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ABSTRACT

Aims. This paper investigates the diagnostic potential of narrow, frequency-windowed autocorrelation as a tool for probing the prop-
erties of solar-like oscillating stars when the determination of individual frequencies is impossible or is subject to large uncertainties,
and when mode identification is difficult.
Methods. I use theoretical analysis including phase-shifts, modelling, and data analysis.
Results. Narrow-windowed autocorrelation of a time series can reveal the variation with frequency of the large separations Δ(ν) and
the half large separations Δ01,Δ10, thus helping with mode identification. This technique is applied to the CoRoT p-mode oscillators
HD 49933, HD 175726, HD 181420, and HD 181906. Theoretical analysis and modelling are presented to illustrate the technique.

Key words. stars: oscillations – methods: analytical – methods: data analysis

1. Introduction

For solar-like stars reliable determining of p-mode frequencies
from power spectra is not always possible since the amplitudes
of the stochastically excited modes are very small, giving low
signal/noise. For F stars observed by CoRoT1 the line widths are
large, which hinders the reliable determination of frequencies
and for some stars, particularly HD 175726, individual frequen-
cies are exceedingly difficult to extract. I here consider an alter-
native approach that may be useful when faced with poor quality
data, namely the use of the autocorrelation of the time series. As
shown by Roxburgh & Vorontsov (2006a) by adding noise to a
solar power spectrum, this has diagnostic potential when faced
with noisy data.

The autocorrelation of a discrete time series G(tk), k = 0,N
is

A(tk) =
N∑

i=0

G(ti) G(ti+k). (1)

One can see immediately that peaks are expected in the auto-
correlation function of a photometric time series due to p-mode
oscillations. Such oscillations are acoustic waves excited by sur-
face convection. A wave packet produced near the surface of the
star propagates to the far side of the star in time 2T , where T is
the acoustic radius of the star, and is reflected back arriving at (or
near) the point of emission at 4T . Thus one expects a peak in the
autocorrelation at 4kT, k = 1, 2, 3 . . . Since the large separations
Δn,� = νn,� − νn−1,� between modes with frequencies νn,�, νn−1,�

1 The CoRoT space mission, launched on 2006 December 27, was de-
veloped and is operated by CNES, with the participation of the Science
Programmes of ESA, ESA’s RSSD, Austria, Belgium, Brazil, Germany
and Spain.

are approximately 1/(2T ) the peaks in the autocorrelation give
some mean value of Δ (cf. Roxburgh & Vorontsov 2006a).

To concentrate on frequency components in the photometric
time series of a star in the range of p-mode oscillations, one can
filter the time series by transforming to the frequency domain,
windowing the resulting Fourier transform to retain only contri-
butions in a given frequency range, then transform back to the
time domain and take the autocorrelation of the resulting time
series.

From the Wiener-Khinchin theorem the autocorrelation A(t)
is equal to the real part of the Fourier transform F of the power
spectrum P(ν) of the time series, and the amplitude envelope
Ae(t) by the amplitude of the full Fourier transform:

A(t) = Re
(
F {P(ν)}

)
, Ae(t) =

∣∣∣F {P(ν)}
∣∣∣, P(ν) =

∣∣∣F {G(t)}
∣∣∣2 (2)

(cf. Press et al. 1992). It is therefore not necessary to transform
back to the time domain but simply to take the Fourier transform
of the filtered power spectrum. Figure 1 shows the autocorrela-
tion and the amplitude envelope of the photometric time series
of the F5V star HD 49933 observed for 60 days in the initial
run of CoRoT (see below and Appourchaux et al. 2008), which
has been filtered (using a sin2 filter) in the frequency interval
ν = 1200−2400 μHz. The amplitude envelope Ae(t) removes the
rapidly oscillating component in the autocorrelation due to the
frequencies.

