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ABSTRACT

Aims. We investigate the diagnostic potential of � = 0, 1 p-modes and the origin of the periodicity in their small separations.
Methods. We used theoretical analysis, phase-shifts, modelling. and data analysis.
Results. The periodicity in the small separations between modes of � = 0, 1 is determined by the acoustic radius of the base of the
outer convective envelope. The mean variation is determined primarily by the structure of the inner core. The separations are related
to the inner phase shifts differences δ1 − δ0 which we show can be determined directly from the frequencies. The modulation period
is shifted slightly by the frequency dependence of the phase shifts and the amplitudes. We present results using data from the BiSON,
IRIS, and GOLF experiments, and a solar model, all of which give a modulation period of ∼359± 5 μHz corresponding to an acoustic
radius ∼1422 ± 20 s.
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1. Introduction

The small separations d�,�+2 = νn,� − νn−1,�+2 between p-modes
of oscillation have been widely used as diagnostics of the solar
and stellar interiors (cf. Gough 1983; Provost 1984; Christensen-
Dalsgaard 1984, 1988; Ulrich 1986), as they are primarily deter-
mined by the interior structure of the star (cf. Tassoul 1980).
Since the predicted amplitudes of modes of degree � = 0, 1
are considerably larger than those of � = 2, 3, for some stars
these may be the only modes that can be reliably determined and
the only small separations available being those between modes
with � = 0, 1 defined as (cf. Roxburgh 1993)

d01 = νn,0 − (νn−1,1 + νn,1)/2, d10 = (νn,0 + νn+1,0)/2 − νn,1. (1)

The diagnostic value of these separations is explored in the
present paper.

Figure 1a shows the separations d01, d10 multiplied by ν∗ =
ν/(2500 μHz) for a solar modelA (a smoothed version of
model S, Christensen-Dalsgaard et al. 1996); they display a peri-
odic modulation about a mean curve which is not present in the
d02 separations (Fig. 1c). The periodicity is clearer in Fig. 1b
which plots the 5 point differences (Roxburgh & Vorontsov
2003a). (Hereafter R&V=Roxburgh & Vorontsov.)

dd01 =
1
8

(νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0) (2)

dd10 = −1
8

(νn−1,1 − 4νn,0 + 6νn,1 − 4νn+1,0 + νn+1,1). (3)

We show below that the modulation period is determined by the
acoustic radius of the base of the convective envelope, whilst the
mean curve which is similar to, but different from, that of d02,
is determined by the structure of the deep interior and therefore
provides a diagnostic of the inner structure.

Fig. 1. Top panel: ν∗d01, ν
∗d10; middle panel: ν∗dd01, ν

∗dd10, bottom
panel: ν∗d02, for solar model A. ν∗ = ν in units of 2500 μHz.

2. Solar data

Figure 2 shows the small separations ν∗dd01, ν
∗dd10 for 3 solar

data sets from the ground based experiments BiSON and IRIS
and the GOLF instrument on SOHO. The BiSON data set was
for the time span 1993–2003 (Chaplin et al. 2007; Verner 2008);
the IRIS data set for 1989–99 (Fossat et al. 2003) and the P3
GOLF data set for 1996–1999 (Gelly et al. 2002). All show the
same periodicity and phase. These data are analysed in more
detail in Sect. 8 below.
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Fig. 2. Variation of small separations ν∗dd01, ν
∗dd10 with ν for frequen-

cies obtained by the BiSON, IRIS and GOLF experiments. All data sets
show the same periodicity and the same phase.

3. Determination of the modulation period

Inspection of Figs. 1a and b gives a modulation period of
≈350 μHz. A more quantitative estimate is obtained by fitting
a low order curve to remove the trend (as shown in Figs. 1a,b)
and taking the Fourier transform of the residuals. The trend was
removed by a least squares fit to the function

F(ν) =
N∑

k=0

Ck

(ν + ν0)k
with ν0 = 2500 μHz, N = 3. (4)

Figure 3a gives the residuals for ν∗d01, ν
∗d10 and Fig. 3b the

residuals for ν∗dd01, ν
∗dd10. Figures 4a,b give the corresponding

Fourier power spectra (amplitude2). Both power spectra have a
peak at ∼359 μHz. As shown below, this modulation is caused
by the region of sharp change in the structure at, and just below,
the base of the convective envelope, and has a period of approx-
imately 1/(2t1) where t1 is the acoustic radius of the base of the
envelope. The secondary peak at 166 μHz in Fig. 4a corresponds
to the acoustic radius of the HeII ionisation layer, whereas the
other peak is due to the large separations; these are suppressed
by the 5 point differences dd.

