake of comparison,
we have also compared the result obtained at t = 2 with the Lax-
Friedrich solver (upper left plot): it is now completely different.
Due to the increased numerical diffusivity of the Lax-Friedrich
solver, the tiny magnetic islands, that move up and down from
the center of the image, have not yet merged to their final po-
sition. Moreover, with the Roe solver, we also obtain a static
magnetic island at the position of the flow stagnation point. This
static island is absent from the Lax-Friedrich solution. As antici-
pated, this test is highly discriminant of the dissipative properties
of numerical schemes.

In order to study the convergence of each solution, we take
advantage of the speed-up provided by the AMR grid to per-
form additional high-resolution simulation. Using the same re-
finement strategy, we now set �max = 10, so that the formal reso-
lution is now nx = ny = 1024. We present in Fig. 9 the resulting
AMR grid, together with a grey-scale image of the thermal pres-
sure. We see that AMR cells are optimally distributed in order to
properly sample the current sheet, as well as sharp MHD waves
propagating perpendicular to the current sheet. The results ob-
tained at t = 2 using both Riemann solvers are shown at the
bottom plots of Fig. 8. The Roe solution has not changed when
compared to its low-resolution counterpart. This demonstrates
that the lower numerical dissipation of the Roe solver allows a
faster convergence of the numerical solution. Interestingly, the
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Fig. 7. Time evolution of the magnetic field lines during the current sheet test. The calculation was performed on a uniform grid composed of
2562 cells, using the Roe solver and the MonCen slope limiter. From top left to bottom right, the snapshots corresponds successively to times
t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4. The entire figure can be compared to Fig. 12 of Gardiner & Stone (2005a).

Lax-Friedrich high-resolution solution has also converged to-
ward the same solution, except for the static magnetic island at
the flow stagnation point. This demonstrates that using AMR can
provide fast convergence towards the true solution, even with a
rather dissipative scheme. On the other hand, the static island
in the center of the flow seems to be highly sensitive to the de-
tails of the scheme. As opposed to Lax-Friedrich, the Roe solver
has the interesting property that for a static velocity field, the
numerical dissipation vanishes exactly. The difference between
the 2 solvers is therefore maximized at the stagnation point,
where both schemes are converging towards 2 different solu-
tions, even at our highest resolution. This peculiar behavior is
due to the fact that this reconnection problem is performed with-
out any physical resistivity. It should be therefore considered
only as an interesting numerical test, rather than a true physical
application.

5. Astrophysical applications in 3D

To illustrate the possibilities of RAMSES, we present in this sec-
tion two 3D tests of astrophysical significance: the development
of Magneto-Rotational Instability (MRI) and the formation of a
magnetized molecular core.

5.1. The magnetorotational instability

The development of MHD turbulence resulting from the growth
of the MRI is likely to be at the origin of an efficient radial trans-
port in accretion disks. This instability has been extensively stud-
ied using finite difference codes like ZEUS (Hawley et al. 1995);
our goal is here to compare the results of RAMSES with those
obtained in earlier studies during the last decade.

The MRI is a linear instability that was first discovered in
the 60s (Velikhov 1959; Chandrasekhar 1961) before being ap-
plied to accretion disks theory by Balbus & Hawley (1991). It
operates in rotating flows threaded by a weak magnetic field
when the angular velocity decreases outward. Numerical simula-
tions applied to accretion disks have shown that the linear growth
of the instability is followed by MHD turbulence that transports
angular momentum outward in the disk, thereby solving a long
standing issue in accretion disk theory (see Balbus & Hawley
1998, for a review). One subclass of these simulations has been
realised using the so-called shearing box approximation. It is a
local expansion of the dynamical equation in a Cartesian box
around a particular radius of the accretion disk (Goldreich &
Lynden-Bell 1965). The interest of this local approach is that it
is able to capture the dynamics of the accretion disk and enables
large resolution to be achieved at the same time. With such a
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Fig. 8. This figure compares the magnetic field lines obtained at time t = 2 for high-resolution runs (bottom) and low-resolution runs (top), as well
as for the Roe solver (right) and the local Lax-Friedrich solver (left). Both low and high-resolution runs were performed using the AMR scheme:
lmin = 5 for the former and lmin = 10 for the latter. The refinement strategy is detailed in the text.