To determine the location of the peaks in the filtered autocor-
relation function (Fig. 1), one could fit a Gabor function to the
rapidly oscillating autocorrelation (cf. Kholikov & Hill 2008),
but it is more convenient to use the amplitude envelope or its
square, the autocorrelation power. As mentioned above, the first
peak in the autocorrelation is expected at 4T , where T =

∫
dr/c

is the acoustic radius of the star, the time for a wave to travel
from centre to surface (here c(r) is the sound speed), and this
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Fig. 1. HD 49933 autocorrelation, frequency windowed between
1200−2400 μHz, and its amplitude envelope.

Fig. 2. HD 49933 power spectrum.

gives an estimate of the large separation Δ. However, as the ac-
tual ray path and the location of the reflecting layer in the at-
mosphere depend on the star’s structure and on frequency and
degree, the round trip travel time is not independent of ν, �, and
the large separations Δn,� vary with both frequency and degree.
This variation is primarily due to the quasi-periodic modulation
of the frequencies caused by the HeII ionisation layer and to the
different contributions of the inner layers to frequencies of dif-
ferent degree �. Additionally there can be a small contribution
at 2T due to reflection from the core (Roxburgh & Vorontsov
1996,7). I here examine whether information on this variation
with frequency and degree can be extracted from the autocorre-
lation power by narrow windowing in the frequency domain.

2. The CoRoT star HD 49933

The F5V (mv = 5.77) star HD 49933 was observed for 60 days in
the initial run of CoRoT (see Appourchaux et al. 2008). After ap-
plying several corrections, details of which are given in Samadi
et al. (2006), the light curves are sampled at a cadence of 32 s,
the duty cycle is ∼90% and the gaps, mainly due to the passages
of the satellite through the South Atlantic anomaly, are filled by
interpolation. (This is level 2 data in the language of CoRoT.)
The typical length of the gaps is ∼9 min, producing a ∼10% re-
duction in power at frequencies >2000 μHz (see Appourchauux
et al. 2008).

The resulting light curve has a mean drift and significant
variations due to rotation and activity, this can be removed by
subtracting off a running mean. Linear interpolation in the gaps
can be modified by adding noise based on the mean variation
outside the gaps. Experiments using different running means,
and none, and different gap-filling procedures showed that the

Fig. 3. Frequency windowed autocorrelation power for HD 49933
(scaled): a) windowed between 1200−2400 μHz, b) narrow window
1200−1600 μHz, c) 1600−2000, d) 2000−2400.

results described below were independent of these procedures.
The power spectrum using the level 2 data is shown in Fig. 2 for
the frequency range 1000−2500 μHz.

This power spectrum was then filtered with a sin2 window
W(ν) = sin2(π(ν−ν1)/(ν1−ν2)) with (ν1, ν2) = (1200, 2400)μHz
and the resulting autocorrelation (normalised to 1 at t = 0) is that
shown Fig. 1 above, and the autocorrelation power in Fig. 3a.
The first peak occurs at a time tm = 6.46 h corresponding to a
mean large separation of 85.9 μHz, the second peak at 2tm and a
third peak can just be detected at 3tm. The rapid decrease in the
height of successive peaks in Fig. 3a indicates the short life time
of the modes; this is to be expected since the line widths in the
power spectrum are broad (Appourchaux et al. 2008).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=1
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Fig. 4. a) Variation of large separation with frequency for HD 49933
from autocorrelation with a sin2 frequency window of full width
400 μHz, and the large separations with 1σ error bars as determined by
Appourchaux et al. (2008). b) As in a) but with large separations from
23 different frequency determinations. c) Autocorrelation large separa-
tions with a narrow window of 200 μHz.

Figures 3b–d show the autocorrelation power for three inde-
pendent narrower windows of 400 μHz. These again show the
characteristic maxima near 6.46 h, but they are not at exactly at
the same values. This suggests one may be able to extract more
detailed information on the frequency variation of Δ by using
such narrow windows.

