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We perform exact calculations of collisional frequency shifts for several fermions or bosons using a

singlet and triplet basis for pairs of particles. The ‘‘factor of 2 controversy’’ for bosons becomes clear—

the factor is always 2. Decoherence is described by singlet states and they are unaffected by spatially

uniform clock fields. Spatial variations are critical, especially for fermions which were previously thought

to be immune to collision shifts. The spatial variations lead to decoherence and a novel frequency shift

that is not proportional to the partial density of internal states.

DOI: 10.1103/PhysRevLett.103.113202 PACS numbers: 34.50.Cx, 06.30.Ft

Spectroscopy is a powerful tool for the study of ultracold
gases. Examples include probing their phases and excita-
tions [1–4], precise atom-interferometers [5,6], and accu-
rate atomic clocks, ranging from atomic fountains [7–10]
and optical frequency lattice clocks [11–15] to chip-scale
clocks [16]. In these, collisions of particles produce fre-
quency shifts that often limit performance [7–9,16,17].
There has been confusion and controversy about the fre-
quency shifts of systems of bosons and fermions as they
lose coherence [1,15,17–23]. Here we present a unified
picture of the frequency shifts of bosons and fermions
with exact calculations of systems of several weakly inter-
acting particles. The picture, based on the coherent evolu-
tion of singlet and triplet combinations of pairs of particles,
clearly describes the role of decoherence in the spectros-
copy of ultracold systems.

For bosons, there is a long-standing puzzle, the ‘‘factor
of 2 controversy’’ [1,17–23]. It suggests that frequency
shifts should change as decoherence allows identical bo-
sons to be distinguished. The factor of 2 describes the
doubling of the scattering rate, due to exchange symmetry,
when two identical bosons collide. If identical bosons are
prepared in different internal states, there is no exchange
symmetry so there is no factor of 2. More interestingly,
when both bosons are prepared in identical superpositions
of two internal states, there is exchange symmetry and the
scattering and frequency shifts are enhanced by a factor of
2. But, in the presence of interstate decoherence, there is no
longer exchange symmetry of these superpositions and
therefore the interstate scattering cannot be enhanced by
a factor of 2. Therefore it seems that the frequency shift
must change as Bose gases decohere. However, no change
was observed—‘‘the Ramsey Fringe that Didn’t Chirp’’
[17]. This led to the unsettling deduction that the factor of 2
does not change as gases decohere. Our picture shows that
identical superpositions do indeed have a factor of 2 en-
hancements. But, in the presence of decoherence, there are
pairwise pseudospin singlet states of particles and these are
unaffected by a spatially homogeneous clock field.
Therefore, although particles in the singlet states are dis-

tinguishable, decoherence does not affect the frequency
shift because the homogeneous clock field only couples
to triplet states which describe identical coherent super-
positions. Further, we show that the spatial variation of the
clock field mimics decoherence and produces a novel
frequency shift due to interstate decoherence, analogous
to the elusive chirp [17].
It has been widely believed that trapped identical fermi-

ons are immune to collisional frequency shifts [20,23] at
ultracold temperatures where there is only s-wave scatter-
ing. But recently, a collisional shift of an optical frequency
fermion clock was observed [15]. We show that the spatial
variation of the clock field, naturally larger for optical
fields as compared to radio-frequency fields treated previ-
ously [20–23], produces the same novel shift due to inter-
state decoherence. We also show that fermion collision
shifts can be suppressed, allowing highly accurate future
optical frequency clocks.
We begin with a Hamiltonian for N bosons or fermions:

H ¼ H0 þ 1

2

X

i¼1...N
�¼a;b;c...

��jSc �ð~riÞihPc �ð ~riÞj

þ��
�jPc �ð ~riÞihSc �ð~riÞj þ

XN

i<j

Vð~ri � ~rjÞ:

Here H0 describes the trap degrees of freedom [Fig. 1(a)].
We takeH0 to be independent of the internal states S and P,
as in an optical lattice clock [11] and strong enough to be in
either the resolved sideband [11–15] or Lamb-Dicke limits
[16,17,23] so that Doppler shifts and photon recoils can be
neglected. The wave function for the system is comprised
of products of single particle wave functions that are prod-
ucts of spatial wave functions, c aðr1Þ, c bðr2Þ . . . , and
internal state wave function S and P, where a; b; c . . .
denote trap states and 1; 2; 3 . . . are particle labels. We
allow a general coupling of the clock field to each trap
state,�a;�b;�c . . . with a form�a ¼ �0ae

i�!atþi�a in a
rotating frame where �!a is the detuning,�a is the phase,
and similarly for�b;�c.... The spatial amplitude and phase
variations of the clock field yield couplings that depend on
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the trap state [15,24]. Figure 1(b) depicts two particles, in
external trap states a and b, Rabi flopping between the two
internal states with a small difference in couplings. The
interaction of the particles is described by Vðri � rjÞ. We

treat interactions that are weak compared to the trap fre-
quencies and neglect higher order corrections from scat-
tering between trap states.

