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ABSTRACT

We investigate numerically and semi-analytically the collapse of low-mass, rotating prestellar
cores. Initially, the cores are in approximate equilibrium with low rotation (the initial ratio of
thermal to gravitational energy is oy = 0.5, and the initial ratio of rotational to gravitational
energy is B¢ = 0.02-0.05). They are then subjected to a steady increase in external pressure.
Fragmentation is promoted — in the sense that more protostars are formed — both by more rapid
compression, and by higher rotation (larger 8).

In general, the large-scale collapse is non-homologous, and follows the pattern described
by Hennebelle et al. (Paper I) for non-rotating clouds, namely a compression wave is driven
into the cloud, thereby increasing the density and the inflow velocity. The effects of rotation
become important at the centre, where the material with low angular momentum forms a central
primary protostar (CPP), whilst the material with higher angular momentum forms an accretion
disc around the CPP. More rapid compression drives a stronger compression wave and delivers
material more rapidly into the outer parts of the disc. Consequently, (i) there is more mass in
the outer parts of the disc; (ii) the outer parts of the disc are denser (because the density of the
material running into the accretion shock at the edge of the disc is higher); and (iii) there is less
time for the gravitational torques associated with symmetry breaking to redistribute angular
momentum and thereby facilitate accretion on to the CPP. The combination of a massive, dense
outer disc and a relatively low-mass CPP renders the disc unstable against fragmentation, and
leads to the formation of one or more secondary protostars. At their inception, these secondary
protostars are typically four or five times less massive than the CPP.

For very rapid compression there is no CPP and the disc becomes more like a ring, which
then fragments into two or three protostars of comparable mass.

For more rapid rotation (larger S), the outer disc is even more massive in comparison to
the CPP, even more extended, and therefore even more prone to fragment.

Key words: gravitation — hydrodynamics — waves — stars: formation — ISM: clouds.

from the outside by an increase in the external pressure. This model
seems to reproduce many of the key features observed in nearby
star-forming cores; in particular, (i) during the pre-stellar phase, the

1 INTRODUCTION

It is now well established that stars form in dense cores embedded

in molecular clouds (see, for example, André, Ward-Thompson &
Barsony 2000). However, the conditions under which these cores
form, become unstable, collapse and fragment are still a matter of
debate.

In a previous study, Hennebelle et al. (2003, Paper I) have inves-
tigated the possibility that the collapse of a prestellar core is driven

*E-mail: Patrick.Hennebelle @ens.fr (PH); ant@astro.cf.ac.uk (APW)

© 2004 RAS

density profile is approximately flat in the centre (Abergel et al.
1996; Bacmann et al. 2000; Motte & André 2001). (ii) For slow
to moderate compression rates, subsonic infall velocities develop
in the outer parts of the core during the prestellar phase (Tafalla
et al. 1998; Lee, Myers & Tafalla 1999; Williams et al. 1999). (iii)
During the Class O phase, subsonic velocities persist in the outer
parts of the core (Belloche et al. 2002) and transsonic velocities
develop in the inner parts (r < 2000 au). (iv) There is an initial
short phase of rapid accretion on to the central protostar (the Class 0
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phase), followed by a longer phase of slower accretion (the Class |
phase), as inferred from the studies of Greene et al. (1994), Kenyon
& Hartmann (1995), Bontemps et al. (1996) and Motte & André
(2001).

A question that was not addressed in Paper I is the formation
of multiple protostars by fragmentation of a collapsing core. This
question is critical, because it is now well established (Duquennoy
& Mayor 1991; Fisher & Marcy 1992; Ghez et al. 1997) that a large
fraction of stars is in binary — or higher multiple — systems (i.e. at
least 50 per cent for mature solar-type stars in the field, and a higher
percentage for pre-main-sequence stars in young associations).

1.1 Previous work

The gravitational fragmentation of a collapsing cloud has been in-
vestigated intensively for over two decades (see Bodenheimer et al.
2000 for a review), mostly with numerical simulations, but also
by semi-analytic means. The enduring hope has been to derive a
robust general theorem defining the conditions required for frag-
mentation, for instance, in terms of the initial ratio of thermal to
gravitational energy, o, and the initial ratio of rotational to gravi-
tational energy, 8. However, robust theorems have proved elusive.
This is in part because the parameter space of initial conditions and
constitutive physics is very large. Therefore, the generality of the
results obtained is hard to establish. In addition, fragmentation ap-
pears to depend sensitively on the complicated radiative-transport
and thermal-inertia effects which come into play when star-forming
gas switches from being approximately isothermal to being approx-
imately adiabatic. The computational resources required to simulate
this radiative transport properly are not yet available. Furthermore,
all such theorems inevitably beg the question: how were the unsta-
ble initial conditions created in the first place? Here one probably
has to appeal loosely to the chaotic effects of supersonic turbulence
in star-forming molecular clouds (e.g. Elmegreen 2000; Padoan &
Nordlund 2002).

The simplest case to treat is a spherical cloud with uniform
density, solid-body rotation, and isothermal equation of state; this
is sometimes called the standard model. Using semi-analytic ar-
guments, based on the classical stability analysis of Maclaurin
spheroids (Lyttleton 1953; Chandrasekhar 1969), Tohline (1981)
concluded that all such clouds should fragment. Subsequently,
Miyama, Hayashi & Narita (1984) used numerical simulations to
derive a fragmentation criterion of the form o 8¢ < 0.12. A simi-
lar criterion was obtained semi-analytically by Hachisu & Eriguchi
(1984, 1985) and Miyama (1992) revised the criterion slightly to
aoBo < 0.15, on the basis of an analysis of the flatness and stability
of rotating discs. Tsuribe & Inutsuka (1999a), again using a semi-
analytic approach, took account of the non-homologous nature of
collapse, and obtained a somewhat different criterion, which can
be approximated by «, < 0.55-0.658. This criterion was subse-
quently confirmed with simulations (Tsuribe & Inutsuka 1999b).

The standard model can be modified in several interesting ways.

(1) The standard model can be modified by adding an m = 2 az-
imuthal density perturbation, i.e. p(r) = po [1 + A cos (¢)], where
¢ is the azimuthal angle in spherical polar coordinates and A is the
fractional amplitude of the perturbation. This perturbation is a com-
mon basis for numerical explorations of collapse and fragmentation.
The standard model was first simulated by Boss & Bodenheimer
(1979), who invoked a perturbation with amplitude A = 0.5. They
found that a cloud having «¢ = 0.25 and 8y = 0.20 collapsed and
fragmented to form a binary system. This result was reproduced by

Burkert & Bodenheimer (1993) using a more accurate code. Burkert
& Bodenheimer (1993) also performed simulations with oy = 0.26
and By = 0.16 and with the amplitude of the perturbation setto A =
0.5 and A = 0.1. In the latter case they obtained not just a binary,
but also a line of smaller fragments between the main binary com-
ponents. However, Truelove et al. (1998) have demonstrated using
an AMR code, that this is an artefact. If the collapse remains truly
isothermal to high densities, and if the resolution is sufficiently high
for the Jeans mass to be resolved at all times, the material between the
binary components should not fragment. This has been confirmed
by Boss et al. (2000), Sigalotti & Klapp (2001) and Kitsionas &
Whitworth (2002), who followed the purely isothermal collapse to
even higher density, using smoothed particle hydrodynamics (SPH)
with particle splitting.

(i1) The standard model can be modified by changing the equa-
tion of state. Tohline (1981) and Miyama (1992) considered the
collapse of clouds having an adiabatic equation of state, P = Kp?”,
and concluded that the condition for fragmentation takes the form