I then took a set of narrower windows of ±200 Hz centred
on a frequency ν and moved the windows through the frequency
range 1200−2500 μHz in steps of 5 μHz, and determined the lo-
cation of the peaks tk in the autocorrelation power near 6.46 h,
and hence a local value of the large separations as Δ(ν) = 1/2tk.
The results are shown in Fig. 4a. Superimposed on this curve are
the values of the large separations (and their 1σ formal errors)
as determined by Appourchaux et al. (2008). The agreement is
poor. However there is considerable uncertainty in the determi-
nation of these frequencies: it is difficult to decide which modes
are � = 0, 2 pairs and which are rotationally split � = 1 modes
(see e.g. Kallinger et al. 2008), there is uncertainty in determin-
ing the rotation and angle of inclination of the star, and the values
of frequencies determined by fitting pairs of modes, longer sets,
or a complete set of 14n values do not agree. The values at high

frequency are particularly difficult to extract. This is illustrated
in Fig. 4b which shows the results for 23 different frequency
sets determined for HD 49933 from the initial run 60 day data
set with different fitting assumptions and extraction procedures
(Verner, private communication). The variation is large.

Fortunately HD 49933 has subsequently been observed dur-
ing a 132 day run on CoRoT – leading to improved frequency
determinations. These results have yet to be published by the
CoRoT Data Analysis Team but are expected to give much bet-
ter agreement with the variation of large separations obtained by
frequency windowed autocorrelation.

Figure 4c shows the same results but for a narrow frequency
window of full width 200 μHz. The fit to the mean of the several
frequency sets is improved. The curve has a modulation period
of ≈43 μHz, which is half of the mean value of the large sepa-
rations. As shown below this is because the “half large separa-
tions”,

Δ10(n) = νn,1 − νn,0, Δ01(n) = νn,0 − νn−1,1, (3)

between neighbouring modes of � = 0, 1 are not expected to be
equal and, with a narrow window, the resulting autocorrelation
time depends on whether an � = 0, 1 or � = 1, 0 pair is in the
central part of the window. (For the Sun the difference between
Δ10 and Δ01 varies between 5−10 μHz.) The signal is also influ-
enced by the � = 0, 2 small separations but may still provide a
useful diagnostic of the internal structure of the star.

3. HD 175726: a low signal to noise example

HD 175726 is a F9/G0 (mv = 6.72) star observed for 27 days in
the first short run of CoRoT. Details of the properties of this star
are given in Mosser et al. (2009). As for HD 49933, the level
2 CoRoT time series has a 32 s cadence, and (∼9 min) gaps
due to passage through the South Atlantic anomaly filled by lin-
ear interpolation. The major variations in the light curve were
removed by subtracting off a running mean, and experiments
using different running means and different gap-filling proce-
dures showed that the results described below were largely in-
dependent of these procedures. The power spectrum is shown in
Fig. 5a, individual p-modes cannot be seen in the spectrum, but
in the boxcar spectrum shown in Fig. 5b a slight excess of power
can be seen in the p-mode frequency range 1000−3000 μHz. It
is therefore worthwhile to look for evidence of variations of the
large separations with frequency using narrow-windowed auto-
correlations – indeed it was the challenge presented by this star
that initiated the research reported here. A detailed description of
analysis techniques and efforts to extract frequencies are given
in Mosser et al. (2009).

The autocorrelation power, filtered by a sin2 window be-
tween 1000−3000 μHz, is shown in Fig. 5c. The highest peak
away from zero is at t = 5.69 h, which, if due to the large sep-
arations, gives a mean large separation Δ = 1/2t = 97.7 μHz.
Also shown in Fig. 5c as the dotted line is the autocorrelation
power obtained using a boxcar power spectrum with averaging
over 15 μHz. It should be stressed that one is here fighting to ex-
tract a signal from the noise and the results will differ somewhat
depending on how one treats the data: filtering out low frequency
variations, filling gaps by linear interpolation with or without
added noise, and suppressing or not harmonics of the orbital pe-
riod. Nevertheless the general behaviour is found with different
procedures (see Mosser et al. 2009, for a more detailed discus-
sion on the statistical robustness of the results).