Fig. 9. This figure shows a zoom on the bottom left magnetic island for the high-resolution run with the Roe solver at time t = 3. On the left, only
octs boundaries are plotted to clarify the visualization of the AMR grid. On the right, a grey scale image of the thermal pressure is shown, with
strong transverse shock-waves clearly visible as sharp discontinuities.

model, the properties of the MHD turbulence can be rather well
studied.

So far, most of the shearing box simulations have been
done using artificial viscosity codes, like ZEUS (Hawley et al.
1995), NIRVANA (Papaloizou et al. 2004) or the Pencil Code
(Brandenburg et al. 1995). Recently, Gardiner & Stone (2005b)
applied the ATHENA code to the same problem. They found that
using a Riemann solver make little difference.

We have implemented the shearing box model in RAMSES.
To do so, two main modifications have to be made. First, the
inertial terms appearing in the equations are treated as source
terms. Second, the boundary conditions need to be adapted to
the model. They are periodic in y and z, which respectively cor-
respond to the φ and z coordinates of the standard cylindrical
coordinates. The boundary conditions in x (the equivalent of R
in cylindrical coordinates) are the so-called shearing boundary
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Fig. 10. Structure of the flow in the (x, z) plane after 60 orbits. The ar-
rows shows the poloidal velocity field overplotted on gray scale con-
tours of the y-component of the magnetic field. Because of the growth
of the MRI, the entire flow has become turbulent.

Fig. 11. Time history of the volume averaged Maxwell stress tensor nor-
malized by pressure, obtained in the shearing box model. The solid line
was computed using RAMSES and the dashed line was calculated using
ZEUS. Both models use exactly the same set of parameters. Both shows
sustained MHD turbulence and a similar amount of angular momentum
transport.

conditions widely discussed in the literature (Hawley et al. 1995;
Gardiner & Stone 2005b).

The initial conditions of our runs are those of the standard
shearing box model. The initial density is uniform and equal to
unity everywhere. The velocity is such that

u =

⎛⎜⎜⎜⎜⎜⎜⎝
0

−qΩ0x
0

⎞⎟⎟⎟⎟⎟⎟⎠ , (42)

with q = 1.5 and Ω0 = 10−3. The equation of state is isother-
mal: P = ρc2

0, with c0 = 10−3. The initial magnetic field is ini-
tially purely vertical and its intensity varies sinusoidally with x
such that the total net flux threading the computational domain
vanishes:

Bz = B0 sin 2πx. (43)

B0 is calculated such that the ratio β between the volume aver-
aged thermal to magnetic pressure equals 400. The uniform grid

Fig. 12. Three timesteps illustrating the hydrodynamical collapse.

satisfies −0.5 ≤ x ≤ 0.5, 0 ≤ y ≤ 2πy and −0.5 ≤ z ≤ 0.5. The
resolution is (Nx,Ny,Nz) = (32, 100, 32). We ran the model with
RAMSES, using the Roe Riemann solver and the MonCen slope
limiter.

At t = 0, small random velocities are superposed on the ini-
tial state. The model is evolved during 100 orbital periods T0,
where T0 = 2π/Ω0. During the first five orbits, the magnetic en-
ergy is observed to grow. A measure of the growth rate of the
instability σ during that period gives σ ∼ 0.55Ω. It is difficult to
compare this growth rate with the results of linear theory: since
the vertical magnetic field varies with x, its growth rate does not
correspond to that of a single normal mode. Nevertheless, we
expect the volume averaged evolution of the magnetic field to
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Fig. 13. Two timesteps illustrating the magnetized collapse. The upper panels display the equatorial density and velocity field whereas bottom
panels displays the density in x−z plane. The calculation is performed with the Lax-Friedrich solver.

be dominated by the growth of the field at the position where
its strength is initially the largest. This is confirmed by a vi-
sual inspection of the structure of the flow during that phase,
which also indicates that the associated wavelengths in the ra-
dial and vertical direction are respectively equal to H and H/2.
The results of linear theory (Balbus & Hawley 1991) predicts
that σth = 0.55Ω in that case. Although there is good agreement
between σ andσth, we want to emphasize that the treatment pre-
sented here is only approximate. It nevertheless gives confidence
in the results of the numerical simulation.