By < f(). ()

where, for example, f(5/3) ~ 0.064. Alternatively, a barotropic
equation of state can be adopted, in which the gas is isothermal at
low densities (where star-forming gas is expected to be thin to its
own cooling radiation), and adiabatic at high densities (where the
gas is expected to be optically thick to its cooling radiation). Col-
lapse simulations using a barotropic equation of state of this form
are presented by Bonnell (1994), Bate & Burkert (1997), Boss et al.
(2000) and Cha & Whitworth (2003). A barotropic equation of state
of this type is also used in the simulations presented in this paper,
and is discussed in Section 2.2. It is clear that treatment of the equa-
tion of state has a profound influence on the outcome of collapse.
For example, Bate & Burkert (1997) show that the collapse of an
initially uniform-density cloud having oy = 0.26, 8¢y = 0.16 and
an m = 2, A = 0.1 azimuthal perturbation, does produce a line of
small fragments between the two main binary components, if the
barotropic equation of state described above is used (but not if the
gas remains isothermal indefinitely). Perhaps the most telling result
in this regard is reported by Boss et al. (2000) who simulated the
collapse of a cloud with an m =2, A = 0.1 perturbation, first using a
barotropic equation of state, and then including radiation transport
and an energy equation. The latter case produced a binary, whereas
the former case did not, even though the variation of pressure with
density was very similar in the two cases. The implication is that
the subtle radiation-transport and thermal-inertia effects, which sud-
denly become important as isothermality gives way to adiabaticity,
play a critical role in determining the pattern of fragmentation.
(iii) The standard model can be modified by imposing a density
profile. Myhill & Kaula (1992), using a code which included ra-
diation transport and an energy equation, showed that clouds with
solid-body rotation, «y = 0.16, By = 0.17,and anm =2, A = 0.1
or 0.5 azimuthal perturbation do not fragment during the isothermal
collapse phase, if the density profile is centrally peaked (specifically
p o r~" with n = 1 or 2). However, Burkert, Bate & Bodenheimer
(1997) repeated the simulation with A = 0.1 and n = 1, using a
barotropic equation of state. They found that after the central pri-
mary protostar condenses out, a circumstellar disc forms around
it, and this disc then fragments to produce companion protostars.
A number of simulations have also been performed with Gaussian
density profiles (e.g. Boss & Myhill 1995; Burkert & Bodenheimer
1996; Boss 1996; Boss et al. 2000), and also with exponential pro-
files (Boss 1993), but there does not appear to have been a systematic
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evaluation of the influence of these profiles on the outcome of
collapse.

(iv) The standard model can be modified by introducing differ-
ential rotation. Myhill & Kaula (1992), again using a code which
included radiation transport and an energy equation, showed that
clouds with g = 0.16, By = 0.17, a centrally peaked density profile
(poxrwithn=1o0r2),and anm =2, A = 0.1 or 0.5 azimuthal
perturbation, do fragment if they have sufficient differential rotation
(in contrast with the result for solid-body rotation). The tendency for
differential rotation to promote fragmentation has been confirmed
by Boss & Myhill (1995) and Cha & Whitworth (2003).

(v) Finally, anumber of authors have explored the effect of clouds
having non-spherical initial shapes. Evidently, the outcome here
depends not only on ¢ (and By, if there is rotation), but also on
the aspect ratio of the initial configuration. Bastien (1983) sim-
ulated the collapse of isothermal, non-rotating cylindrical clouds
and determined the mass per unit length required for fragmenta-
tion. This problem was revisited by Bonnell & Bastien (1991) and
Bastien et al. (1991), and extended to polytropic cylinders by Arcor-
agi et al. (1991). Bonnell et al. (1991) explored the circumstances
under which isothermal cylinders rotating about an axis perpen-
dicular to their elongation fragment to produce binary systems,
and Bonnell et al. (1992) considered isothermal cylinders rotating
about an arbitrary axis. Bonnell & Bastien (1992) repeated this last
study with cylinders having a density gradient along the symmetry
axis, and showed that quite modest gradients were sufficient to pro-
duce binary systems with mass ratios in the range 0.1-1. Nelson &
Papaloizou (1993) (see also Bonnell, Bate & Price 1996) simulated
the collapse of prolate spheroids, and showed that they fragment
if the mass per unit length is sufficiently high (as for cylinders),
but the binary components tend to be closer because there is less
mass at the ends of a prolate spheroid. Boss (1993) simulated the
collapse and fragmentation of a rotating, mildly prolate cloud with
an exponential density profile, and showed that the conditions for
fragmentation were rather more restrictive than those obtained by
Miyama et al. (1984). These results were extended to mildly prolate
clouds having a Gaussian density profile and differential rotation
by Boss & Myhill (1995); and to more elongated prolate clouds
having a Gaussian density profile, but solid-body rotation, by Siga-
lotti & Klapp (1997). Boss (1996) simulated the collapse of rotating
isothermal oblate spheroidal clouds and showed that fragmentation
into multiple systems occurs provided oy < 0.4, almost indepen-
dent of B,. Monaghan (1994) explored the effect of vorticity on the
collapse and fragmentation of ellipsoidal clouds, using numerical
simulations.

1.2 Outline of the paper

In this paper we pursue further our investigation of prestellar cores
where the collapse is induced by a steady increase in the external
pressure. We extend the investigation to the case of rotating cores,
and focus on the formation of circumstellar discs around the cen-
tral primary protostars (CPPs) and the subsequent fragmentation
of these discs. Our main goal is to relate the properties of the star
systems formed (multiplicities and mass ratios) to the dynamics of
the collapse, and hence to the parameters S, and ¢, measuring —,
respectively, — the initial rate of rotation and the rate of compression
(see equation 8). Our model invokes initial conditions, and generates
density and velocity profiles, very similar to those inferred from ob-
servations of real star-forming cores. However, without performing
a large (i.e. statistically robust) ensemble of simulations, we can-
not know whether it also delivers multiple systems with statistics
similar to those observed.

© 2004 RAS, MNRAS 348, 687-701
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In Section 2 we describe the numerical method we use, the consti-
tutive physics, and the initial and boundary conditions. In Section 3,
we present our results, with special attention to the large-scale ve-
locity and density fields in the cores. Section 4 discusses the evo-
lution of the discs that form around the central primary protostars,
with particular emphasis on the fragmentation process. Section 5
summarizes our main conclusions. In the Appendix, we develop a
semi-analytical description of the key features discussed in Sections
3 and 4, and estimate the time-scales influencing disc stability. We
perceive this analysis as an integral part of our paper, and we have
put it in an appendix purely so that those whose main interest is in
the phenomenology of fragmentation can read about the results of
our simulations without getting to grips with the more mathematical
aspects, which give an approximate quantitative explanation for the
dependence of disc stability on the initial core rotation and the rate
of compression.

2 CONSTITUTIVE PHYSICS, INITIAL
CONDITIONS AND NUMERICAL METHOD

2.1 Coordinates

With respect to a Cartesian coordinate system (x, y, z), the global
angular momentum of the core will always be directed along the
z-axis. Distance from the origin will be denoted by

r=u+y +2)"7 2
and distance from the rotation axis by
w=(x*+yH'". 3)

The velocity is then divided into three orthogonal components: the
equatorial velocity component,

Uy = (XUX +yvy)/u); (4)
the azimuthal velocity component,
vp = (xvy — yv)/w; )

and the polar velocity component, v;.

2.2 The equation of state

We use a barotropic equation of state (cf. Bonnell 1994), which
mimics the expected thermal behaviour of star-forming gas (e.g.
Tohline 1982; Masunaga & Inutsuka 2000):

2/3
1+ <ﬁ> ] 6)
Lo

Here P is the pressure, p is the density, and C; is the isothermal
speed of sound.

Atlow densities, p < po=10""gem ™3, C;~ Cy=0.19kms™!,
corresponding to isothermal molecular gas at 10 K. The presumption
is that the gas is able to radiate freely, either via molecular line
radiation, or — once the density rises above approximately 10~ g
cm™3 — by coupling thermally to the dust.

Athigh densities, p > pg, P o« p°/3, corresponding to an adiabatic
gas with adiabatic exponent y = 5/3. Here the presumption is that
the cooling radiation is trapped by dust opacity. We note that molec-
ular hydrogen behaves like a monatomic gas until the temperature
reaches several hundred Kelvin, because the rotational degrees of
freedom are not excited at lower temperatures, and hence y = 5/3
is the appropriate adiabatic exponent.

P
;EC?:C%
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The switch to adiabatic behaviour at high density causes the grav-
itational collapse to slow down, and obviates the need to invoke sink
particles (Bate et al. 1995). This allows us to capture the dynamics
of the disc, and accretion from the disc on to the central protostar,
much more accurately. If a sink were introduced it might seriously
influence the development of spiral density waves in the disc and its
patterns of fragmentation.

2.3 The initial and boundary conditions

The initial conditions are a rotating truncated Bonnor—Ebert sphere,
contained by a hot rarefied intercore medium having uniform den-
sity. The Bonnor—Ebert sphere is truncated at £ = 6 [i.e. at radius R
=6Cy/(4Gp.)"/?, where G is the universal gravitational constant
and p. is the central density]. The core mass is one solar mass and
its initial radius is ~0.05 pc. This is a reasonable representation of
observed prestellar cores (e.g. André et al. 2000).

Because of its initial rotation, this configuration is not strictly in
equilibrium. However, since the rotational energy is only a few per
cent of the gravitational potential energy (8, = 0.02-0.05), itis very
close to equilibrium.

Molecular-line observations of dense cores (Goodman et al. 1993)
suggest that typically the ratio of rotational to gravitational energy
is By = 0.02. We therefore adopt this value for most of our simu-
lations. In addition, we consider 8¢ = 0.05, in order to explore the
dependence on f.