I then took a set of narrow windows centred on frequen-
cies ν in the range 1500−2500 μHz with half width δν = 300,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=4
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Fig. 5. a) Power spectra for HD 175726: b) result of applying a boxcar
of 600 μHz full width. c) Autocorrelation power for HD 175726 for very
wide window of ±1000 μHz. The dominant peak is at a correlation time
of 5.69 h corresponding to a large separation of 97.7 μHz.

Fig. 6. Variation of Large separation with frequency for HD 175726 for
a set of narrow window of ±300, 400, 500 μHz.

400, 500 μHz and identified the peak near 5.7 h and hence a lo-
cal value of Δ(ν). With a mean large separation of ≈98 μHz the
windows were wide enough to ensure that (if they exist) there
are several � = 0, 1 modes within the window (6−10) which
should suppress the variation between pairs of modes and give
a local average of the large separation. The results are shown in

Fig. 7. Autocorrelation power for HD 175726 sin2windowed with half
width 400 μHz, with exponential noise added to the power spectrum: a)
0.5 〈P〉, b) 1.0 〈P〉.

Fig. 6; all 3 curves show a similar quasi-periodic behaviour but
the smaller the window the larger the amplitude of the variation.
This is to be expected since the larger windows span a wider
range around the peaks and troughs and therefore reduce the am-
plitude of the quasi-periodic variation. Such a quasi-periodic be-
haviour is caused by the variation in the surface phase shift α(ν)
due to the HeII ionisation zone, (Vorontsov & Zharkov 1988,9;
Brodskii & Vorontsov 1989), and also by the internal phase shifts
δ�(ν) (Roxburgh & Vorontsov 1994; Roxburgh 2009). Whilst it
is admittedly difficult to extract any such periodicity from Fig. 6
there is some indication of a period ∼1000 μHz, which were it
due to the HeII ionisation layer, corresponds to an acoustic depth
of ∼500 s. This is not unreasonable for such a star, but the am-
plitude is larger than theoretical expectations.

I then added exponentially distributed noise to the power
spectrum with a mean of 0.5 and 1.0 times the average power 〈P〉
in the frequency range 1500−2500 μHz, and repeated the calcu-
lations for a ±400 μHz window; the results are shown in Figs. 7a
and b, the thick line being the result with no added noise. These
results suggest that the signal is there, but this does not of course
prove that the signal is due to the variation Δ(ν). Estimates of
the error on the autocorrelation due to time resolution, window
width, and interference between signal and noise are considered
in Mosser et al. (2009). They also test the reliability of the shape
displayed in Fig. 6 with an H0 test and concluded that the hy-
pothesis that the signal is real is only rejected at the ∼1−10%
level.

As mentioned above, one is here fighting against the noise
– just how much is illustrated in Fig. 8, which gives the auto-
correlation power for a window of half width 350 μHz centred
on frequencies in the range 1500 and 2300 μHz. A peak around
98 μHz can just be seen, although how significant it is needs to
be the subject of further investigation. The dotted line in Fig. 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=7
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Fig. 8. Autocorrelation power for HD 175726 sin2 windowed with half width 350 μHz window. The dotted curves are obtained from a 15 μHz
boxcar spectrum.

is the autocorrelation power using a boxcar spectrum averaging
over 15 μHz.

4. Analysis and modelling

I first take the simplest possible model where the peaks in the
frequency power spectrum are given by delta functions so

P(ν) =
∑

Aiδ(ν − νi), (4)

where νi are the eigenfrequencies. For simplicity of presentation
I confine my attention to the case where the only modes are those
with � = 0, 1 so that {νi} = νn,0, νn,1, νn+1,0, νn+1,1, . . .