4. Cause of the periodic modulation

As is well known, simple asymptotic analysis shows that dis-
continuities and steep gradients in the acoustic structure of a
star induce periodic modulations in the frequencies with period
1/(2τ1) where τ1 is the acoustic depth of the region of rapid
variation (Vorontsov 1988; Gough 1990; R&V 1994b; Monteiro
et al. 1994). Likewise such discontinuities induce periodic varia-
tions with period 1/(2t1) where t1 is the acoustic radius, the two
being just alternative representations of each other (R&V 2001).
Further details are given in Sect. 7 below. The acoustic radius t
and acoustic depth τ are defined by

t =
∫ r

0

dr
c
, τ =

∫ R

r

dr
c

(5)

where c(r) is the sound speed (c2 = Γ1P/ρ).

Fig. 3. Residuals to a low order fit; a) ν∗d01, ν
∗d10, b) ν∗dd01, ν

∗dd10.

Fig. 4. Power spectra of the residuals: a) ν∗d01, ν
∗d10, b) ν∗dd01, ν

∗dd10.

For model A used in the calculations for Figs. 3a and b, the
base of the convective zone is at an acoustic radius of t = 1422 s
or equivalently an acoustic depth of τ = 2171 s; so the equivalent
modulation periods are 352 μHz and 230 μHz. Also in model A
the location of the region of rapid change in acoustic variables
due to HeII ionisation is around t ∼ 3000 s, τ ∼ 600 s, and the
corresponding modulation periods are ∼167 μHz and ∼833 μHz.

It is clear from Figs. 4a and b that the signal in the separa-
tions with a modulation period of ∼359 μHz corresponds to the
acoustic radius of the region at the base of the convective zone,
not the acoustic depth. The fact that the peaks are at ∼359 μHz
rather than 352 μHz is due to two factors: a) the acoustic waves
are not pure sine waves but are subject to a frequency dependent
phase shift; b) the amplitudes of the contributions to the oscillat-
ing component are frequency dependent; both contribute to the
Fourier transform shifting the peak from 352 to 359 μHz. Details
of the various contributions to the oscillating component and the
frequency shift are given in Sect. 7 below.

5. Small separations and phaseshifts

As shown by R&V (2000, 2003a,b), by matching the solution
of the oscillation equations in the inner and outer layers at
some intermediate acoustic radius t f , the adiabatic oscillation

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200811047&pdf_id=2


I. W. Roxburgh: Small separations of � = 0, 1 modes 187

eigenfrequencies νn.� of a spherical star necessarily satisfy the
Eigenfrequency equation

2πνn,�T = π

(
n +

�

2

)
+ α�(ν, τ f ) − δ�(ν, t f ) integer n (6)

where the inner phase shifts δ� and outer phase shifts α� are
defined in terms of the variable

ψ� = rp′�/(ρc)1/2 (7)

as

χ� =
2πνψ�
dψ�/dt

= tan
[
2πνt − π

2
� + δ�(ν, t)

]
, t ≤ t f (8)

χ� = − 2πνψ�
dψ�/dτ

= − tan [2πντ − α�(ν, τ)] , τ = T − t ≤ τ f . (9)

Here p′� is the Eulerian pressure perturbation for a mode of de-
gree �, t, τ the acoustic radius and depth as defined in Eq. (5),
and T = t(R) is the acoustic radius of the star or, more pre-
cisely, the radius at which the boundary conditions are imposed
(here approximately at an optical depth of 10−4). The term π�/2
in Eq. (8) is included to allow for the spherical Bessel function
character of the solution for ψ (cf. R&V 1994a).

The inner and outer phase shifts δ�(ν), α�(ν) as defined in
Eqs. (8) and (9) are continuous functions of frequency. For any
frequency they are given by partial wave solutions of the oscilla-
tions equations (cf. R&V 2000): for δ these are solutions which
are regular at the centre and satisfy the the surface gravitational
boundary conditions; for α they are solutions which satisfy the
surface boundary conditions. For modes of degree � = 0, 1 this
completely determines α�(ν) since for � = 0 the equations re-
duce to second order and the oscillating gravitational potential
and its derivative φ′, dφ′/dr do not contribute to the determina-
tion of ψ, whereas for � = 1 modes φ′, dφ′/dr = 0 at the surface
as the external gravitational dipole moment is identically zero
for � = 1 modes. The Eigenfrequency Eq. (6) is then given by
demanding continuity between the inner and outer solutions at
some t = t f which gives the discrete eigenfrequencies νn,�.