The rotation profile is obtained by assuming that the original core
had uniform density and rotated as a solid-body, and that angular
momentum was then conserved minutely, whilst the core evolved
from this original uniform-density state to our centrally condensed
initial conditions. This means that our initial configuration is rotating
differentially at the outset.

At t = 0, the temperature of the intercore medium is increased in
such a way that its pressure satisfies

P(t) = Py + Pr. )
We define
P,/ P
= . 8
é Ro/Co 3

Thus ¢ is the ratio between the time-scale on which the intercore
pressure doubles and the sound-crossing time of the core. A low
value of ¢ means rapid compression, whereas a high value means
slow compression.

2.4 Numerical method

The numerical method used is very similar to that described in
Paper I. We use a standard smoothed particle hydrodynamics code
(e.g. Monaghan 1992) in combination with tree-code gravity. There
are three types of particle: the core particles, which experience
both hydrodynamic and gravitational forces; the intercore particles,
which experience only hydrodynamic forces; and the boundary par-
ticles, which are passive. There are ~10° core particles, ~5 x 10*
intercore particles, and ~3 x 10* boundary particles.

Since we are simulating rotating cores, the intercore and boundary
particles are given an initial uniform angular velocity, so as to min-
imize loss of angular momentum due to friction between the core
and intercore gas, and between the intercore gas and the boundary.

2.5 The Jeans condition

In a numerical simulation involving self-gravity, it is essential that
the Jeans condition be obeyed, i.e. that the Jeans mass be resolved
at all times (Bate & Burkert 1997; Truelove et al. 1997, 1998). The
Jeans mass is M jeyns ~ 6 G~ p~1/2C3, and the minimum resolvable
mass in SPH is Myegived ~ N nein, Where Nyeip = 50 is the mean
number of neighbours within the smoothing kernel of a typical SPH
particle, and m is the mass of a single SPH particle. Thus the Jeans
condition can be written as an upper limit on the mass of a single
SPH particle,

6C?
NaeinG*/2p'12
From equation (6) we see that the minimum value of C?/p!/? is

232C3 /py’*. Hence the Jeans condition is always satisfied as long
as

(C))

m < Mg ™~

23/ 26C3
Naeib G3/2Pé/2

Since we model a 1 Mg core with 10° equal-mass particles, we
have m = 107> M. Consequently, the Jeans condition is easily
satisfied, and this ensures that the fragmentation which occurs in
our simulations is not a consequence of poor numerical resolution.
In addition, we have repeated all the simulations presented here with
~5 x 10* core particles, and shown that the results are statistically
unchanged; precise agreement is not expected, since fragmentation
is seeded by particle noise, and particle noise is dependent on the
number of particles.

~25x 107 Mg. (10)

m < Mmpax ™~

2.6 Angular momentum conservation

Although the SPH equations ensure conservation of the global an-
gular momentum, angular momentum is not necessarily well con-
served locally. In particular, for the simulations involving slow com-
pression, the duration of the pre-collapse phase can be as long as
three or four free-fall times, and significant unphysical transport
of angular momentum can occur during this time. By unphysical
transport of angular momentum we mean the transport which arises
before azimuthal symmetry is broken, due to differential rotation
and the friction caused by artificial and numerical viscosity.

In order to limit this effect, we invoke the Balsara switch (Balsara
1995), i.e. we multiply the artificial viscosity term by the factor

V-l
IV v+ |V Ao+ C/(10°h)

an

Even with this factor (equation 11), we find that angular momen-
tum loss from the inner parts of the core can be significant. For
example, with the slowest compression rate that we treat (¢ = 3,
see the next section), the 10 000 densest particles (10 per cent of
the total number of particles) have lost approximately 20 per cent of
their initial angular momentum by the time the inner disc—starts to
form; in contrast, the total cloud angular momentum is conserved to
within a few per cent. For the intermediate compression rate (¢ = 1),
the 10 000 densest particles have lost approximately 10 per cent of
their initial angular momentum by the time the inner disc—starts
to form, and for the faster compressions (¢ < 0.3), this figure is
<5 per cent.

In order to check that our results are not significantly altered
by unphysical transport of angular momentum, we have repeated
several simulations with local conservation of angular momentum
imposed on all particles having density p < 107*p,. This ensures

© 2004 RAS, MNRAS 348, 687-701

220z Jaquiardas gz uo 1sanb Aq /1 0S86//89/2/817€/a1011e/Seiuw/wod dno-olwapede//:sdijy woly papeojumoq



that angular momentum is conserved locally as long as the core re-
mains axisymmetric. Physical transport of angular momentum, due
to the gravitational torques which accompany symmetry-breaking
instabilities, does not occur until the disc density exceeds 10~ p,
(see Section 4).

In order to impose local conservation of angular momentum, at
each time-step and for each particle i, we calculate the velocity by
solving the equation of motion, and then we extract the azimuthal
component, vy ;(t). vy ;(f) is then recalculated so as to enforce local
conservation of angular momentum, i.e.

a,i (1) = vg,;(Q)w; (0)/w; (¢). (12)

In these simulations the angular momentum loss of the 10 000 dens-
est particles is reduced to approximately 5 per cent, before symmetry
breaking occurs. However, in terms of the growth and fragmenta-
tion of the central disc, there is no significant difference from the
simulations where local conservation of angular momentum is not
imposed.

3 COLLAPSE OF A ROTATING CLOUD
INDUCED BY EXTERNAL COMPRESSION

In this section we present the results of two simulations involving a
core which initially has 8y = 0.02. In the first simulation, the core
is compressed slowly (¢ = 3), and in the second it is compressed
rapidly (¢ = 0.3). We limit the discussion here to a description of
the density and velocity fields which develop on scales much larger
than the central primary protostar or the rotationally supported disc
which forms around it. A detailed discussion of the structure and
evolution of the disc will be given in Section 4. Since the initial
rotation energy is small (8¢ = 0.02), rotation has little effect on the
large-scale fields under discussion in this section, and most of the
dynamical effects are the same as for the non-rotating cores analysed
in Paper L.

3.1 Slow compression (¢ = 3, 3y = 0.02)

In Fig. 1 we show results for slow compression, ¢ = 3. Four times
are shown: ¢ = 0.560 Myr (thin full line) is significantly before
the central primary protostar forms; t = 0.610 Myr (dotted line) is
when the maximum density first reaches p, just before the central
primary protostar forms; t = 0.611 Myr (dashed line) is after the
central primary protostar has formed and the disc has just started to
form; r = 0.615 Myr (dot-dash line) is approximately 4000 yr after
the disc—starts to form. Plots (a) and (b) are log—log plots showing,
respectively, the run of density along the equatorial plane [p(w, z
= 0)] and the run of density along the polar axis [p(w = 0, z)]; for
reference, the thick full line on these plots shows the density of the
singular isothermal sphere (hereafter SIS),

G

2nGr?’
Plots (c)—(e) are log—linear plots showing, respectively, the run of
equatorial velocity [v, (w, z = 0)], the run of polar velocity [v,(w
= 0, z)], and the run of azimuthal velocity in the equatorial plane
[ve(w, z=0)].

In the outer parts of the core (r > 0.03 pc), the density profile is
very close to the SIS, both along the equator, and along the pole.
However, towards the centre, the equatorial density [p(w, z = 0)]
gradually becomes larger than the SIS density, and the polar density
[p(w = 0, 2)] gradually becomes smaller than the SIS density. The
reasons for this are analysed in the Appendix. In preparation for

Psis = 13)
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Figure 1. Slow compression (¢ = 3) of a rotating cloud with 8o = 0.02. (a)
shows logo[p(w,z=0)/g cm ™3] againstlogo[w/pc]. (b) showslogio[p(w
=0,2)/g cm’3] against log1o[z/pc]. (¢) shows vy, (w, z=0)/km g1 against
log1o[w/pcl. (d) shows v, (w = 0, z)/km s~ ! against logo[z/pc]. (e) shows
vg(w, z=0)/km s7! against logo[w/pc]. Four times are shown: t = 0.560
Myr (thin full line) is significantly before the central primary protostar forms;
t = 0.610 Myr (dotted line) is when the density first reaches po, just before
the central primary protostar forms; t = 0.611 Myr (dashed line) is after the
central primary protostar has formed and the disc has just started to form; ¢
=0.615 Myr (dot-dash line) is approximately 4000 yr after the disc—starts to
form. For reference, the thick full line on plots (a) and (b) shows the density
of the singular isothermal sphere, Cg /27t Gr? (see equation 13).

the analysis in the Appendix, Fig. 2(a) shows the equatorial density
profile at = 0.610, when the density first exceeds p, normalized
to the density of the singular isothermal sphere (thin dashed line). In
addition, we have simulated the collapse of the same core (Bonnor—
Ebert sphere with £ = 6), compressed at the same rate (¢ = 3), but
with no rotation (8, = 0); the radial density profile obtained in this
case, when the density first exceeds pq at time ¢ = 0.497, is shown
as a dotted line (the thick dashed line on this plot is defined in the
Appendix). The equatorial density profile of the non-rotating core is
higher than the density profile of the SIS, and the equatorial density
profile of the rotating core is higher still, particularly towards the
centre.