As shown by Roxburgh and Vorontsov (2000), by matching
the inner and outer solutions of the equations governing the os-
cillations at an intermediate radius r f , the eigenfrequencies νn,�
satisfy the eigenfrequency equation

νn,� = Δ(n + �/2) +
Δ

π
(α(ν) − δ�(ν)), Δ = 1

2T
, (5)

where α(ν) is an � independent surface phase shift due to the
structure of the outer layers, δ�(ν) the � dependent internal phase
shifts due to the structure of the inner layers, and T is the acous-
tic radius of the star. The values of α, δ� are almost independent
of the location of the matching radius for 0.8 ≤ r f /R ≤ 0.98.
(Roxburgh & Vorontsov 2000; Roxburgh 2009). Note that Δ is
not exactly the large separation, in fact

Δn,� = Δ

(
1 +

1
π

[
α(νn,�) − α(νn−1,�) − δ�(νn.�) + δ�(νn−1,�)

])
. (6)

Consider first the simple model consisting solely of a pair of
adjacent modes ν0 = νn,0 and ν1 = νn,1, The Fourier transform of
the power spectrum consisting of these two modes is

F(t) =
∫ ∞

0
[a0δ(ν − ν0) + a1δ(ν − ν1)] e2πiνt (7)

= e2πiν0t
[
a0 + a1 e2πi(ν1−ν0)t

]
,

where the ai are the amplitudes of the modes in the power spec-
trum.

The autocorrelation power (the power spectrum of the power
spectrum) is |F |2 which is then

A2 = a2
0 + a2

1 + 2a0 a1 cos[2π(ν1 − ν0)t]. (8)

This has its first peak (beyond zero) when (ν1 − ν0)t = 1. If
α, δ0 = δ1 are all constant then from Eq. (5) ν1 − ν0 = Δ/2 and
hence the first peak occurs at t = 4T . If the amplitudes are the
same for a sets of pairs of modes then they all add up to give the
same position of the first maximum (see Roxburgh & Vorontsov
2006a).

However if, as is the real case, α, δ0, δ1 vary with frequency
and δ1 � δ0, the above pair analysis remains valid but ν1 − ν0 �
Δ/2. I therefore define the half large separations

Δ10(n) = νn,1 − νn,0, Δ01(n) = νn,0 − νn−1,1. (9)

Their sum gives the ordinary large separations

Δ0(n) = νn,0 − νn−1,0 = Δ01(n) + Δ10(n − 1), (10)

and difference the small separations (Roxburgh 1993, 2009)

d01(n) = νn,0 − (νn,1 + νn−1,1)/2 = (Δ01(n) − Δ10(n − 1))/2. (11)

The power from the pair of modes {νn,0, νn,1} is

A2 =
(
a2

0 + a2
1 + 2a0 a1 cos[2πΔ10(n)t]

)
, (12)

which has its first maximum at t = 1/Δ10(n), whereas that from
the pair {νn,1, νn+1,0} is

A2 =
(
a2

0 + a2
1 + 2a0 a1 cos[2πΔ01(n + 1)t]

)
, (13)

and has its first maximum at 1/Δ01(n + 1).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=8


440 I. W. Roxburgh: Narrow frequency-windowed autocorrelation

As can be seen from Eq. (5)

Δ10(n) = Δ

(
1
2
+
α(νn,1) − α(νn,0)

π
− δ1(νn,1) − δ0(νn,0)

π

)
(14)

Δ0,1(n) = Δ

(
1
2
+
α(νn,0) − α(νn−1,1)

π
− δ0(νn,0) − δ1(νn−1,1)

π

)
(15)

so even if α, δ0, δ1 constant, but δ1 � δ0, these differ by

Δ01(n + 1) − Δ10(n) =
2Δ
π

(δ1 − δ0). (16)

For the Sun the differenceΔ01−Δ10 varies with frequency ν from
about 10 μHz at ν = 1000 μHz to 5 μHz at ν = 4000 μHz.

