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ABSTRACT

The basic properties of acoustic wave propagation in stellar interiors can be analysed from
the autocorrelation function (ACF) of intensity (or velocity) observations without measuring
the resonant p-mode frequencies. We show how the strength of acoustic wave refraction in the
stellar core, or forward acoustic amplitude, can be measured from a modulation in the ACF. This
is the basic physical quantity which governs the so-called ‘small frequency separations’, and its
measurement from the ACF can be used for determining the small frequency separations when
the data is of insufficient quality for a reliable identification of the stellar p-mode frequencies.

Key words: methods: numerical – stars: oscillations.

1 I N T RO D U C T I O N

In stellar seismology, the diagnostic potential of observational data
on solar-like stars is usually attributed solely to frequency measure-
ments. However, the reliable determination of p-mode frequencies
from power spectra of intensity (or Doppler velocity) observations is
known to be a difficult task, especially for distant stars, since the am-
plitudes of the stochastically excited acoustic modes are very small.
Having an alternative analysis technique is thus highly desirable.

The autocorrelation function (ACF) of the observational time-
string (or, alternatively, the power spectrum of the power spectrum)
provides an obvious and robust way of estimating the average value
of the frequency spacings between modes of consecutive radial or-
der, the so-called ‘large frequency separations’; this quantity gives
a measure of the stellar acoustic diameter. In this paper, we analyse
the diagnostic properties of the ACF in further detail and show how
it can be used to evaluate the average value of ‘small frequency
separations’ – the quantity which measures the strength of acoustic
wave refraction in the stellar core.

In solar seismology, the ACF of whole-disc measurements has
been used in a number of studies (Grec et al. 1997; Fossat et al.
1999). When analysing the ACF of SOHO GOLF measurements,
Gabriel et al. (1998) were the first to consider in detail a prominent
modulation of the peak amplitudes in the ACF on a time-scale short
compared with mode lifetimes. A similar modulation, seen in SOHO
MDI data, is shown in Fig. 1. Even peaks (time delays a multiple of
4 h) decrease rapidly with higher time delays, while odd peaks begin
to show up, and become larger than even peaks; later on they show
beating. Using numerical modelling of the ACF, this modulation
was (correctly) attributed by Gabriel et al. (1998) to deviations of the

�E-mail: I.W.Roxburgh@qmul.ac.uk

p-mode frequencies from simplest first-order asymptotic prediction
of uniform frequency spacings. Our analysis is aimed essentially at
understanding the origin of this effect.

Section 2 contains a simple physical interpretation of the ACF
in terms of acoustic wavepacket propagation; it shows that the rate
of modulation gives a measure of the forward acoustic amplitude.
In Section 3, we recall the results of classical analysis of stellar
p modes (Roxburgh & Vorontsov 2000) linking the concepts of
forward action and forward amplitudes with the large and small
frequency separations. An analysis in terms of spherical harmonic
(p-mode) expansion is described in Section 4. In Section 5, we
consider the basic properties of sensitivity coefficients of whole-
disc measurements relevant to our analysis, and in Section 6 we
discuss the diagnostic value of the resulting description.

2 P H Y S I C A L D E S C R I P T I O N

Consider the evolution of a single non-dispersive wavepacket emit-
ted at time t = 0 by a point-like source located somewhere near
the stellar surface (Fig. 2). We assume that the packet propagates
without dissipation or scattering in the stellar interior, and suffers
multiple reflections without energy loss from the stellar surface. The
wavepacket contributes to the observational signal when it meets the
surface. To discuss the contribution to the observational time-string,
it is convenient to start with an artificial experiment where the star
is observed simultaneously from all the directions. In other words,
let us imagine first that the signal (brightness or vertical velocity) is
averaged over the entire stellar surface.