In Fig. 1, the equatorial density increases abruptly (by a fac-
tor 10-20) inside r ~ 2 x 10~ pc at t = 0.611 Myr, and inside
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Figure 2. These plots show equatorial density profiles, p(w, z = 0), nor-
malized to the density profile of the singular isothermal sphere (see equation
13), for the two cases: (a) ¢ = 3, i.e. slow compression; and (b) ¢ = 0.3, i.e.
fast compression. The thin dashed line gives the equatorial density profile
when the density first exceeds pg, close to the moment the central primary
protostar forms, and before the disc—starts to form; in case (a) this moment
is t = 0.610 Myr, and in case (b) it is 0.2585 Myr. The dotted line gives
the equatorial density profile, again when the density first exceeds p close
to the moment the central primary protostar forms, but for a non-rotating
core (all the other initial conditions of the core are the same); in case (a) this
moment is t = 0.497 Myr, in case (b) it is 0.225 Myr. The thick dashed line
gives the product of the density of the non-rotating cloud (dotted line) and
the factor 1 + (ve/CS)Z/Z (see equation 10).

r>~5 x 107 pc at t = 0.615 Myr. This abrupt density increase
marks the accretion shock at the outer edge of the growing disc.

The inward velocity at the edge of the core is similar at the poles
and around the equator, ranging from ~0.07 km s~! at = 0.560
Myrto ~0.11 kms~! at# > 0.610 Myr. Towards the centre, the mag-
nitude of the polar velocity |v,(w = 0, z)| increases more rapidly
than the magnitude of the equatorial velocity |v, (w, z = 0)|, due
to centrifugal acceleration. Interior to 0.01 pc, |v,(w = 0, 2)| is ap-
proximately twice |v,,(w, z = 0)|, until the material flowing inwards
close to the equator encounters the outer boundary of the disc. At
this point, |v, (w, z = 0)| decreases abruptly in the accretion shock
at the disc boundary. The maximum value of |v,(w, z = 0)], just
before the material hits the disc boundary, is approximately constant
at a value ~0.85 km s™'. In contrast, the maximum polar velocity
increases continuously.

This simulation has been repeated with the procedure described
in Section 2.6 which forces local conservation of angular momen-
tum. The results are very similar, the only difference being that the
maximum value of |v, (w, z = 0)|, just before the material hits the
disc boundary, is ~0.75 km s~! instead of ~0.85 km s~".

3.2 Fast compression (¢ = 0.3, 3y = 0.02)

In Fig. 3 we show the results for fast compression, ¢ = 0.3. Four
time are shown: ¢ = 0.240 Myr (thin full line) is significantly before
the central primary protostar forms; # = 0.2585 Myr (dotted line) is

o _ ]
o + + + +
- 7§8 b) __ t= 0.240 Myr]
e = t= 0.258 Myrj
T 4 _ _ _t= 0.259 Myr]
é —.—.-t= 0.263 Myr]
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Figure3. Thesame asFig. 1, but for fast compression (¢ = 0.3) of arotating
cloud with 8o = 0.02. Four times are shown: ¢t = 0.240 Myr (thin full line)
is significantly before the primary protostar forms; t = 0.2585 Myr (dotted
line) is when the density first reaches pg, just before the central primary
protostar forms; r = 0.2593 Myr (dashed line) is after the central primary
protostar has formed and the disc has just started to form; and r = 0.2625
Myr (dot-dash line) is approximately 3000 yr after the disc—starts to form.
The thick line on plots (a) and (b) is the density of a singular isothermal
sphere.

when the maximum density first reaches p just before the central
primary protostar forms; ¢ = 0.2593 Myr (dashed line) is after the
central primary protostar has formed and the disc has just started to
form; and = 0.2625 Myr (dot-dash line) is approximately 3000 yr
after the disc—starts to form. Some significant differences from the
case ¢ = 3 can be seen in the density and velocity profiles.

First, due to the more rapidly increasing external pressure, the core
is more compact; the cloud radius is approximately 0.035 pc for ¢ =
3 whereas it is approximately 0.025 pc for ¢ = 0.3 (see Figs 1 and 3).
Consequently, the equatorial density p(w, z = 0) is higher than for
¢ = 3 (typically by a factor ~1.5-2). In contrast, the polar density
is more or less the same as for the case ¢ = 3. From Fig. 2, there
appear to be two factors contributing to the increase in equatorial
density with decreasing ¢. (a) The non-rotating cloud (dotted lines)
has higher equatorial density for ¢ = 0.3 (middle panel) than for
¢ = 3 (upper panel), so the first factor depends only on the rate of
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compression, and not on the angular momentum. (b) The ratio of
the rotating cloud density to the non-rotating cloud density is larger
for ¢ = 0.3 than for ¢ = 3, so the second factor depends both on
the rate of compression, and on the angular momentum. The reason
for this is analysed in the Appendix.

Secondly, the inward equatorial velocity |v,(w, z = 0)| in the
outer parts of the core is greater for ¢ = 0.3 than for ¢ = 3. For
example, the edge velocity is ~0.15-0.20 km s~! for ¢ = 0.3 (as
compared with ~0.07-0.11 km s~! for ¢ = 3); and at r = 0.01 pc,
it is ~0.3-0.35 km s~' for ¢ = 0.3 (as compared with ~0.18-0.20
km s~! for ¢ = 3). The equatorial velocity profile is also flatter than
for the case ¢ = 3, due to the compression wave. At t = 0.2625
Myr, there are large fluctuations in v, (w, z = 0) at small radii (r
< 0.002 pc), due to the development of non-axisymmetric modes.
These will be discussed further in Section 4.

4 FRAGMENTATION

In this section we focus on what happens in the central parts of the
cloud, and the details of the fragmentation process.

4.1 Slow compression

Fig. 4 illustrates the development of instability in the disc which
forms around the central protostar, for the case ¢ = 3 (slow com-
pression) and 8o = 0.02. The left-hand column shows particle posi-
tions projected on to the z = 0 plane. The right-hand column shows
logio[p:] plotted against equatorial coordinate w;, for each particle
i having density above 10~!* g cm~3, and the solid line shows p(w),
the mean density interior to radius w, as defined in equation (A31).
The central density first rises above p(/3 at t = 0.6097 Myr, and the
five time-steps shown correspond to 2000, 3000, 4000, 5000 and
8000 yr after this. The density and velocity fields on larger scales
are illustrated in Fig. 1. Fig. 4(a) shows the disc which forms in
the centre of the core around the primary protostar. At this stage
its central density is approximately 3 x 107'> g cm™ and its edge
density is approximately 10 times smaller. It is bounded by an ac-
cretion shock, where the density falls by a further factor of 10. The
disc has B >~ 0.36, but it is still apparently symmetric. The density
throughout the disc has only just started to rise above p, and there-
fore it is only mildly unstable according to the analysis presented
in the Appendix (section A4). Symmetry breaking is first evident a
few hundred years later, by which time 8 >~ 0.40.

In Figs 4(b) and (c), a strong two-armed spiral pattern develops
in the disc, due to spontaneous symmetry breaking, but the arms
do not sweep up sufficient mass to become gravitationally unstable,
and they quickly wind up. This is very reminiscent of the numeri-
cal results reported by Durisen et al. (1986), and is due to the fact
that the m = 2 modes are the first to become dynamically unstable
(Chandrasekhar 1969; Ostriker & Bodenheimer 1973). As in the
numerical simulations of Durisen et al. (1986), the arms generate
gravitational torques which transport angular momentum outwards
through the disc, allowing the central parts to condense on to the
primary protostar, and the outer parts to expand. However, the situ-
ation we simulate here differs from that modelled by Durisen et al,
because the discs in our simulations are accreting from an infalling
envelope. This has two fundamental consequences. First, the mass
at the outer edge of the disc is continuously replenished; this effect
was described by Bonnell (1994) and by Whitworth et al. (1995),
who showed numerically that this process will often lead to frag-
mentation. Secondly, the edge of the disc is bounded by an accretion
shock which compresses the gas at the edge of the disc (see Fig. 1).
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Figure 4. Disc instability in the central ~10~3 pc for ¢ = 3 (slow com-
pression) and B9 = 0.02. The left-hand column shows particle positions
projected on to the z = O plane. The right-hand column shows logio[p;]
plotted against equatorial coordinate w;, for each particle i having density
above 10714 g cm™3, and the solid line shows p(w), the mean density interior
to radius w, as defined in equation (A31). Five time-steps are shown, t =
0.6117,0.6127,0.6137, 0.6147, 0.6177 Myr. The mass on top of the panels
is in M. The density and velocity fields on larger scales are illustrated in
Fig. 1. No fragmentation occurs.