For a large set of eigenfrequencies within a window (includ-
ing � = 2, 3) the situation is more complicated since one cannot
just add up the power in each pair but have to take the full Fourier
transform. However one can see that if there is only one pair
{νn,0, νn,1} in a window, the position of the first maximum will be
different from that with just the overlapping pair {νn,1, νn+1,0}. If
there are a number of such sets within a window then one may
expect the first peak in the autocorrelation power spectrum to be
determined by the full large separationsΔ0,Δ1. Note that, at least
for the Sun, the difference between Δ0 and Δ1 is much smaller
that that between Δ01 and Δ10 since the inner phase shifts δ0, δ1
differ by much more than the change in α, δ0, and δ1 between
adjacent frequencies. Of course the actual windowed autocorre-
lation for a small set of frequencies depends on the amplitudes
of all significant modes (� = 0, 1, 2, 3) within the window and
on noise peaks. For a theoretical model this could be calculated
but for a real data set one can do no more than predict that for
very narrow windows the first peak of the autocorrelation func-
tion will vary depending on whether it is an � = 0, 1 pair or an
� = 1, 0 pair at the centre of the window, but for a wider window
the peak is determined by a locally averaged large separation.
This is the origin of the oscillatory behaviour of the ±100 μHz
windowed results for HD 49933 displayed in Fig. 4c. It offers the
possibility of determining the inner phase shift difference δ1−δ0
as a function of frequency, which is an important diagnostic of
the stellar interior and convective boundaries (Roxburgh 2009).

To demonstrate that this technique can, in principle, work
I constructed a theoretician’s ideal artificial noise free power
spectrum by prescribing a surface phase shift α(ν) and inner
phase shits δ�(ν), with the eigenfrequencies determined by the
Eigenfrequency equation (Roxburgh & Vorontsov 2000)

2πνn,�T = (n + �/2)π + α(ν) − δ�(ν). (17)

To produce a model with similar characteristics to HD 175726
the model had an acoustic radius of T = 5000 s, and α and δ�
given by

α(ν) =
4.5

0.5 + ν2

⎛⎜⎜⎜⎜⎝1 +
0.03375

ν22
sin [2πν/ν0 + 1.5]

⎞⎟⎟⎟⎟⎠ (18)

δ�(ν) =
1
ν2

[
0.7 + 0.05�(� + 1)

]
, (19)

where ν2 = ν/2000 μHz and ν0 = 650 μHz.
The individual line profiles were taken to be Lorentzians

of width 4 μHz and the amplitude ratios for modes with � =
0, 1, 2, 3 in the ratios 1, 1.334, 0.35, 0.016. The resulting pow-
ers spectrum was then scaled by the factor exp

[
− λ(ν2 − 1)2

]
with λ = 40/3 The resulting model power spectrum is shown in
Fig. 9a. Applying the narrow windowed autocorrelation analy-
sis with windows of ±150, 300, 500 μHz yielded the curves dis-
played in Fig. 9b, together with the values of Δ derived from the

Fig. 9. a) Ideal model power spectrum; the inset shows an example of
the line profiles. b) Large separation Δ(ν) determined from frequency
windowed autocorrelations. The model values of Δ� are also shown.

frequencies of the model. As expected the wider windows de-
part further from the actual large separations since the wider the
window the greater the smoothing of the actual separations. The
narrowest window shows the beginnings of a periodic modula-
tion due to the difference between the half large separations Δ01
and Δ10.

I then added exponential noise to this artificial power spec-
trum as shown in Fig. 10a, which is on the same scale as Fig. 9a.
The noiseless power spectrum is shown in white in this figure.
The variation of the large separations with frequency as deter-
mined from frequency windowed autocorrelation with windows
of ±200, 300, 500 μHz are shown in Fig. 10b.