The partial waves and eigenfrequencies can always be repre-
sented as in Eqs. (6)–(9); the value of this representation is that,
with the above definition of ψ� (Eq. (7)) both α�, δ� are almost
independent of t f in the intermediate layers of a star (cf. R&V
1996) and α� is almost independent of �. α� is therefore deter-
mined by the structure of the outer layers (t ≥ t f ) and δ� by the
structure of the inner layers (t ≤ t f ).

Figure 5a shows the variation of α and δ with acoustic radius
for ν = 2500 μHz for model A; Fig. 5b shows their variation with
frequency evaluated at x = x f = 0.9; whilst Fig. 5c shows the
variation with frequency of the differences α1 − α0 and δ1 − δ0.
As stated above α1 ≈ α0. The difference δ1 − δ0 displays the
periodic variation with modulation period ∼359 μHz, caused by
the base of the convective envelope.

Using the eigenfrequency Eq. (6), taking α� to be indepen-
dent of �, and α, δ� as continuous functions of ν, the small sepa-
rations d01, d10 can be expressed as

d01 =
1

2πT

⎛⎜⎜⎜⎜⎝δ1 − δ0 − d2(α − δ1)
dν2

Δ2
1

8
+ . . .

⎞⎟⎟⎟⎟⎠ , ν = νn,0 (10)

d10 =
1

2πT

⎛⎜⎜⎜⎜⎝δ1 − δ0 +
d2(α − δ0)

dν2

Δ2
0

8
+ . . .

⎞⎟⎟⎟⎟⎠ , ν = νn,1 (11)

with large separations Δ1 = ν1,n − νn−1,1, Δ0 = νn+1,0 − νn,0.

Fig. 5. Phase shifts δ0, δ1 and α0, α1 for model A: a) variation with
acoustic radius for ν = 2500 μHz. α0, α1 cannot be separated in these
figures; b) variation with frequency for xf = 0.9, t f /T = 0.615; c) vari-
ation of ν∗(δ1 − δ0) and α1 − α0 with frequency.

The surface phase shift α, which has within it the modula-
tion from the HeII ionisation zone, contributes to the small sep-
arations, this produces the considerable scatter in the residuals
plotted in Fig. 3a. However since

dd01(n) =
1
2

d01(n) +
1
4

(
d10(n) + d10(n − 1)

)
(12)

the contributions from d2α/dν2 to dd01 almost cancel out, but the
contribution from d2(δ1 − δ0)/dν2 is of the same sign as δ1 − δ0,
which reduces the amplitude of the periodic variation in dd01,
and similarly that of dd10.

6. Determination of the inner phase shift difference
δ1 − δ0

Since the small separations are governed by the phase shift dif-
ference we here show how to determine this difference directly
from the frequencies. We write the Eigenfrequency Eq. (6) in the
form

α�(νn,�) − δ�(νn,�) = 2πνn,�T − π
(
n +

�

2

)
· (13)

The value of the acoustic radius of the star T is unknown, it is a
theoretical construct which depends on where the astrophysicist
imposes boundary conditions in their analysis, but it is of the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200811047&pdf_id=5


188 I. W. Roxburgh: Small separations of � = 0, 1 modes

Fig. 6. a) α−δ as determined from the frequencies and Eigen-frequency
Eq. (14) with Δ0 = 136 μHz. b) Phase shift difference ν∗(δ1 − δ0) de-
termined from the eigenfrequencies by interpolation (points), the model
values (continuous periodic line), the mean variation (smooth line). c)
Power spectra of residuals to mean variation – the smaller maximum is
that obtained using the points determined from the frequencies.

order of 1/(2Δ0) where Δ0 is some typical value of the large
separations (Δn,� = νn+1,� − νn,�). We first rewrite Eq. (12) as

α∗�(νn,�) − δ�(νn,�) = π
νn,�

Δ0
− π

(
n +

�

2

)
(14)

where

α∗� = α� + π
(

1
Δ0
− 2T

)
νn,�. (15)

From here on we drop the asterisk from α∗. Taking a value of
Δ0 = 136 μHz the functions α� − δ� are plotted in Fig. 6a.