We note that since the perturbations that lead to symmetry break-
ing are numerical noise due to the initial particle distribution, the
details of the structures that form — for example, the orientation
of the spiral arms — are not identical for two different realizations,
i.e. two different initial particle distributions representing the same
macroscopic initial conditions. However, the statistical properties —
such as the numbers, masses and orbits of protostars produced — do
not significantly depend on the initial particle distribution, nor do
they depend significantly on the numerical resolution.

Figs 4(d) and (e) show the subsequent evolution of the disc.
The disc is replenished by infalling material, and a second strong
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two-armed spiral pattern develops, but again it fails to sweep up
sufficient material to become gravitationally unstable. Instead, it
generates gravitational torques which transport angular momentum
outwards, allowing the inner material of the disc to accrete on to the
central primary protostar and dispersing the outer material of the
disc. No secondary protostar is formed.

4.2 Fast compression

Fig. 5 shows results for ¢ = 0.3 (rapid compression) and 8, =
0.02. In this case the central density first rises above p(/3 at r =~
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Figure 5. Disc instability in the central ~2 x 1073 pc for ¢ = 0.3 (rapid
compression) and B¢ = 0.02. The left-hand column shows particle positions
projected on to the z = 0 plane. The right-hand column shows logo[p;]
plotted against equatorial coordinate w;, for each particle i having density
above 10714 g cm™3, and the solid line shows p(w), the mean density interior
to radius w, as defined in equation (A31). Five time-steps are shown, t =
0.2599, 0.2608, 0.2619, 0.2628, 0.2646 Myr. The mass on top of the panels
is in M. The density and velocity fields on larger scales are illustrated in
Fig. 3. A second protostar condenses out of one of the spiral arms.
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¢ =0.3 (b).

0.2578 Myr (see Fig. 6), and the time-steps shown are 2000, 3000,
4000, 5000 and 7000 yr after this. The principal effects of more
rapid compression are (i) to drive material into the disc more rapidly,
thereby building up the mass of the disc more quickly, and curtailing
the time the disc has to stabilize itself by redistributing angular
momentum and accreting on to the central primary protostar; and
(ii) to increase the density in the outer parts of the disc.' The result is
that the central primary protostar is smaller and the disc fragments
to produce a secondary protostar.

This can be seen in Fig. 5(a), which illustrates the structure of
the disc just before symmetry breaking occurs. In comparison with
the case ¢ = 3, the disc here is both more massive and has a flatter
density profile, i.e. the central density is lower and there is more
mass in the outer parts of the disc. Consequently, the density in the
outer parts is significantly higher than the mean density, and the
disc is gravitationally unstable according to Condition (A33). At
this stage B ~ 0.48, and by the time symmetry breaking occurs,
B ~0.51.

The development of the instability is similar to the previous case,
but because the outer parts of the disc are denser, and the central
primary protostar is less massive, the spiral arms are denser, more
extended, and consequently more unstable (than for ¢ = 3). Increas-
ing the rate of compression does not simply accelerate the formation
of the disc, but also reduces the time available for redistribution of
angular momentum by symmetry breaking, thereby generating a
greater ratio of disc mass to primary protostar mass.

Fig. 5(d) shows the non-linear development of the spiral arms,
and in panel (e) a second object forms, located at x ~ — 6 x 10~ pc
andy ~ 1 x 10~ pc. At this stage (f = 0.2646 Myr), the mass of the

'We stress that this latter effect is not because the Mach number of the
accretion shock is higher — the speed with which material flows into the
accretion shock at the edge of the disc is not strongly dependent on the rate
of compression — but because the density of the material flowing into the
shock is higher for faster compression.
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central primary protostaris M| 2 0.08 M, (75 per cent of which was
already in the system at time r = 0.2599 Myr, i.e. before symmetry
breaking started), and the mass of the newly formed secondary is
20.02 M, (of which 40 per cent was in the system before symmetry
breaking started).

The systematic differences between the cases ¢ = 3 (slow com-
pression) and ¢ = 0.3 (fast compression) are further illustrated in
Fig. 6, which shows the mass of gas with density in excess of various
representative thresholds (1000, 300, 00, £0/3, po/10 and p/100),
as a function of time. Symmetry breaking occurs at t = 0.612 Myr
for ¢ =3, and at t = 0.2632 Myr for ¢ = 0.3. The maxima exhibited
by the curves for intermediate thresholds (oo, thin full line; po/3,
thick full line) are due to expansion of the disc, caused by sym-
metry breaking and redistribution of angular momentum. Fig. 6(a)
shows that for ¢ = 3, when symmetry breaking occurs, the density
in the disc is relatively low, and a large fraction of the system mass
is already in the central primary protostar, thereby stabilizing the
disc. Conversely, panel (b) shows that for ¢ = 0.3, when symmetry
breaking occurs, the density in the disc is relatively high, and a much
smaller fraction of the system mass is in the central primary proto-
star. Panel (b) also shows how the transport of angular momentum
in the disc is accelerated once the secondary protostar forms at t =
0.2632 Myr.

4.3 Faster compression: ring formation

Fig. 7 shows results for ¢ = 0.1, 8¢ = 0.02. The behaviour is very
different from the previous cases. Even before the maximum density
approaches po = 107!* g cm ™3, a ring forms, and there is no central
primary protostar. Ring formation is attributable to a combination
of factors.

First, there is a centrifugal barrier, and this creates the rarefaction
at the centre of the ring. The dynamics of ring formation due to a
centrifugal barrier have been analysed by Tohline (1980), on the ba-
sis of pressureless collapse in an external potential. Bonnell & Bate
(1994) have also noted the transition from disc formation to ring
formation, as the speed of collapse increases. In their case the speed
of collapse was increased by reducing the initial ratio of thermal
to gravitational energy in the cloud. Cha & Whitworth (2003) have
explored the influence of differential rotation on ring formation. In
order to understand better the origin of the ring, we have monitored
where the material impinging on the centre of a core originates, and
we find the following distinction. For relatively slow compression
(¢ 2 0.3, Sections 4.1 and 4.2), the material which first impinges
on the centre of the core was initially concentrated near the rotation
axis (z-axis). Therefore, this material has very low specific angular
momentum (as compared with material originating further from the
rotation axis). This is why it reaches the centre first (it experiences
least centrifugal acceleration than material originating further from
the rotation axis), and why on reaching the centre it can stay there
to form the central primary protostar. In contrast, for faster com-
pression (¢ < 0.1, this section), the compression wave is stronger,
and drives material into the centre more isotropically. As a result,
most of the material impinging on the centre originates far from
the rotation axis and therefore has too much angular momentum to
reach the centre, so there is a central rarefaction — and hence a ring
is formed.

Secondly, the material delivered into the outer parts of the nascent
disc is compressed to high density by the accretion shock at the edge
of the disc. In order to confirm this effect, we have extracted the
ring displayed in Fig. 7(b) (i.e. we have selected particles having
density larger than p,/10) and we have then let the ring evolve in
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Figure 7. Disc instability in the central ~10~3 pc for ¢ = 0.1 (very rapid
compression) and B¢ = 0.02. The left-hand column shows particle positions
projected on to the z = O plane. The right-hand column shows logio[p;]
plotted against equatorial coordinate w;, for each particle i having density
above 10~'* g cm ™3 and the solid line shows p(w), the mean density interior
to radius w, as defined in equation (A31). Five time-steps are shown, t =
0.1688, 0.1704, 0.1712, 0.1717, 0.1744 Myr. The mass on top of the panels
is in M. Fragmentation occurs via a ring which initially breaks up into
three pieces; two of these merge, and the end-result is two protostars.

isolation, whilst enforcing axisymmetry. The ring quickly settles
into an equilibrium in which ~17 per cent of its mass has density
below po/10, and this mass carries ~33 per cent of the angular
momentum of the ring. We conclude that it is the accretion shock
which gives the ring a sharply defined outer boundary, and maintains
its high mean density and high specific angular momentum.
Thirdly, once the ring density becomes higher than the mean
density, its gravity starts to attract infalling material away from the
centre, thereby further enhancing its density contrast (see Fig. 7b,
t = 0.1704 Myr). The ring is established so quickly that there is
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insufficient time for the symmetry-breaking instabilities which
could redistribute angular momentum and deliver material into a
central primary protostar.