Comparison of these results with those for HD 175726
shown in Fig. 6 suggests one can extract some information on
the large scale variations of Δ(ν) by this procedure.

Returning to the noiseless model power spectrum I then took
very narrow frequency windows of ±60, 80, 100 μHz to test
whether this can give the half large separations Δ01,Δ10 defined
above in Eq. (9). Figure 11a shows the results for the full model
power spectrum. The autocorrelation values show the same gen-
eral behaviour as the exact values of the frequencies but some-
what offset. That this is due to the contribution of the � = 2
modes is clear from Fig. 11b where the model power spectrum
was taken to only have � = 0, 1 modes; in this case the half large
separations are faithfully reproduced.

5. HD 181420

HD 181420 is an F2 (mv = 6.57) star observed by CoRoT in a
156 day run (Michel et al. 2008, Barban et al. 2009). Details
of the data reduction are given in Barban et al. (2009), but
are essentially the same as described above for HD 49933. The
power spectrum is given in Fig. 12a and a boxcar spectrum in

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=9
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Fig. 10. a) Ideal model power spectrum + added noise; the noiseless
power spectrum is shown in white. b) Large separation Δ(ν) determined
from frequency windowed autocorrelations of the noisy spectrum.

Fig. 12b. There is excess power in the p-mode frequency range
1200−2000 μHz. Details of the extraction of frequencies are
given in Barban et al. (2009) but as with HD 49933 it is difficult
to discriminate between peaks corresponding to modes � = 0, 2
and those corresponding to � = 1; Barban et al. (2009) give fre-
quency sets for both (Scenarios 1 and 2). I here give the results
of applying narrow frequency windowed autocorrelations to the
time series and see if one can differentiate between them.

Figure 13a shows the autocorrelation power in a wide
(1200 μHz) window with a clean peak at tm = 7.37 hrs cor-
responding to a mean large separation of 75.4 μHz, and a sec-
ondary peak at 2tm. The rapid decrease in amplitude between
the two peaks is again indicative of the large line widths in the
power spectrum. Figure 13b shows the results of using a nar-
rower frequency window of full width 400 μHz. Again there is
variation of Δ with frequency.

I then used narrow windows of ±100, 150 μHz and deter-
mined the local large separations Δ(ν), the results are in Fig. 14a
for Barban’s Scenario 1, and in Fig. 14b for Scenario 2. The
points and error bars are from the frequency sets given in
Barban et al. There is not much to choose between the fit of
the ±100 μHz windowed results to the separations determined
from the frequencies – possibly Scenario 2 is a little better than
Scenario 1.

Since the values of Δ vary substantially with frequency a bet-
ter test would be to use even narrower windows which give the
half large separations Δ01,Δ10 as in Fig. 11. The results for a
window of ±67 μHz are shown in Fig. 15 for both scenarios.
Here Scenario 2 gives a better fit than Scenario 1, suggesting
that Scenario 2 is the correct identification of the modes.

Fig. 11. a) Half large separation Δ01(ν),Δ10(ν) determined from very
narrow windowed autocorrelations of the full noiseless power spectrum
with modes � = 0, 1, 2, 3. The points are the values from the frequen-
cies of the model. b) Half large separation Δ01(ν),Δ10(ν) determined
from very narrow windowed autocorrelations of the power spectrum
with only modes with � = 0, 1.

6. HD 181906

HD 181906 is an F8 (mv = 7.65) star observed by CoRoT
for 156 days, that displays very low p-mode power in the fre-
quency range 1000−2500 μHz (Michel et al. 2008, García et al.
2009); it is considerably fainter than HD 49933 and HD 181420.
Figure 16a gives the power spectrum and Fig. 16b the boxcar
spectrum which shows an excess of power in the p-mode fre-
quency range 1100−2300 μHz. The power spectrum was derived
from the time series by the same procedures as for HD 49933.
Figure 16c gives the autocorrelation power for a wide frequency
window of 1200 μHz. There is a clear peak at tm = 6.45 hrs cor-
responding to a mean large separation of 85.1 μHz and a small
second peak at 2tm.