We now draw on theoretical analysis that α� is essentially
independent of � (Fig. 5c) and that both α and δ� can be consid-
ered as continuous functions which vary on a scale sufficiently
large for us to be able to interpolate between the points deter-
mined by the frequencies. This enables us to subtract the two
curves to determine the values of δ1 − δ0. The points in Fig. 6b
show the resulting values of δ1 − δ0 at the eigenfrequencies νn,�

obtained using cubic spline interpolation. Note that these values
are independent of the choice of mean large separation Δ0 and T
since the addition to α� in Eq. (15) cancels out in the subtraction.
The solid curve is the value obtained from solving the oscilla-
tion equations for partial waves and calculating the inner phase
shifts δ� at x f = 0.9 as illustrated in Fig. 5c. I emphasise that

the points displayed in Fig. 6b are obtained from the frequencies
alone. The small differences between the points and the continu-
ous curve are due to several factors: a) interpolation is not exact;
b) α1(ν) is not exactly equal to α0(ν); c) the δ�(ν) are not exactly
constant in the outer layers. Nevertheless the agreement is good.
Panel (c) shows the power spectra of the residuals to a low order
fit as in Eq. (5). The amplitude derived from the points in Fig. 6b
is somewhat less than that derived from the continuous model
values, but the location of the maxima are almost the same at
∼359 μHz.

In Sect. 8 below this analysis is applied to data from the
BiSON. IRIS and GOLF experiments.

7. Theory of the inner phaseshifts

The equations governing the Eulerian pressure perturbation p′,
gravitational potential perturbation φ′ and radial displacement ξ
for an oscillation with angular frequency ω = 2πν are (cf. Unno
et al. 1979)

dξ
dr
+

2
r
ξ − g

c2
ξ +

(
1 − �(� + 1)c2

ω2r2

)
p′

ρc2
− �(� + 1)

ω2r2
φ′ = 0 (16)

dp′

dr
+
g

c2
p′ − (ω2 + 4πGρ − N2)ρξ + ρχ = 0 (17)

dφ′

dr
= χ − 4πGρξ (18)

dχ
dr
= 4πG

�(� + 1)
ω2r2

p′ +
�(� + 1)

r2

(
1 +

4πGρ
ω2

)
φ′ − 2

r
χ. (19)

For � = 0 modes, χ is identically zero and the solution for ξ, p′
are independent of φ′. For � = 1 modes both φ′ and χ are zero
at the surface (since there is no external gravitational moment
for dipole oscillations), and both remain very small in the bulk
of the star but are important in the central regions. Since we are
interested in the region near and above the base of the convective
zone we can, to a reasonable approximation, neglect φ′ and χ in
the above equations which then reduce to a second order system.
(This is not quite the Cowling approximation since it is χ we are
neglecting not dφ′/dr, this gives the exact solution for � = 0.)

The equation governing the variable ψ� = rp′�/(ρc)1/2

(Eq. (7)) can then be reduced to one second order equation with
acoustic radius t =

∫
dr/c as independent variable namely

d2ψ�

dt2
− Q

dψ�
dt
+

[
ω2 − V�

]
ψ� = 0 (20)

where

V� = U0 + �(� + 1)U2, U0 = A2 + QA − dA
dt
+ N2 − 4πGρ

A =
c

4Γ1

dΓ1

dr
− cN2

4g
+

(
3 − Γ1

4

)
g

c
− c

r
=

1
2

d
dt

(
log

[
ρc
r2

])
+
g

c

U2 = F
c2

r2
, Q =

1
F

dF
dt
, F = 1 +

4πGρ
ω2

− N2

ω2
· (21)

This can be further reduced to a first order equation in the vari-
able χ = ωψ�/(dψ�/dt) (cf. Eq. (8))

ω
dχ�
dt
− ω2 + Qωχ� − (ω2 − V�) χ2

� = 0. (22)
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Fig. 7. Acoustic potentials at base of the convective zone: U0/ω
2
0 (solid

lines), ω2Q/ω3
0 (dashed lines), and U2/ω

2
0 (fine dotted lines), at a

frequencies ν = 1000, 2500, 4000 μHz.

Setting χ� = tan(ωt + δ� − �π/2) (cf. Eq. (8)) we obtain the
equation for the internal phase shifts δ� as

dδ�
dt
= −V�

ω
sin2 (ωt+δ�−�π/2)−Q

2
sin(2[ωt+δ�−�π/2]). (23)

For � = 0 this equation is valid throughout the star and can there-
fore be integrated, subject to δ0 = 0 at t = 0 to give δ0(t, ω). For
� = 1 one must include the gravitational potential perturbation
φ′ in the central regions of the star, and then Eq. (23) can be used
for extending the solution in the outer layers.