Self-gravitating rings are very unstable to non-axisymmetric in-
stabilities (Ostriker 1964; Norman & Wilson 1978), and within a
few orbital periods of its formation it breaks up into three massive
fragments (Fig. 7c, t = 0.1712 Myr). At the same time these frag-
ments start to interact dynamically (Fig. 7d, = 0.1717 Myr). Two
of them merge, and the end result is a binary (Fig. 7e, t = 0.1744
Myr). The object located at x = —0.1 x 1073 pc, y = —0.3 x 1073
pc in Fig. 7(e) has mass ~0.08 M¢; the object at x = + 0.3 x
1073 pe, y = + 0.6 x 107 pc has mass ~0.06 M. Both objects
are still accreting and have small discs with spiral patterns around
them. Ring fragmentation tends to produce objects of comparable
mass (as here), in contrast to disc instability where the secondary
protostars formed for ¢ = 0.3 tend to be four or five times less
massive than the primary.

In order to demonstrate the importance of the ram pressure of the
accretion shock, we have performed a simple numerical experiment.
We first extract the ring structure displayed in Fig. 7(b) (i.e. we
select particles having a density larger than p,/10). Then we let this
ring evolve in isolation, first with no external pressure, and second
with an external pressure equal to the average thermal pressure of
its particles (i.e. comparable to the ram pressure of the infalling
gas). In the first case (no external pressure, left-hand column of
Fig. 8), there is no permanent fragmentation. Transient structures
develop in the ring, but, because they lack a confining pressure,
they are diffuse, and they merge to form a single central protostar.
The rest of the material ends up in an expanding disc. A similar
result has been reported by Bonnell (1994), who finds that the disc
which forms around his central primary protostar only fragments if
envelope material continues to fall in on to the disc. In the second
case (external pressure approximately equal to ram pressure, right-
hand column of Fig. 8), the evolution is broadly similar to that
presented in Fig. 7. The ring breaks up into three fragments, and
subsequently two of them merge. This indicates that the confinement
of the ring by the ram pressure of the infalling gas plays an important
role in promoting fragmentation.

4.4 Stronger rotation

In order to investigate the effect of higher rotation on fragmentation,
we have performed numerical simulations with By = 0.05. The
results for ¢ = 3 and B¢ = 0.05 are presented in Fig. 9. In this case
the central density first rises above p/3 at t >~ 0.7237 Myr, and the
time-steps shown are 2000, 3000, 4000, 5000 and 7000 yr after this.
The principal effect of higher angular momentum is to increase the
mass and extent of the disc at the expense of the central primary
protostar (relative to the case ¢ = 3, 8o = 0.02), so the disc is more
unstable. As a result, the spiral arms become self-gravitating and
condense out to produce two secondary companions.

We infer that, in the parameter space that we have explored here
(and that we expect to be representative of real star-forming cores),
both rotation (higher S¢) and rapid compression (higher ¢) pro-
mote fragmentation. This is in accordance with the analysis in the
appendix. For higher ¢ and S, the material impinging on the accre-
tion shock at the edge of the disc has higher density, and therefore the
density in the outer parts of the disc is higher. In addition, for higher
¢ and By, this material is delivered to the outer parts of the disc
more rapidly, so there is less time for disc material to redistribute
angular momentum, and the mass of the central primary protostar
is lower. Therefore, as demonstrated in the appendix, the accretion

t= 0.1712 Myr t= 0.1710 Myr

y (107%pc)
y (107%pc)

. . i . . . .
-0.4 -0.2 0.0 0.2 0.4 -0.2 Q.0 0.2
x (107%pc) x (107%pc)

t= 0.1715 Myr t= 0.1716 Myr

y (107%pc)
y (107%pc)

. . . . . . . . . .
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
x (107%pc) x (107%pc)

t= 0.1721 Myr t= 0.1719 Myr

y (107%pc)
y (107%pc)

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 02 04
x (107%pc) x (107%pc)

t= 0.1734 Myr t= 0.1732 Myr

0.4F

0.2t 1 1
= = i
kS kS :
o o00r 1 o 7
> >
~0.2f — ]
_0a4l ]
0.4k L L L 4 L L L L L
-0.4 -0.2 Q.0 Q0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
x (107%pc) x (107%pc)

Figure 8. Evolution of the ring structure displayed in Fig. 7(b) when the
envelope is removed. The left-hand column shows the evolution when there
is no external pressure. With no external pressure, a single central protostar
forms, the outer parts of the ring expand, and there is no fragmentation.
The right-hand column shows the evolution when the external pressure is
approximately equal to the ram pressure of the infalling gas. In this case, the
evolution is very similar to the full simulation displayed in Fig. 7.

and local time-scales are reduced relative to the global time-scale,
and the disc is more unstable against fragmentation.

5 SUMMARY AND DISCUSSION

We have investigated the effect of compression on the collapse and
fragmentation of a rotating core.

Most of the conclusions of Paper I, concerning the large-scale
dynamics of the collapsing core, are still valid. In particular, the in-
crease in external pressure drives a compression wave into the core.
The compression wave leaves in its wake a velocity field very similar
to those recently inferred for prestellar cores, from observations of
asymmetric molecular-line profiles. Tafalla et al. (1998) estimated
inflow at ~0.10 km s~! in the outer layers of L1544, and Williams
et al. (1999) found inflow at ~0.08 km s~ further in. Lee et al.
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Figure 9. Disc instability in the central ~10~3 pc for ¢ = 3 (slow compres-
sion) and B = 0.05 (above average rotation). The left-hand column shows
particle positions projected on to the z = 0 plane. The right-hand column
shows logio[p;] plotted against equatorial coordinate w;, for each particle i
having density above 10~ gcm™3, and the solid line shows (w), the mean
density interior to radius w, as defined in equation (A31). Five time-steps
are shown, ¢t = 0.7256, 0.7268, 0.7277, 0.7287, 0.7307 Myr. The mass on
top of the panels is in M. Fragmentation of the disc around the primary
protostar produces two further protostars.

(1999) detected inflow velocities ranging from 0.04 to 0.10 km s~

in several other prestellar cores. Our models generate comparable
inflow velocities for ¢ in the range 10-1, i.e slow to intermediate
compression. Interestingly, in regions like Perseus and p Ophiucus,
where star formation is triggered more violently, cores with signifi-
cantly higher infall velocities have been observed. For example, Di
Francesco et al. (2001) detected velocities of ~0.5-0.7 km s~! in
the Class 0 protostars of NGC 1333 IRAS 4, suggesting that very
fast compression may have occurred in this region.
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The fundamental difference from Paper I is that because the cores
we simulate here have rotation, the inflowing material does not all
converge directly on to the central primary protostar. Instead, a large
fraction of it first collects in an accretion disc around the CPP, and
instabilities in the outer parts of this disc may then lead to fragmen-
tation producing additional protostars. As noted by Larson (2002),
the critical factors determining the stability of the outer disc are (i)
its mass and density and (ii) the speed with which it is assembled:
a quickly assembled, massive, dense outer disc is unstable against
fragmentation.

We show numerically — and, in the Appendix, semi-analytically —
that the density in the envelope is larger for faster compression, and
forlarger . These effects may already have been observed. In cores
belonging to the relatively quiescent star formation region Taurus,
the inflow velocities are compatible with slow compression, and the
density is close to the density of the singular isothermal sphere. Con-
versely, in cores belonging to more active star formations regions,
the inflow velocities appear to be supersonic, and the densities are
approximately one order of magnitude higher than the density of
the SIS (Motte & André 2001; André et al. 2003). This accords with
the predictions of the analysis in the appendix.

Except in the case of very rapid compression, the low angular
momentum material arriving in the centre of the core goes directly
into the CPP, and the high angular momentum material forms an
accretion disc round the CPP. If the compression is more rapid,
this has a number of effects which tend to render the disc more
unstable. First, the material accreting on to the outer parts of the
disc arrives with higher density, and therefore the density in the outer
disc — following compression in the accretion shock at the edge of
the disc — is also higher. Secondly, material is delivered into the
outer parts of the disc more rapidly, and therefore these outer parts
become more massive. Thirdly, there is less time for the gravitational
torques associated with symmetry-breaking instabilities in the disc
(the same instabilities which lead to fragmentation) to redistribute
angular momentum and thereby facilitate the continuing growth of
the CPP. The combination of a massive, dense outer disc and a
low-mass CPP makes the outer disc unstable against fragmentation,
spawning secondary protostars with masses typically four or five
times lower than the CPP.