The nature of collision shifts for many particles emerges
for just 2 particles in a trap. A natural basis for two
identical particles is the pseudospin singlet and triplet
states of the internal states:

jdi¼ jS1S2ic�
abð~r1; ~r2Þ;

jti¼2�1=2jS1P2þP1S2ic�
abð~r1; ~r2Þ;

jsi¼2�1=2jS1P2�P1S2ic�
abð~r1; ~r2Þ;

jui¼ jP1P2ic�
abð ~r1; ~r2Þ:

(1)

Here jdi, jti, and jui are triplet states, jsi is a singlet

state, and the spatial wave function c�
abðr1; r2Þ ¼

2�1=2½c aðr1Þc bðr2Þ � c bðr1Þc aðr2Þ� is symmetric (þ) or
antisymmetric (�). The upper (lower) sign in Eq. (1) is for
bosons (fermions). Only symmetric states have s-wave
interactions—the triplet states for bosons and the singlet
for fermions.

A general state for two particles is ujui þ tjti þ sjsi þ
djdi. We first discuss fermions and then return to bosons
below. The equations of motion for two fermions are

i _d¼
��ffiffiffi
2

p t���ffiffiffi
2

p s; i _t¼
��ffiffiffi
2

p uþ
���
ffiffiffi
2

p d;

i _u¼
���
ffiffiffi
2

p tþ���
ffiffiffi
2

p s; i _s¼��ffiffiffi
2

p u����
ffiffiffi
2

p dþ2gSPs:

(2)

The average and difference of Rabi frequencies are �� ¼
ð�a þ�bÞ=2 and �� ¼ ð�a ��bÞ=2. The fermion in-
teractions are given by gSP. To lowest order, gSP is
ð2@aSP=mÞR jcþ

abðr; rÞj2dV where aSP is the scattering

length. In Fig. 1(c), �� couples jti to jdi and jui whereas
the singlet state jsi is weakly coupled to jdi and jui by��.
We use Eq. (2) to calculate the frequency shift for

Ramsey spectroscopy [7–10]. Two clock pulses, separated
by a long interrogation time, are applied to particles pre-
pared in S [25]. We calculate the transition probability,
2juj2 þ jtj2 þ jsj2, as a function of frequency. The colli-
sion shift is

�� ¼ gSP
�A

sinð2��1Þ sinð��2Þ cosð ��2Þ: (3)

Here, the tipping angles are ��j ¼ ���j and ��j ¼ ���j,

where �j is the pulse length, j ¼ 1 or 2 refers to the first or

second Ramsey pulse, and the amplitude of the Ramsey
fringes is A ¼ P

sinð�1kÞ sinð�2kÞ, approximately
N sinð ��1Þ sinð ��2Þ for N particles and small ��.
The frequency shift is 0 as expected if the two fermions

have the same Rabi frequencies for the first Ramsey pulse
(��1 ¼ 0) and are therefore indistinguishable [20–23]. If
there is a difference of Rabi frequencies, the first pulse

creates a singlet amplitude, s ¼ 2�1=2i sinð��1Þ. During
the interrogation time, the singlet state acquires a phase
shift due to gSP and gives a frequency shift proportional to
gSP sinð��1Þ. In Fig. 2, we show the collisional shift versus
the tipping angles ��1 and ��2. Unlike in homogenous gases,
the shift is not proportional to the difference of the partial
densities, nP � nS; it is nearly independent of ��1 in Fig. 2.
For weak pulses, the shift is nearly constant. The shift
strongly depends on the second pulse’s area, ��2. For ��2 ¼
�=2, the shift goes to zero even if the first pulse creates a
singlet amplitude that produces a large mean field energy.
Below we show that the two particles have large and
opposite frequency shifts and these exactly cancel for ��2 ¼
�=2. Further, if the second Ramsey pulse is homogenous
(��2 ¼ 0), there is no frequency shift in Eq. (3) because
the second pulse does not couple to the singlet state so the

FIG. 2 (color online). Collisional frequency shift of fermions
as a function of the Ramsey pulse tipping angles, ��1 and ��2. The
shift is not proportional to the difference of partial densities
nP � nS, which would imply a strong dependence ��1. The shift
does vary strongly with the second Ramsey pulse area, going to 0
if the second pulse is on average a �=2 pulse. The solid line is
the shift for the usual case of identical pulses.