When nonlinear effect becomes important, the magnetic en-
ergy reaches a peak and start to decline as the whole flow breaks
down into turbulence, before levelling to a quasi steady state it
keeps until the end of the simulation. The turbulent nature of
the disk is illustrated in Fig. 10. It shows the structure of the
flow in the (x, z) plane after 60 orbits. The arrows represent the
poloidal velocity field and are overplotted on gray scale con-
tours of By, which is the dominant component of the magnetic
field. In order to better quantify the strength of the turbulence, we
plot in Fig. 11 the time history of the volume averaged Maxwell
stress tensor, normalised by the mean thermal pressure P0:

T Max
rφ = −

〈BxBy〉
P0

, (44)

where 〈.〉 denotes a volume average. The solid line in Fig. 11
was obtained with RAMSES. As a comparison, the dashed line
shows the same quantity obtained with ZEUS for the same
model (we note that the growth rate measured during the lin-
ear phase in that case was found to be identical to that obtained

with RAMSES). The two curves are in good agreement with
each other, even if there is a tendency for RAMSES to display
some more activity. Indeed, time averaging the curves presented
in Fig. 11 between 40 and 100 orbits, we obtained mean val-
ues and rms deviation for the Maxwell stress tensor equal to
(6.6± 1.5)× 10−3 with RAMSES and equal to (3.9± 1.3)× 10−3

with ZEUS. It is worth noting that the (small) difference between
these two values may not be significant as it is an effect of the
different dissipative properties of the codes: turbulence is driven
on large scales by the MRI and damps on small scales due to nu-
merical dissipation. The precise saturated value of the Maxwell
stress results from a balance between these two.

5.2. Magnetized cloud core collapse

Here we present another 3D test of astrophysical significance:
the magnetized collapse of a dense prestellar core. In this prob-
lem the AMR scheme is very useful since the density varies over
8 orders of magnitude and the spacial scale, which is about the
Jeans length, varies over 3−4 orders of magnitude.

Such calculations in the hydrodynamical case have been
performed by several authors using either SPH methods (e.g.
Hennebelle et al. 2004) or grid based method (e.g. Matsumoto
& Hanawa 2003). In the magnetized case, much fewer 3D calcu-
lations have been carried out using SPH (Hosking & Whitworth
2004), nested grid (Machida et al. 2005a,b; Banerjee & Pudritz
2006) or an AMR implementation (Ziegler 2005).
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Fig. 14. Same as Fig. 13 except that the calculation has been carried out with the Roe solver.

In order to do a precise comparison, we adopt the same
initial conditions as Hosking & Whitworth (2005) and Ziegler
(2005). The cloud has initially a uniform density of ρ = 4.8 ×
10−18 g cm−3, a temperature of 10 K and a radius of Rc =
0.015 pc. The total mass is equal to one solar mass and the ini-
tial ratio of thermal to gravitational energy is about 0.35. The
cloud is initially in solid body rotation with angular velocity
ω = 4.25 × 10−13 s−1 leading to an initial ratio of rotational
to gravitational energy of about 0.45. To induce fragmentation,
an m = 2 perturbation on the density field with an ampli-
tude of 10% has been setup initially. The magnetic field is ini-
tially uniform and parallel to the rotation axis. We use the same
barotropic equation of state as Hosking & Whitworth (2005),
namely P = C2

sρ × (1 + (ρ/ρcrit)4/3)1/2 with ρcrit = 10−13 g cm−3.
All calculations have initially 643 cells and uses 8 additional
AMR levels. The refinement criteria is based on the Jeans length
which is numerically described by at least 10 cells.

5.2.1. Hydrodynamical collapse

Figure 12 displays three snapshots of the hydrodynamical case
performed with the Lax-Friedrich solver. The equatorial density
field is displayed and the arrows show the velocity field. The
top panel is very similar to the second panel of Fig. 8 of Ziegler
(2005). Both spiral patterns have approximately the same size
and the same orientation. Timing is also very similar (agreement
within about 5% of accuracy). The result compares well to the
SPH calculation of Hosking & Whitworth (2005) shown in their
Fig. 2 (bottom-right panel). The second panel of Fig. 12 appears

to be similar to the bottom-left panel of Fig. 3 of Hosking &
Whitworth (2005). In both cases about 5 fragments have formed
located approximately at the same position in both simulations.
The third panel shows the density field 0.01 Myr after the time of
the second panel which is comparable to the timeshift between
left-bottom and right-bottom of Fig. 3 of Hosking & Whitworth
(2005). The agreement is less good than for earlier time. Our
results remain symmetric which is not the case for the Hosking
& Whitworth’s results.