2.1 ‘Whole-star’ measurements

The propagation of the wavepacket in the stellar interior is accompa-
nied by a wave travelling along the stellar surface, which contributes
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Figure 1. Top: power spectrum of 1 yr of solar Doppler velocity measure-
ments with SOHO MDI, targeted at l = 0 modes (velocity averaged over the
solar disc). Bottom: amplitude of the Fourier transform of the power spec-
trum, multiplied by a cosine window between 1.5 and 4.5 mHz. We employ
the Fourier amplitude, which is the envelope of the ACF, to suppress the
rapid (5-min) oscillations in the ACF. The dashed lines show the envelope
of k = even and k = odd peaks.
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Figure 2. First (k = 1) and second (k = 2) transits of an acoustic wave
through the stellar interior.

a small oscillatory signal to the observational time-string, until the
packet arrives at the point on the surface diametrically opposite to
the excitation source. This will happen at time t = 2T , where T is the
stellar acoustic radius (the sound wave propagation time between
the centre and the surface). This first arrival (k = 1) of the wave
travelling directly along the stellar diameter will produce a strong

peak in the observational time-string. We now introduce the action
S(θ ) as the phase integral in the direct acoustic wave between the
source and the point on the opposite hemisphere specified by deflec-
tion angle θ (Fig. 2). The amplitude of the peak in the observational
time-string is governed by the signal received from a small circular
area in the vicinity of the stationary point θ = 0 of S(θ ). The angular
size θ 1 of this coherence domain is such that action S varies by π/2
from its forward value at θ = 0:

(1 − cos θ1)

(
∂S

∂ cos θ

)
θ=0

= π

2
. (1)

The size of the coherence domain as measured by the solid angle
�1 = 2π (1 − cos θ 1) is

�1 = π2

(
∂S

∂ cos θ

)−1

θ=0

. (2)

After the second transit through the star (k = 2), the action S
along any acoustic ray is twice as large and the deflection angle
θ (now measured from the source) is also twice as large, hence
(∂S/∂ cos θ )θ=0 is twice as small. We then have 1 − cos θ 2 twice as
large as 1 − cos θ 1, and hence �2 = 2�1. After k transits, we will
get

�k = kπ2

(
∂S

∂ cos θ

)−1

θ=0

. (3)

Since the acoustic wave amplitude at consecutive stationary points
varies with k as 1/k, the peaks in the observational time-string will
occur at a regular interval 2T with constant amplitude. The ACF will
look similar to the time-string itself; it corresponds to an oscillation
power spectrum which consists of spectral lines separated in fre-
quency ω by (2T)−1. These are radial modes, excited by the source;
indeed, our artificial ‘whole-star’ measurements are only sensitive
to l = 0 modes.

2.2 ‘Whole-disc’ measurements

We now turn to the realistic situation when only half the stellar
surface is visible, and start with the simplest geometry, where the
excitation source is located at the centre of the visible hemisphere.
The first transit through the star goes to the invisible side and will
not be detected. At small k, only k = even transits will enter the
time-string. But as k increases, the size of the coherence domain
grows linearly with k (equation 3), and even signals will start to
decrease in amplitude when the coherence domain extends beyond
the visible hemisphere. Simultaneously, k = odd signals will appear
as their coherence domain in the far side of the star extends to the
front side and becomes visible. We expect that signals of even and
odd transits will become equal in magnitude when the coherence
domain fills the complete solid angle, �k � 4π, which will happen
when

keven = odd � 4

π

(
∂S

∂ cos θ

)
θ=0

. (4)

As k increases further, the amplitudes of even signals will continue
to decrease, and signals with k = odd will continue to increase,
until the coherence domain covers about three halves of the stellar
surface, �k � 6π. We thus expect the even signals to reach their
minimum amplitudes, and odd signals their maximum amplitudes
when

kminmax � 3

2
keven=odd � 6

π

(
∂S

∂ cos θ

)
θ=0

. (5)
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The ACF of stellar p-mode measurements 1493

At higher k, we expect both even and odd signals to show periodic
variation with k with nearly the same amplitude, but with opposite
phase. If the wavepacket loses a small part of its energy on each
reflection (or when propagating inside the star), the amplitudes in
the time-string, and in the ACF, will show a slow exponential decay
at large k.

Our initial assumption about the source location (at the centre of
visible hemisphere) can now be lifted. When the source is at the
stellar limb, the first even and odd signals will all come with the
same amplitude, but this amplitude is small (due to foreshorten-
ing, limb darkening, line-of-sight projection in velocity measure-
ments). When the source moves closer to the disc centre (or to
the diametrically opposite point at the far side of the star), the
amplitudes will increase, and will show the modulation described
above.

The quantity (∂S/∂ cos θ )θ=0 in equations (4) and (5) is inversely
proportional to the forward acoustic wave amplitude (Roxburgh &
Vorontsov 2000). It measures the widening of a thin acoustic flux
tube centred at the stellar diameter, caused by wave refraction in the
stellar core. Equations (4) and (5) can be used for evaluating this
quantity directly from the ACF. From SOHO MDI data shown in
Fig. 1, we infer keven=odd � 7.5 and kminmax � 11.