For very rapid compression there is no CPP; all the material flows
into the disc, and it is so concentrated towards the edge that it is more
accurately described as a ring. The ring then fragments into two or
three protostars of comparable mass.

For more rapid rotation (8¢ = 0.05) the outer disc is even more
massive in comparison to the CPP, even more extended, and there-
fore even more prone to fragment.

In the appendix we analyse the structure of the inflowing enve-
lope, and its consequences for the stability of the central disc. This
analysis explains why higher rotation (large 8,) and more rapid
compression (small ¢) promote fragmentation and the formation of
multiple protostars.
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APPENDIX: ANALYTICAL PREDICTIONS

In the appendix we analyse the structure of the inflowing enve-
lope, and its consequences for the stability of the central disc. This
analysis explains why higher rotation (large 8() and more rapid
compression (small ¢) promote fragmentation and the formation of
multiple protostars.

Here, we develop an analytic description of the structure of the
inflowing envelope and its consequences for the stability of the disc
which forms around the central primary protostar (or, in the case
of very rapid compression, the ring structure which forms around
a central rarefaction), with a view to understanding how disc frag-
mentation is affected by changes in the initial rotation (8y) and
the rate of compression (¢). The formation and evolution of a disc
embedded in a rotating and collapsing core has already been in-
vestigated and elegantly described in seminal papers by (Cassen &
Moosman 1981) and Stahler et al. (1994). However, these authors
assume that the core collapses according to the inside-out model
of Shu (1977), starting from a singular isothermal sphere. Here we
wish to consider the case of dynamically triggered collapse, which
is necessarily from the outside-in.

Four features of the collapse are crucial to this discussion. First,
the polar density profile p(w = 0, z) is close to the density pro-
file of the SIS, whereas the equatorial density profile p(w, z =
0) is significantly higher. Secondly, the maximum value of the in-
ward equatorial velocity |v,,(w, z = 0)| . increases monotonically
with time until the disc forms, after which it is approximately con-
stant. Thirdly, this asymptotic maximum equatorial velocity (which
determines the strength of the accretion shock at the edge of the
disc) depends only weakly on the rate of compression ¢. Fourthly,
the strength of the accretion shock at the edge of the disc has an
important influence on the stability of the disc. By analysing these
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effects, we can estimate the different time-scales controlling frag-
mentation, and hence interpret the results reported in Section 4.

A1l Density profile

According to the numerical results displayed on Fig. 2 the equatorial
density profile p(w, z = 0) depends on the rate of compression ¢
and on the initial rotation S.

Al.1 The effect of external pressure

The first effect (rapid compression leading to large equatorial den-
sity) can be understood qualitatively by reference to the self-similar
solutions studied by Whitworth & Summers (1985). In these so-
lutions, the density at large radius converges to u,/r>. Whitworth
& Summers (1985) show that the stronger the compression wave
being driven into the core, the faster the collapse and the higher
- The slowest collapse corresponds to Shu’s inside-out collapse
from a singular isothermal sphere (Shu 1977) and has u,, = 2. The
Larson—Penston solution (Larson 1969; Penston 1969) corresponds
to collapse from a centrally flat density profile, induced by a strong
compression wave, and has u, >~ 7.

We therefore assume that the density profile can be approximated
by

A
p(r) ~ — (AD)

re’
where A is a constant. This assumption is justified both by the nu-
merical results presented in Fig. 2 and by the asymptotic form of
the similarity solutions obtained by Whitworth & Summers (1985).
Significant departures from p(r) o< 2 are confined to the inner
parts of the core which contain very little of the total mass.
If R. is the core radius, then the core pressure at this point must
be equal to the external pressure, Peyy, i.€.

AC?
R

= P (AZ)

Mass conservation requires
4nR.A = M. — M,, (A3)

where M. is the initial core mass and M, is the mass of the central
primary protostar. As long as M, < M., as it is when the disc first
forms, M, can be neglected, so

2/3

M.

A=P" ) (Ad)
47C,

Recalling that the density of a singular isothermal sphere is

2

psis = TG# (A5)
we can write

ptr) _2mGA [P\ A6)
psis(r) — C2 T\ P '

where Py ~ C8/G*M? is the pressure at the boundary of the core
before compression starts. From the numerical results for ¢ = 3,
Pext == 107189 ¢ cm™3, giving p/psis > 1.42; whilst for ¢ = 0.3,
Pext 2= 107185 ¢ em™3, giving p/pgsis =~ 1.93. The dotted lines on
Fig. 2 demonstrate that these predictions are in good agreement with
the numerical results.
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Al.2 The effect of rotation

The similarity equations describing self-gravitating collapse have
been extended to include rotation by Saigo & Hanawa (1998) for
disc geometry, and by Hennebelle (2003) for filamentary geometry.
However, the geometry assumed in these treatments is significantly
different from the geometry that we are considering here. In order to
investigate analytically the effect of rotation on the density profile,
we simply assume that the core is close to equilibrium, so that in
the equatorial direction
2 2
_G 0 v 0P (A7)
p 0w w Ow

If we now neglect departures from spherical symmetry, and
substitute

A
p(w,z=0)x E’ (A8)
so that 0@ /0w ~ —47t GA/w, we obtain
C? v2

A~ — (14 % ). A9

2nG ( +2Cl§> (A9
and hence

,z=0 2nGA 2
pw.2=0) mGA ([ v (A10)

psis(w) C? 2¢?

If vy = 0, the SIS density profile is recovered. In general, v, is
finite, but not constant, and so A is not constant either. However, the
variation of vy with w is always much weaker than w2, so to a first
approximation we can treat A as constant. Equation (A10) explains
why the equatorial density profile p(w, z = 0) is higher than the SIS
density profile, and why the increase is greatest in the inner parts of
the core, where v is greatest (see Fig. 1).

In order to test the predictions of equation (A10), Fig. 2 compares
the density profiles obtained in simulations with ¢ = 3 or 0.3 and
Bo = 0.02 (thin dashed lines) with the density profiles obtained
in simulations with no rotation (dotted lines), but then multiplied
by the factor 1 + v2/2C? from equation (A10) to give the thick
dashed lines. The comparison is made at the time when the maximum
density first reaches pg, and values of vy are taken from the rotating
simulations represented by the thin dashed lines. In general, the
agreement between the two dashed lines (thin and thick) on Fig. 2
is good, particularly for large values of ¢.

Combining equations (A6) and (A10), we propose that by the time
the central primary protostar forms, the equatorial density profile can
be approximated by
5C?

: All
2nGw?’ (ALD)

13 )
Py Uy

§ >~ 14+ —=]. Al2
(%) (1+3%) e

8 is the factor by which the density in the inflowing gas in the
envelope is enhanced by the combined effect of compression and
rotation. In the outer parts of the envelope, the rotational velocity
is normally very small compared with the speed of sound, and so
there the overdensity (relative to the SIS) is dominated by the effect
of compression. However, in the inner parts of the envelope the
rotation velocity becomes large, compared with the speed of sound,
and both effects are then important.

p(w, z =0) = dpsis(w) =
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A2 Infall velocity

Now consider a parcel of gas, falling inwards on to the disc. Its
acceleration is the sum of gravitational and centrifugal terms; we
neglect the effect of thermal pressure. We assume that the mass of
the disc contained within radius w is given by

M, =~ mtpowit, (A13)

where py is the initial density of the core (assumed to be uniform,
for simplicity), wy is the initial position of the gas parcel which is
now (at time ¢) located at w, and £ is the initial height of the cylinder
that has now flattened into the disc out to radius w. Let 2y be the
initial angular speed of the core. Then the equation of motion for
the parcel is

w . Iém, w32

a2 w? w3
I'nGpolw?  wiQ?
~ -0 T (Al4)

where I' is a geometrical factor of the order of unity. Equation (A14)
can be integrated to give

dw\” _2nTGpolw}  wie
e ) w w?

+ 2, (A15)

where v is the initial velocity and depends on w( and .

It follows that the maximum equatorial velocity, |v,(w, 2= 0)|max,
is reached at
o wos%
T nlGpol’
and this is in effect the position of the accretion shock at the edge
of the disc, where the parcel of gas that we are following accretes
on to the disc. Therefore, the edge of the disc is at

w5 %
nCGpol

(A16)

Wimax

~

Wedge =

(A17)

Combining equations (A15) and (A16), the maximum inward
equatorial velocity reached by the parcel of gas as it impinges on
the accretion shock at the edge of the disc is

dw
der

Vace =

max

Gpot \’ "
I'nGpy
= [( Qo ) +vé‘|

N I'ntG pot
= o
Equation (A18) shows that v, depends only on ¥ = pg £ (i.e. the
initial cloud surface density or some fraction thereof) and not on
wy. By the time the disc forms, the cloud is significantly flattened
and this quantity is almost constant. Consequently, the variation of
Ve 18 €xpected to be small.