5.2.2. MHD collapse

In this section we present results for the MHD collapse. The
intensity of the magnetic field is such that the cloud mass-to-flux
ratio is twice the critical mass-to-flux ratio. This corresponds to
the first MHD case studied by Ziegler (2005).

Figure 13 shows results for a calculation performed with
the Lax-Friedrich solver whereas Fig. 14 shows results obtained
with the Roe solver. Upper panels of Figs. 13 and 14 display the
equatorial density field whereas bottom panels display the den-
sity in the x−z plane. Left panels display results at a time close to
the first panel of Fig. 10 of Ziegler (2005). Right panels display
results about 0.01 Myr later.

In his simulation, Ziegler reports the formation of a binary
having a separation at time t � 1.44tff of about 0.06 Rc where tff
is the freefall time. As shown in Fig. 13, there are no binaries
with the Lax-Friedrich solver. There is also a shift in time (of
about 3%) since the collapse occurs slightly later than 1.44tff.
On the contrary, as shown in Fig. 14, in the simulation performed
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with the Roe solver, a binary forms at time t = 1.45tff although
we find a separation of 0.03 Rc instead of 0.06 Rc. Ziegler re-
ports also another case with stronger magnetic field for which
the mass-to-flux ratio is 1.2 times the critical mass-to-flux ratio.
In this case he finds no binary. We have also performed this sim-
ulation (not displayed here for conciseness) and we confirm the
absence of binary. Although the formation of the binary appears
to be a good numerical test, it should be said that it is some-
how physically artificial since it relies on initial conditions for
which the density field is perturbed but not the magnetic field.
As a result, the magnetic Jeans mass at the density maximum is
lowered, thus making the perturbation very unstable. Indeed we
have performed a simulation in which the m = 2 perturbation has
been applied to the magnetic field as well. In this case, instead
of a binary, we find two very shallow local maxima.

Right panels of Fig. 14 show that the two fragments have
merged leaving a single central fragment. This is an important
difference with the hydrodynamical case in which five fragments
have been found (although further evolution reveals that two
of these fragments merge with the central one). Another im-
portant departure from the hydrodynamical case is the presence
of strong outflows (right-bottom panel). There are very similar
to the outflows shown in Machida et al. (2005b). Outflows are
also obtained with the Lax-friedrich solver (right-botton panel of
Fig. 13) although the flow structure is slightly different. With the
Roe solver, the velocity field along the z-axis vanishes whereas
this is not the case with the Lax-Friedrich solver. The disk ap-
pears to be thicker with the Lax-Friedrich solver than with the
Roe solver.

We conclude that RAMSES-MHD is able to reproduce
quantitatively results obtained by various authors including frag-
mentation and outflows. Significant differences appear between
results obtained with the Lax-Friedrich and the Roe solvers al-
though the former is able to reproduce the main features of the
flow.

6. Conclusion and perspectives

In this paper, we have presented an extension of RAMSES to
MHD. The algorithm is based on the MUSCL-Hancock ap-
proach already used in the hydrodynamic version of RAMSES
(Teyssier 2002). The induction equation is evolved in time us-
ing the standard CT scheme (Evans & Hawley 1988). To do so,
time averaged EMFs are computed on cell edges by solving a
2D Riemann problem, as described in Londrillo & Del Zanna
(2000). Several tests are presented that illustrate the properties
and robustness of the code. In particular, we show that the AMR
scheme implemented in RAMSES can be crucial to describe
accurately the propagation of some unusual waves peculiar to
MHD like the compound waves.

We also demonstrate the versatility of RAMSES by study-
ing two problems of astrophysical significance: the development
of MHD turbulence in accretion disk and the collapse of dense
core in the interstellar medium. In both cases, we report re-
sults that are consistent with previous studies published in the
literature. These two applications show that RAMSES is well
suited to study a wide variety of problems involving MHD in
astrophysics.

In future studies, several improvements will now be inves-
tigated. It will be particularly useful, for example, to develop a
proper 2D Riemann solver to calculate the time averaged EMFs,
instead of making linear combination of 1D solvers as it is done
now. Nonlinear Riemann solvers could also be implemented, like

HLLC (Miyoshi & Kusano 2005) for example. Obviously, an ex-
tension to curvilinear coordinates would also be very interesting,
particularly for applications involving accretion disks or galax-
ies. Finally, it will be necessary in some cases to go beyond the
ideal MHD framework and to implement new physics like ohmic
dissipation or ambipolar diffusion.
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