This is a simplest possible description. It does not take into ac-
count the non-uniform sensitivity of the observations to signals com-
ing from different locations on the visible stellar hemisphere. In
particular, we can expect keven=odd and kminmax to have somewhat
different values in velocity and intensity measurements, since an
effective ‘sensitivity’ domain is smaller in velocity due to line-of-
sight projection. A more sophisticated description thus calls for an
expansion of both the signal and the sensitivity function in spherical
harmonics; this will be given in Section 4.

3 R E L AT I O N W I T H S M A L L F R E QU E N C Y

S E PA R AT I O N S

In the classical approximation (where acoustic waves propagate in
the stellar interior along well-defined rays without any partial reflec-
tion or scattering), the oscillation frequencies, ωn,l, of low-degree
high-frequency p modes of order of n and degree l are given by the
eigenfrequency equation (Roxburgh & Vorontsov 2000)

ωT + δ0(ω) + l(l + 1)Dδ(ω) � π

[
n + l

2
+ 1

4
+ αout(ω)

]
. (6)

Here, δ0(ω) is the internal phase shift for modes of degree l = 0 and
αout(ω) is the surface phase shift; both quantities are of the order of
1 in magnitude. T is the stellar acoustic radius, and l(l + 1)Dδ is the
first degree dependent term in the expansion of the internal phase
shift in powers of l(l + 1), with

Dδ = 1

4

(
∂S

∂ cos θ

)−1

θ=0

, (7)

which is a measure of the forward amplitude.
Neglecting the slow variation of δ0(ω) and αout(ω) with frequency

ω, the large separations are

�ω = ωn+1,l − ωn,l � 2π

(
∂S
∂ω

)−1

θ=0

� 2π (2T )−1 , (8)

and the ratio of small to large frequency separations is

ωn,� − ωn−1,�+2

ωn+1,� − ωn,�

� 2 (2l + 3)

π
Dδ. (9)

For a forward ray (θ = 0) we have S � 2ωT , and the two observable
quantities which govern the frequency spacings thus have a simple
physical interpretation: the large frequency separation is a measure
of the forward action, and the ratio of small to large separations
measures the forward amplitude. Equations (7) and (9) allow one
to interpret keven=odd and kminmax in the ACF in terms of the small
frequency separations.

4 S P H E R I C A L H A R M O N I C ( p- M O D E )

E X PA N S I O N

We now use the p-mode representation of the power spectrum to
incorporate the non-uniform sensitivity of whole-disc observations
to modes of different degree, taking the sensitivity coefficients (in
power) for modes of degree l be al. (We assume that for l > 3 the
al are sufficiently small to be neglected.) Instead of working with
the ACF, which is the cosine Fourier transform of the two-sided
power spectrum (positive and negative ω), it is more convenient to
model the amplitude of the complex Fourier transform of the one-
sided power spectrum (positive ω), which gives the envelope of the
rapidly oscillating ACF.

Consider a set of four neighbouring modes of degree l = 0–3 with
frequencies ωn,0, ωn,1, ωn−1,2, ωn−1,3, which we designate as ω l, l =
0, 1, 2, 3. In the classical approximation their frequencies are given
by equations (6), (8) and (9) as

ω0 = n�ω + 	, ω1 = ω0 + �ω

2π
(π − ϕ),

ω2 = ω0 − �ω

2π
3ϕ, ω3 = ω0 + �ω

2π
(π − 6ϕ), (10)

where

	 = 1

T

(
παout + π

4
− δ0

)
and ϕ = 4Dδ. (11)

Assuming that these four modes with similar frequencies are excited
to the same amplitude An (the mode masses are nearly the same at
low degree and the energy input varies slowly with frequency), and
neglecting damping so that the line profiles are Dirac δ functions,
Anδ(ω − ω l), their contribution to the Fourier spectrum of the power
spectrum at time t is

dF(t) =
l=3∑
l=0

∫ ∞

0

An δ(ω − ωl ) al eiωl t dω = An

l=3∑
l=0

al eiωl t , (12)

where the al are the sensitivity coefficients for whole disc measure-
ments.