Substituting from equation (A17) in equation (A13), we obtain
an expression for the total mass of the disc

(A18)

1T G p 0 Wedge
Q4

We reiterate that these equations are valid only if the thermal

pressure can be neglected. In particular, if S is too small then the

gas parcel becomes adiabatic (p > po) before it reaches the disc.
In the cases treated here, the gas is still isothermal when it first

Mise = (A19)

encounters the accretion shock at the edge of the disc (since its
density is ~0.1 py, see Figs 1 and 3). Thus neglecting the thermal
pressure is acceptable, and the ram pressure of the gas flowing into
the disc (~pv?,) is larger than its thermal pressure (~pC3).

Since the values of v, obtained in Section 3 appear to depend
only weakly on the rate of compression (¢), we infer that v, >
vo. Therefore, neglect of vy in the final form of equation (A18) is

justified. It follows that for two different values of S,

Vace(B2) ~ (ﬂ) 2 (Fz@z ) ’ (A20)
vacc(/gl) ﬂZ 1-‘lgl
since £2¢ /3(1)/2.

In order to compare the predictions of equation (A18) with the
numerical results, we need to estimate the combination pol/€2. For
the uniform-density, uniformly rotating cloud from which our initial

conditions are generated, we can write
pol o 3Me , (A21)
Qo ~ 47TR§ Qo
where M. is the core mass and R, the core radius. Combining equa-
tions (A18) and (A21), we obtain

3rGM,
P~ 4R2Q,
Although this inequality has been derived assuming a uniform-
density, uniformly rotating core, it is still valid for our simulations.
That is because the stretching which creates the initial conditions for
our simulations (by converting a uniformly rotating uniform-density
core into a differentially rotating BE sphere) conserves both the core
mass M., and the specific angular momentum R? Q. From Figs 1
and 3 we see that in the simulations v, ~ 0.8 = 0.1 km s~!. We
note that equation (A22) gives an upper limit on v,.. because £ <
R, and because we have neglected the thermal pressure in deriving
equation (A18).

In order to compare the predictions of equation (A20) with the
numerical results, we have performed a simulation with 8¢ = 0.05
and ¢ = 3 in which we find v,..(0.05) ~ 0.55 km s~' s, as compared
With v,¢.(0.02) ~ 0.85 km s~ in the simulation with 8 = 0.02 and
¢ = 3, giving a ratio

Vaee(0.05)
Vaee(0.02)

If we can neglect variations in I and £, equation (A20) predicts a
ratio

12
Vaee(0.05) 0.02
e ~ (2] =063 A24
Vaee(0.02) <o.os> A2

~12kms™". (A22)

~ 0.65. (A23)

simulation

analysis
In view of all the approximations and assumptions made in deriving
this result, the extreme closeness of the agreement between equa-
tions (A23) and (A24) must be somewhat fortuitous, but it suggests
that our analysis is a reliable guide to trends.

Finally, we can show that the tangential velocity of the parcel
of gas which is about to impinge on the edge of the disc, Vg =
V(W = Wegge, 2 = 0) should be approximately constant. The specific
angular momentum of the parcel is w3 o, so its tangential velocity
is
wg Q() nlr'G pOE

wedge Q0

) (A25)

Utang =

where we have obtained the second expression on the right-hand side
of equation (A25) by substituting from equation (A17). Comparing
equation (A25) with equation (A18), we see that

Vtang = Vaccs (A26)
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and hence vy, is approximately constant like v ... This is confirmed
by the numerical results. For ¢ = 3, the simulations give wegge =
2 x 107 pc, vgng = 0.95 km s™! and v,ee = 0.87 km s~ at t =
0.611 Myr; and wegee = 5 X 1074 pc, Ve = 1.00 km s™!, and vy,
=0.85km s~! at 7 = 0.615 Myr. For ¢ = 0.3, the simulations give
Wedge = 3 X 1074 pC, Viang = 1.00 km 57" and vyec = 0.69 km s~
at t = 0.259 Myr; and wegee = 10 x 107 pe, vyge = 0.90 km 71,
Vaee = 0.70 km s~! at r = 0.262 Myr.

8.3 Accretion shock

In order to analyse the accretion shock at the boundary of the disc,
we define p.qe to be the density just inside the edge of the disc [i.e.
the post-accretion-shock density, p(w = Wegee —€, z = 0), where
2¢ is the shock thickness], p.. to be the density just outside the
edge of the disc [i.e. the pre-accretion-shock density, p(w = Weqge
+ €, 7= 0)], and v gk to be the outward equatorial velocity of the
shock relative to the centre of the core. v, is the inward equatorial
velocity of the gas impinging on the shock at the edge of the disc (see
equation A18). Mass conservation requires QcggeVshock < LaccVaces
and hence vgpoek K Vaee- Thus the velocity of the infalling gas in the
shock frame is >~ v,., and as long as the shock can be treated as
isothermal, we can write

2
Peage = Puce (UF) . (A27)
From equation (A12), we have

5C
Pacc = m, (A28)
and so

83 max
Pedge = W (A29)

max

In the simulations presented in this paper, vy../Cs ~ 4 and S0 pcgge
should be ~16 p,.. This is corroborated by Figs 1, 3-5.

8.4 Time-scales

Disc fragmentation is an extremely non-linear process, governed
both by the intrinsic structure and evolution of the disc, and its in-
teraction with the infalling material. Given the complexity of this
interaction, the formulation of a precise analytic criterion for frag-
mentation is probably impossible. However, useful insights can be
gained by evaluating and comparing the time-scales for competing
processes.

The global gravitational time-scale for the disc is related to the
orbital angular frequency,

—12 _ —12
GM, 4G p(w)
tglobal [ ( 3 ) = |:— ) (A3O)
w3 3
where we have introduced
p(w) = ot (A31)
P = gy

the mean density interior to radius w.
Similarly, the local gravitational time-scale of the disc is related
to the local Jeans frequency,

tiocal = [4TTG p(w)]™'/2, (A32)

where p(w) is the local density in the disc.
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The condition for instability is then that the local gravitational
time-scale be less than the global gravitational time-scale, or equiv-
alently

2 _
<“°““ ) ~ Py (A33)

tgl()bal N p(U))

(We note that this is essentially the same as Toomre’s criterion, both
for Keplerian discs, and for self-gravitating discs.)

To estimate Condition (A33) at the edge of the disc, we put
p(W) — pegge Using equation (A29) and p(w) — P(Wedge) =
3 Mgise /4TTW Condition (A33) then becomes

3
edge*
2
pedge ~ 26 wedge vﬂcc
/_)(wcdgc) 3GMdisc

> 1. (A34)

Finally, substituting for M gisc, Wegge and v, from equations (A19),
(A17) and (A18), the condition for instability (A34) becomes

M8 2T [P\ L | A35)
2rs _ 2r )y,
33\ 2C?

where we have obtained the last expression by substituting for §
from equation (A12). This form of the condition for instability ex-
plains why more rapid compression (smaller ¢) and more rapid
initial rotation (larger 8) both make the disc more unstable against
fragmentation, by delivering higher density at the edge of the disc,
i.e. higher 4.

Another important time-scale is the accretion time-scale,
Taccretion = MdisC/Mdisc- Puning Mdisc = 27Twedgehpaccvacc’ where
h is the vertical thickness of the layer of material flowing into the
edge of the disc and p,ccVacc 15 the flux of matter into the disc, we
obtain

Mdisc

. A36
2T[wcdgchpacc Vace ( )

Taceretion =
Then substituting for Mg, Wedge» Pacc aNd Vg from equa-
tions (A19), (A17), (A28) and (A18), equation (A36) reduces to

QR

. A37
726 pglhC26 (A37)

Taccretion =
taceretion 15 the time-scale on which mass and angular momentum are
added to the disc, and it should be compared with 74,5, Which is the
minimum time-scale on which mass and angular momentum can be
redistributed within the disc. Substituting for fgp from equation
(A30), and again using equations (A13) and (A16) to eliminate M g;.
and wgge, We Obtain

2
Taccretion nG IOOZ Wy

oo = TnCs (A38)
A small value for this ratio implies an unstable disc. £/h is a ge-
ometrical factor, related to the cloud flattening, and is not easily
calculated. Setting this factor aside, equation (A38) implies firstly
that large & (i.e. rapid compression and/or rapid initial rotation)
promotes fragmentation, and secondly that small w, promotes frag-
mentation (i.e. fragmentation is more likely during the early stages
of disc formation).
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