FIG. 1 (color online). (a) Schematic of spectroscopy of trapped
particles. (b) Transition probability of particles in trap states a
and b as a function of clock pulse area ��. The coupling of the
clock field to the particles in state a is larger than for b. (c) The
populations of two-particle triplet and singlet states correspond-
ing to (b). The small difference of Rabi frequencies leads to a
small amplitude of the singlet state s.

PRL 103, 113202 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 SEPTEMBER 2009

113202-2



transition probability 2juj2 þ jtj2 þ jsj2 is unaffected by a
phase shift of s. Often, the second Ramsey pulse is the
same as the first. The solid lines in Figs. 2 and 3 show ��
for identical pulses, ��1 ¼ ��2. For many fermions, the
equations of motion can be successively rotated so that
each pairwise interaction is pure singlet or triplet. The shift
is the sum of Eq. (3) for all pairs, �� ¼ ðN �
1Þgavg��2 cosð ��Þ=�sin2ð ��Þ, where �� is small, ��2 is
the rms spread of tipping angles, and gavg is the average

of the interactions gSP.
Coherence and decoherence are at the core of the nature

of ultracold gases. Zwierlein et al. observed that fermions
prepared in coherent superpositions of internal states, even
after they fully decohered, exhibited no frequency shift
[23]. This is noteworthy because different phases of the
superpositions make the fermions distinguishable and they
therefore interact. They considered a uniform clock field
and showed that fermions are immune to frequency shifts.
A key point was that the clock pulse reintroduces coher-

ence and changes the spatial pair correlation functiongð2Þ

[23]. They used the quantum optics definition of gð2Þ,
hnPnSi=hnPihnSi, which describes the collision probability
per ground and per excited state atom, not the probability

per atom pair Gð2Þ ¼ hnPnSi=n2 [19]. In our picture, de-
phasing splits a population, initially prepared in jti, be-
tween jsi and jti. For triplet states, Gð2Þ and gð2Þ are both 0

whereas, for a singlet state, Gð2Þ ¼ 1=2 and gð2Þ ¼ 2. Since
a homogeneous clock field does not couple to the singlet

state, there is neither a change ofGð2Þ nor a frequency shift.
Therefore, gð2Þ in [23] changes not because the number of
collisions change, but because the clock field transfers

atoms from nS to nP, changing the normalization of gð2Þ.
More generally, a clock field does have a spatial variation,

which changes Gð2Þ and the number of collisions, giving
fermions a collision shift. The shift is proportional to the
singlet amplitude but also depends critically on the evolu-
tion during the second Ramsey pulse.

Recently, a density dependent frequency shift for fermi-
ons was observed in a lattice clock [15]. Many lattice
clocks currently use a single Rabi pulse instead of two
Ramsey pulses [11–15]. As in Fig. 3, the frequency shift
for a single Rabi pulse (dashed) behaves nearly identically
to that for two Ramsey pulses (solid) [26]. Ref. [15] used

gð2Þ to argue that the frequency shift is proportional to the
difference of internal state densities, nP � nS. Although
their model fits their data, their data also fit our model
(Fig. 3 inset). We arrive at the different conclusion that the

collision shift is generally not 0 when nP ¼ nS, near�! ¼
0:76 �� in the inset of Fig. 3. We note that their 1 �K data is
also consistent with no collision shift with an excess �2 of
0.9. For 3 �K, our model fits with a �2 of 4.1 for 6 degrees
of freedom but here, higher lattice vibrational states are
excited and therefore scattering induced tunneling between
lattice sites could give a different frequency shift that
would depend strongly on the trap depth and be nonlinear

in density. The variation of the frequency shift with trap
depth and its linearity with density are straightforward to
test experimentally, as is the suppression of the shift by
varying the pulse area.
It is instructive to compare interactions in a trap to

scattering in free space. If two fermions in arbitrary super-
positions collide [10], the scattering yields an outgoing
s-wave with a singlet amplitude sinð��1Þ. The interference
of the scattered s-wave, which is an entangled superposi-
tion of S and P, with the unscattered part of each fermion’s
wave function produces the frequency shift. The interfer-
ence of S with one fermion implies the interference of P
with the other, and vice versa, giving opposite frequency
shifts to each fermion. In Fig. 3, the dotted curve shows a
large frequency shift ��a for one fermion, nearly indepen-
dent of ��, and a nearly opposite shift, ��b, for the other.
Thus, suppressing fermion collision shifts requires homo-
geneous excitation [24], control of the pulse area, and
reasonably uniform detection.
Bosons are also susceptible to the frequency shift due to

interstate decoherence. The equations of motion are the
same as Eqs. (2) but with particle interactions 2ðgSS; gSP;
0; gPPÞ for (d, t, s, u), where gXY has the appropriate
scattering length, aSS, aPP, or aSP. Subtracting an energy
of 2 �g � gPP þ gSS from all states gives

i _d ¼
��ffiffiffi
2

p t���ffiffiffi
2

p s� �gd;

i _u ¼
���
ffiffiffi
2

p tþ���
ffiffiffi
2

p sþ�gu;

i _t ¼
��ffiffiffi
2

p uþ
���
ffiffiffi
2

p dþ 	gt;

i _s ¼ ��ffiffiffi
2

p u� ���
ffiffiffi
2

p d� 2 �gs:

∆ν
/ g

S
P

π
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FIG. 3 (color online). Collisional frequency shifts of fermions
versus the total clock pulse area ��. The two Ramsey pulses
(solid) are identical �� ¼ ��1 þ ��2 and the shift for a single Rabi
pulse (dashed) behaves similarly. The Rabi detuning is the half
width for a � pulse. Two colliding fermions have large and
nearly opposite shifts that nearly cancel, ��a (dotted) and ��b

(dash-dot), reduced by 10 times. The inset shows the data of [15]
for a Rabi � pulse versus detuning �! and our model. Neither
cross 0 as a function of detuning, as occurs with pulse area ��. We
infer detunings from measured transition probabilities.
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Here �g � gPP � gSS and 	g � 2gSP � gPP � gSS.
Therefore, when all scattering lengths are equal (aSS ¼
aPP ¼ aSP), �g ¼ 	g ¼ 0 and the bosons behave identi-
cally to fermions, but with the opposite frequency shift
[27]. In general, the frequency shift for thermal bosons and
Ramsey pulses is

�� ¼ �g

2�
þ 	g

�
cosð ��1Þ cosð��2Þ sinð

��1Þ sinð ��2Þ
A

� �g

�A
sinð2��1Þ sinð��2Þ cosð ��2Þ; (4)

The first two terms are well known for homogenous gases
[17,28]. The first is the difference of the mean field energy
due to the intrastate scattering. The second term is propor-
tional to the partial density, nS � nP ¼ n cosð ��1Þ, and the
triplet amplitude t after the first pulse, sinð ��1Þ. The third
term is the same as Eq. (3) and describes the singlet state—
this population is absent from the triplet state and does not
get a shift from gSP to cancel that from �2 �g.

The ‘‘factor of 2 controversy’’ for bosons concerns the
‘‘2’’ in 	g � 2gSP � gPP � gSS [1,17–23]. If there is in-
terstate decoherence, it seems that the factor of 2 should
decrease to 1 [17]. A thesis of Ref. [17] was that interstate
decoherence could be probed by varying the partial density
nP � nS because the second term in Eq. (4) is proportional
to 	g and nP � nS. Here, this term always has the factor of
2, regardless of interstate decoherence. Decoherence can
only change the collision shift via the singlet amplitude
and it is unaffected by homogeneous clock fields. In this
picture, interstate and intrastate density correlations were
in fact different in [17]. Just as for fermions, if the second
Ramsey pulse is not a �=2 pulse and its inhomogeneity is
correlated with that of the singlet state, the large and
elusive frequency shift, or chirp, can be observed.

In summary, clocks based on fermions are not immune
to collisional frequency shifts. The spatial variation of the
clock field makes otherwise identical fermions distinguish-
able by directly exciting pairwise singlet states that have
s-wave collisions. The collisions lead to a novel frequency
shift of the clock that is proportional to the density, but not
the partial density nP � nS. The frequency shift is gener-
ally not the difference of mean field energies of the initial
and final states but depends on the coherent evolution of
the particles in the clock field. By controlling the strength
of the second clock pulse in a Ramsey sequence, the shift
can be precisely suppressed if the particles are detected
reasonably uniformly. For a 1D fermion optical lattice
clock, the scale of the interactions is gSP=2� � 1 to
30 Hz for aSP � 300a0. If the rms variation of the clock
coupling is 10% [24], and the clock pulse area is controlled
to 1%, the frequency shift is of order 2 mHz, or fractionally
10�17 to 10�18 [29]. The picture of pairwise singlet and
triplet interactions also makes the ‘‘factor of 2 contro-
versy’’ for Bose gases clear. The factor of 2 is always 2
because only particles in identical superpositions partici-
pate in the transition. The loss of interstate coherence can
lead to a large frequency shift if the clock field is spatially

inhomogeneous. It is the same as the shift for fermions, but
with the opposite sign.
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Since this work was completed, others have treated

fermion collision shifts as proportional to the difference
of mean field energies and partial densities [30–32]. Our
model gives different predictions, e.g., Eq. (3).
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