At time t = 2kT = 2k π/�ω this reduces to

dFk = Ane−i	t
[
a0 + a1eik(π−ϕ) + a2e−3ikϕ + a3eik(π−6ϕ)

]
. (13)

We now add up the contribution from all such sets of neighbouring
modes each with amplitudes An which can vary with frequency and,
to within a normalization constant, obtain

Fk = a0 + a1eik(π−ϕ) + a2e−3ikϕ + a3eik(π−6ϕ). (14)

We now evaluate the difference between |Fk|2 for two consecutive
values of k; this difference will be zero at k = keven=odd, and will
reach its maximum value at k = kminmax. With ϕ small compared
to 1 (otherwise the small frequency separations will not be small
compared with large separations), it is straightforward to show that

|Fk+1|2 − |Fk |2 � −4(−1)ka0a1

×
[

cos kϕ + a2

a0
cos 2kϕ + a3a1

(
a2

a0
cos 3kϕ + cos 6kϕ

)]
.

(15)
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Figure 3. Diagnostic diagram for measuring Dδ from keven=oddand kminmax

when the observational sensitivity coefficients a0 − a3 are known. Solid
curves show 4kminmax Dδ , for three values of a3/a0. Dashed curves show
4keven=odd Dδ ; three separate curves cannot be distinguished on the scale of
the figure. The two horizontal lines at 4kminmax Dδ = 6/π and 4keven=odd

Dδ = 4/π are the result of the simple physical description (Section 2).
The two grey circles at a2/a0 = 1.05 indicate the measurement of the so-
lar Dδ with SOHO MDI data. The two circles at a2/a0 = 0.60 are for
similar measurement but with data from SOHO GOLF, with sensitivity co-
efficients taken from the numerical fit to the GOLF ACF by Gabriel et al.
(1998).

If a3 is negligibly small (i.e. l = 3 modes are discarded in the power
spectrum), we get

4keven=odd Dδ � arccos
1

4

⎡⎣√(
a0

a2

)2

+ 8 − a0

a2

⎤⎦ , (16)

4kminmax Dδ � arccos

(
−1

4

a0

a2

)
(when a3 = 0). (17)

For a0 > 4a2 the right-hand side of the last equation switches to the
solution π. Extending the analysis to include l = 3 modes requires
numerical computation; the results are shown in Fig. 3.

Fig. 3 shows that for the same star, the values of keven=odd and
kminmax decrease monotonically when a2/a0 increases. This varia-
tion, however, is rather small; in the expected range of a2/a0, it is
within about 20 per cent. We consider this variation as moderate,
because what we are targeting is an approximate measurement of
an average value of Dδ(ω) or small frequency separations (both de-
crease with frequency) over a frequency interval where the stellar
p modes have their largest amplitudes.

We also observe from Fig. 3 that kminmax is much more sensitive to
a3/a1, as compared to keven=odd; at smaller values of a2/a0 it suffers
rapid transitions from one solution to another. We also expect kminmax

to be more sensitive to mode damping, which was not included in
the analysis (we have just assumed that the linewidths are small
compared to small frequency separations). Energy losses lead to an
exponential decay of the ACF with time, and can shift kminmax to a
slightly smaller value; the value of keven=odd does not suffer from
this effect. Since at larger k the ACF is also expected to be more
sensitive to noise in the input data, we conclude that measurement
with keven=odd should produce better results. We also observe from
Fig. 3 that the simple physical description in terms of wavepacket
propagation is in good agreement with more sophisticated p-mode
expansion analysis.

The solar values of Dδ decrease with frequency from about 0.045
at 2 mHz, to 0.035 at 3 mHz, and 0.028 at 4 mHz (the small frequency
separations between l = 0 and 2 modes decrease correspondingly
from about 11.5 μHz to 9.0 μHz and 7.3 μHz). Measurements with
SOHO MDI data shown in Fig. 1, with MDI sensitivities a2/a0 =
1.05 and a3/a1 = 0.08, produces kminmax � 11, which gives Dδ �
0.038, and keven=odd � 7.5, which gives Dδ � 0.035 (the exact value
at central frequency of 3 mHz). The simple physical description pro-
vides, correspondingly, Dδ � 0.043 and 0.042. Similar measurement
with SOHO GOLF data (using the ACF shown in fig. 1 of Gabriel
et al. 1998) and their fitted values a2/a2 = 0.60 and a3/a1 = 0.10
gives kminmax � 12 (and hence Dδ � 0.036) and keven=odd � 8 (which
gives the same value Dδ � 0.036).