At the base of the convective zone the potentials U0,Q are
discontinuous and vary on a scale short compared with the wave-
length of an oscillation mode, Fig. 7 shows the variation of these
potentials for model A. Here ω0 = 0.0157 Hz is a normalisa-
tion factor corresponding to ν = 2500 μHz. We have superposed
curves for ν = 1000, 2500, 4000 μHz in Fig. 7; U0 varies very
slightly with frequency whilst Q ∝ ω−2.

These sharp changes induce a periodic contribution Δδ� to
the phaseshifts, which can be obtained by integrating Eq. (22)
over the discontinuity (cf. R&V 2001). The discontinuity can be
approximately represented as

ΔU0 = ΔUD δD(t − t1) + ΔUH H(t − t1) (24)

ΔQ = ΔQD δD(t − t1) + ΔQH H(t − t1) (25)

where H(x) the Heaviside function with ΔUH = U0(t 
 t1) −
U0(t � t1), and δD(x) the Dirac delta function with UD the trian-
gle shaped excess over the Heaviside function, and similarly for
Q (cf. R&V 1994b). Note however that this is only a convenient
approximation for simple analysis, it is actually the departure of
U0,Q from slowly varying functions over a wavelength that con-
tributes to the seismic signature. On carrying out the integration
of Eq. (23), (integrating the Heaviside component by parts) gives
the result

Δδ� = (−1)�+1
(
K1 sin(2[ωt1 + δ�] − K2 cos(2[ωt1 + δ�])

)
(26)

where

K1 =

(
ΔVH

4ω2
+
ΔQD

2

)
K2 =

(
ΔVD

2ω
− ΔQH

4ω

)
· (27)

The periodic component of δ1 − δ0 is therefore

Δ(δ1−δ0)=2K1 sin[2ωt1 + δ0 + δ1]−2K2 cos[2ωt1 + δ0 + δ1](28)

where we have taken cos(δ1 − δ0) ≈ 1 since (δ1 − δ0) ∼ 0.1 (cf.
Fig. 5). Since the base of the convective envelope is at 1422 s,

Fig. 8. Power spectrum (Ampliude2) of simple model Eq. (28). The
modulation period corresponding to the base of the convective zone is
ν0 = 352 μHz but the maximum power is shifted to 359 μHz due to the
frequency dependency of the phase shifts δ0, δ1 and of the amplitudes
of the two components.

we might expect the modulation period to be at ∼352 μHz. But
this is not so as the term δ1 + δ0 is frequency dependent and
contributes the the modulation period. so too do the frequency
dependent amplitudes.

A simple illustration of this is to take the function is

f (ν) =
1
ν∗2

sin

(
2πν
ν0
+ δ1 + δ0

)
(29)

(where ν∗ = ν/2500) in the frequency range 1000 ≤ ν ≤ 4000
with ν0 = 351.6 and δ1 + δ0 as shown in Fig. 5b. The Fourier
power spectrum of this function is shown in Fig. 8. It has a max-
imum at a modulation period of ∼359 μHz.

8. Analysis of solar data

The behaviour of the small separations ν∗dd01, ν
∗dd10 for data

from the BiSoN, IRIS, and the GOLF experiment on SoHO were
shown in Fig. 2, they all show a behaviour similar to each other,
and similar to that of the theoretical model.

To determine the phase shift differences and resulting power
spectra for the modulation period we follow the analysis given
in Sect. 6. We use the same frequency range for all data sets
confining the analysis to modes of radial order n = 9 to 24 where
the estimated 1σ errors on the frequencies are less than 0.1 μHz.
The resulting values for the phase shift differences ν∗(δ1 − δ0)
are shown in the top 4 panels of Fig. 9. Note that a 1σ error of
0.1 μHz in the frequencies translates into a 1σ error of 0.002 in
δ1 − δ0. We then remove the mean trend by a low order fit as in
Eq. (4) and take a power spectrum of the residuals to estimate
the modulation period. The results for this frequency range are
shown in the bottom panel of Fig. 9, giving the peak in the power
spectra at 358 μHz (Bison), 359 μHz (IRIS), 359 μHz (GOLF)
and 360 μHz (model A). There is reasonable agreement between
the model and data sets.