Extracting frequencies from the power spectrum is difficult
as the signal to noise is small and rotational splitting, line widths
and (� = 0, 2) separations all overlap. By making severe con-
straints on the fitting procedure (mode widths and mode heights
set equal over the fitted frequency range) values of nine � =
0, 1, 2 frequencies were obtained by García et al. (2009). These
differ from those obtained for a smaller frequency sets (5 n val-
ues) obtained by Verner (private communication) with less rigid
constraints on the fitting procedure, and are only marginally con-
sistent within the larger formal errors of Verner’s analysis. Again
there is uncertainty over which peaks correspond to � = 0, 2 and
which to rotationally split � = 1 modes; these two alternatives
are labelled Scenario A and B in García et al.

I then used narrow windows of ±100, 150μHz and deter-
mined the local large separations Δ(ν) from the peaks in the
autocorrelation power; the results are in Fig. 17a for García’s
Scenario A and Fig. 17b for Scenario B. The circles in these dia-
grams are the values obtained with García’s frequencies and the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=11


442 I. W. Roxburgh: Narrow frequency-windowed autocorrelation

Fig. 12. a) HD 181420 Power spectrum. b) Boxcar power spectrum full
width 300 μHz.

Fig. 13. a) Autocorrelation power for HD 181420 with 1200 μHz win-
dow. b) Same as a) but for narrower window of 400 μHz.

crosses those from 3 different analyses by Verner, each with their
estimated formal errors. The considerable difference between
values from different frequency extraction algorithms illustrates
the difficulty in deriving reliable values of the frequencies for
this star Figs. 18 gives the values of the half large separations
using an ±80 μHz window for the two Scenarios. The agreement
between the autocorrelation values and those from any frequency

Fig. 14. Autocorrelation Large separations for HD 181420 with
±100, 150 μHz windows. a) Scenario 1. b) Scenario 2.

Fig. 15. Autocorrelation Half Large separations for HD 181420 with
±67 μHz window. a) Scenario 1. b) Scenario 2 (Barban et al. 2009).

set is not good. Further work needs to be done on both frequency
extraction and the windowed autocorrelations to see if one can
obtain agreement similar to that for HD 181420 in Fig. 15b.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=14
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911906&pdf_id=15
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Fig. 16. a) Power spectrum of HD 181906. b) Boxcar power spectrum
with 600 μHz average. c) Autocorrelation power with 1200 μHz win-
dow.

7. Conclusions

The principal goal of this paper was to show that narrow
frequency windowed autocorrelation can, in principle, reveal
information on the variation of the large separation with fre-
quency and therefore constitutes a tool that might be useful in
obtaining some information about a star even when individual
frequencies cannot be extracted, or modes cannot be identified.
Much remains to be done to refine the technique: the theoreti-
cal analysis needs to be further developed and the nature of the
interaction of noise with the autocorrelation power better under-
stood. However the analysis presented here suggests that nar-
row frequency windowed autocorrelations can yield the varia-
tion with frequency of the large separations Δ(ν) and that very
narrow windows can yield the half large separations Δ01 and Δ10
and thereby help to resolve the uncertainty over mode recogni-
tion between � = 0, 2 and � = 1 modes.

Since the difference between the half large separations is de-
termined by the inner phase shift difference δ1 − δ0, this gives
a diagnostic of the internal structure of a star (Roxburgh 2009).
This will be explored in a subsequent communication.

Fig. 17. a) Autocorrelation Large separations for HD 181906 with
±100, 150 μHz windows Scenario A. b). as above but for scenario B.

Fig. 18. a) Autocorrelation Half Large separations for HD 181906 with
±80 μHz window for Scenario A. b), as above but for Scenario B.
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