Measurements with MDI data can be expected to be more ac-
curate because the sensitivity coefficients are known with better
accuracy [we used sensitivity coefficients resulting from leakage
matrix calculations described in Vorontsov & Jefferies (2005)].

5 S E N S I T I V I T Y C O E F F I C I E N T S

In this section we consider the basic properties of sensitivity coef-
ficients, which are relevant to our analysis. Let us choose spherical
coordinates (θ , φ) on the stellar surface such that the colatitude θ is
measured from the z axis taken as pointing towards the observer. In
these coordinates only m = 0 modes, described by zonal spherical
harmonics

Yl0(θ, φ) =
(

2l + 1

4π

)1/2

Pl (cos θ ), (18)

where Pl(cos θ ) is Legendre polynomial, enter the observation if
the sensitivity function, which describes the response to the ob-
servational signals coming from different locations on the stellar
surface, is axially symmetric. If this sensitivity function is s(θ ), the
(amplitude) response coefficient cl to a p mode of degree l is

cl =
∫

4π

s(θ )Yl0(θ, φ) d	

= π1/2(2l + 1)1/2

∫ π/2

0

s(θ )Pl (cos θ ) sin θ dθ. (19)

The upper limit of the integral on the right-hand side is π/2 because
the sensitivity function is non-zero only in the visible hemisphere.

The coefficients cl are just the expansion coefficients of s(θ ) in
spherical harmonics, a result which is easily obtained by setting
s(θ ) = ∑

skYk0(θ, φ) and integrating over the entire sphere so that

cl =
∫

4π

∞∑
k=0

sk Yk0(θ, φ) Yl0(θ, φ) d	 = sl , (20)

since the spherical harmonics are orthogonal and normalized to
unity. On integrating s2(θ ) over the entire sphere and using the or-
thogonality properties of spherical harmonics we obtain

∞∑
l=0

c2
l =

∫
4π

s2(θ ) d	 = 2π

∫ π/2

0

s2(θ ) sin θ dθ, (21)

where again we have used the fact that s(θ ) is only non-zero in the
visible hemisphere.

Now Legendre polynomials have the orthogonality property∫ π

0

Pl ′ (cos θ )Pl (cos θ ) sin θ dθ = 2

2l + 1
δl ′l . (22)
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The ACF of stellar p-mode measurements 1495

So, since Pl(cos θ ) is an even function of cos θ when l is even, and
odd when l is odd, all the even polynomials are orthogonal to each
other on the half-interval 0 � θ � π/2, and the same is true for
odd polynomials. In the half-interval 0 � θ � π/2, even and odd
polynomials thus form two separate (and complete) orthogonal basis
sets:∫ π/2

0

Pl ′ (cos θ )Pl (cos θ ) sin θ dθ = 1

2l + 1
δl ′l , l ′ + l = even.(23)

The sensitivity function s(θ ), which only differs from zero in the
half-interval, can thus be expanded in either even, or odd polyno-
mials (the situation is similar to using either sine or cosine Fourier
transform on a finite interval), and we have∑
l=even

c2
l =

∑
l=odd

c2
l = 1

2

∫
4π

s2(θ ) d	. (24)

For the response coefficients in power, al = c2
l , we have∑

l=even

al =
∑
l=odd

al . (25)

With ϕ � 1 and k = 1, this relation and equation (14) give F1 �
0. This is the origin the negligible amplitude of the k = 1 peak in
the ACF, when the ACF is considered in the framework of p-mode
expansion.

If another orientation of the coordinate system, (θ ′, φ′) is preferred
(e.g. for considering effects of stellar rotation), then for each partic-
ular mode of degree l and azimuthal order m in the new coordinate
system, its spherical harmonic Y lm(θ ′, φ′) is a linear combination
of Y lm′ (θ , φ) with − l � m′ � l, and only the m′ = 0 component
of this decomposition will enter the observations. Considering all
the possible m states, a new set of sensitivity coefficients c′

lm will be
related with cl by the transformation coefficients of Yl0(θ , φ) under
the rotation of the coordinate system [coefficients of expansion of
Yl0(θ , φ) into linear combination of Ylm(θ ′, φ′)], and we have

l∑
m=−l

c′
lm

2 = c2
l (26)

