Is Brownian Motion Sensitive to Geometry Fluctuations?
Résumé
Many situations of physical and biological interest involve diffusions on manifolds. It is usually assumed that irregularities in the geometry of these manifolds do not influence diffusions. The validity of this assumption is put to test by studying Brownian motions on nearly flat 2D surfaces. It is found by perturbative calculations that irregularities in the geometry have a cumulative and drastic influence on diffusions, and that this influence typically grows exponentially with time. The corresponding characteristic times are computed and discussed.