Next we undertook a Mont-Carlo simulation with 10 000
random realisations of the errors - that is the frequencies were
taken as νn,� + rkσn,� with rk generated by a random number
generator with standard deviation 1 and a Gaussian distribution.
This gave the following results for the mean peak modulation
period and 1σ standard deviation:

BiSON : 358.2 ± 4.4, GOLF : 359.2 ± 6.8

IRIS : 358.7 ± 4.2, Model A : 359.7.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200811047&pdf_id=7
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190 I. W. Roxburgh: Small separations of � = 0, 1 modes

Fig. 9. ν∗(δ1 − δ0) derived from the frequencies as described in Sect. 6
for a) model A, b) a BiSON data set, c) IRIS data set, d) GOLF data
set. All data sets were analysed using frequencies in the range 1400–
3500 μHz. Bottom panel: power spectra of residuals to a low order fit
as in Eq. (4). The modulation period at the peak of the power spectra
are as listed. There is good agreement between the values derived from
solar data and that of the model.

These are all in good agreement with each other – but indicate
that the 1σ uncertainty in determining the modulation period
∼4 μHz for the 11 year runs and ∼7 μHz for the 2.2 year run
with GOLF. These translate into an 1σ uncertainty in the acous-
tic radius of the base of the convective zone of ∼20 s for the
11 year runs and ∼30 s for the 2.2 year run.

However as shown above the modulation period is not sim-
ply 1/(2t1) but is enhanced by ∼6–7 μHz due to the frequency
dependence of the phase shifts and the amplitudes of the oscil-
lating signal. One might try to fit a model function to the data
to determine these contributions at the same time as determining
the frequency corresponding to the base of the convective zone
(cf. Verner et al. 2004), but this depends on having a reliable pa-
rameterised model of the region below the base of the convective
zone and of the internal phase shift difference. We will return to

this matter in a subsequent paper where we also search for solar
cycle variations.

9. Discussion
We have show that the periodicity in the small separations of p-
modes of degree � = 0, 1 is due to the region of sharp change
in acoustic variables at the base of the convective envelope, the
modulation period being primarily determined by the acoustic
radius t1 of this interface. These separations are determined by
the difference δ1 − δ0 between the internal phase shifts of modes
of degree � = 0, 1. This phase shift difference can be directly de-
rived from the frequencies using the Eigenfrequency equation.
The modulation period is not precisely 1/(2t1) as the peak fre-
quency is modified by the frequency dependence of the phase
shifts δ0, δ1, and by the frequency dependence of the amplitudes
of the resulting signal. This periodic signal is not seen in small
separations of modes of degree �, � + 2. This is because modes
with degree differing by 2 are almost in phase when they reach
the base of the convective zone whereas modes differing by 1
in degree are almost π out of phase. Other odd separations of
modes of degree �, � + 1 will display a similar periodicity.

We have not so far considered the diagnostic value of the
combination α − δ0 which is directly calculated at eigenfre-
quencies νn,0 and is known at νn,1 once δ1 − δ0 has been cal-
culated by interpolation at νn,1 simply by adding δ1 − δ0 to
α − δ1. Even though α and δ0 cannot be separately determined
the combination α − δ0 will nevertheless contain the signa-
ture of the HeII ionisation which can be extracted by a vari-
ety of procedures (cf. Brodskii & Vorontsov 1989; Vorontsov &
Zharkov 1989; Gough 1990; Lopes et al. 1997; Perez-Hernandez
& Christensen-Dalsgaard 1998; Roxburgh & Vorontsov 2001;
Verner 2004) and used to infer the Helium abundance and en-
tropy of the convective envelope.

Since the mean variation of δ1 − δ0 with frequency is deter-
mined by the structure of the inner regions of a star it provides
a diagnostic of the internal structure; this can be used as the ba-
sis of crude inversion procedure to probe the internal density
distribution by parameterising the structure in terms of values
of the polytropic index at a few interior points (cf. Roxburgh
2000; R&V 2002), even when one only has data on � = 0, 1
modes. Moreover as shown by R&V (2003b) the requirement
that the �-dependent inner phase shifts δ� must match on to an
�-independent surface phase shift α can be used to find a best fit
interior model out of a set of such models, independent of the
structure of the surface layers, even when one only has modes
with � = 0, 1 (R&V 2003b). The mean values of the small sep-
aration d01 and large separations, and their ratios, can be used
with a 0, 1 asteroseismic diagram to place constraints on a pos-
sible stellar model (Christensen-Dalsgaard 1988; Mazumdar &
Roxburgh 1993). Of course one can do better when one also has
modes of higher degree, but as remarked at the beginning of this
paper, for some stars we may only be able to detect modes of
degree � = 0, 1.
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