with the individual coefficients c′
lm given by the addition theorem

for Legendre polynomials. In the present work, we assume that
rotational (or magnetic) frequency splittings are small compared to
small frequency separations. Individual m states do not correlate
in the observational signal (the excitation source is assumed to be
random in angular coordinates), and simply add up in the power
spectrum to a single al = c2

l given by equation (26).
The simplest form of the sensitivity function is s(θ )= cos θ , which

accounts for the foreshortening (area projection); it corresponds to
intensity measurements with zero limb darkening. It gives sensitivity
coefficients a2/a0 = 5/16, a1/a0 = 4/3, and a3 = 0. These values
are lower limits for any sensitivity function of the form s(θ ) =
f (θ ) cos θ , where f is a monotonically increasing function of cos θ ,
as is the case for limb darkening, and the line-of-sight projection in
velocity measurements (see Appendix A). The lower limit a2/a0 �
0.3, was used to limit the horizontal scale in Fig. 3.

6 D I S C U S S I O N

Fig. 4 illustrates an artificial measurement similar to those described
above, but when the SOHO MDI power spectrum shown in Fig. 1 was
distorted by adding noise, of an amplitude which makes the excess
power around 3 mHz invisible, and p-mode identification practically
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Figure 4. Top: the SOHO MDI power spectrum as in Fig. 1, but with added
exponentially distributed noise (χ2 with two degrees of freedom) with a
frequency-independent expectation value of 0.25 × 107. Bottom: amplitude
of the Fourier transform of the power spectrum, convolved with a cosine
window between 1.5 and 4.5 mHz. The dashed lines show the envelope of
k = even and k = odd peaks.

impossible. As can be seen from the lower panel, the amplitude of
the Fourier transform is closely similar to the corresponding result
in Fig. 1, and both the large and the small frequency separations
can be determined from the ACF. In this artificial measurement the
value of keven=odd � 7.5, the same as in Fig. 1, giving the same value
for the averaged small separations.

Employing the ACF instead of (or in addition to) frequency mea-
surements provides an alternative method of data analysis. Applying
the integral transform (Fourier transform) to the power spectrum ef-
ficiently suppresses the rapidly varying noisy component, while still
allowing a measurement of the average basic parameters which gov-
ern acoustic wave resonances in the stellar interior (forward action
and forward amplitude), and hence the large and small separations.

Since the approach is very cheap computationally, it can also be
particularly productive as a means of initial data analysis in obser-
vations with multiple target stars, as in the forthcoming COROT
mission (Baglin et al. 2002).

We emphasize that the analysis of this paper is only applica-
ble when the classical approximation is relevant, i.e. when acoustic
waves propagate through the stellar core without noticeable reflec-
tion or scattering, at least in the frequency range of observable p
modes. Otherwise, the picture will become more complicated. Re-
flection of the direct wave by the stellar core, for example, is capable
of producing a k � 1 signal in the ACF. Answering the question of
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whether or not such a reflection is detectable in real stars requires
further studies.
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A P P E N D I X A : L OW E R L M I T S O N T H E

S E N S I T I V I T Y C O E F F I C I E N T S al/a0

The sensitivity coefficients al = c2
l , where the amplitude response

coefficients cl are defined by (cf. equation 18)

cl =
√

(2l + 1) π

∫ 1

0

s(x) Pl (x) dx, x = cos θ. (A1)

We consider the case where s(x) = x f (x), where f (x) is a monoton-
ically increasing function of x so df /dx � 0. Now

Ik =
∫ 1

0

xk f (x) dx = f (1)

k + 1
− 1

k + 1

∫ 1

0

xk+1 d f
dx

dx (A2)

or

(k + 1) Ik = f (1) −
∫ 1

0

xk+1 d f
dx

dx . (A3)

Since df /dx � 0 and xk+1 < xk in the interval 0 < x < 1, it follows
that

(k + 1) Ik � k Ik−1. (A4)

As P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, we have

c0 = √
π I1, c1 =

√
3 π I2, c2 =

√
5 π

(3 I3 − I1)

2
. (A5)

Using the ordering in equation (30) this gives

c1 � 2

3

√
3 c0, c2 �

√
5

4
c0 hence

a1

a0
� 4

3
,

a2

a0
� 5

16
. (A6)

The lower limits corresponding to f (x) = constant.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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