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ABSTRACT

We compare N-body simulations of isolated galaxies performed in both frameworks of modified Newtonian dynamics (MOND)
and Newtonian gravity with dark matter (DM). We have developed a multigrid code able to efficiently solve the modified Poisson
equation derived from the Lagrangian formalism AQUAL. We take particular care of the boundary conditions that are a crucial point
in MOND. The 3-dimensional dynamics of initially identical stellar discs is studied in both models. In Newtonian gravity the live
DM halo is chosen to fit the rotation curve of the MOND galaxy. For the same value of the Toomre parameter (QT), galactic discs
in MOND develop a bar instability sooner than in the DM model. In a second phase the MOND bars weaken while the DM bars
continue to grow by exchanging angular momentum with the halo. The bar pattern speed evolves quite differently in the two models:
there is no dynamical friction on the MOND bars so they keep a constant pattern speed while the DM bars slow down significantly.
This affects the position of resonance like the corotation and the peanut. The peanut lobes in the DM model move radially outward
while they keep the same position in MOND. Simulations of (only stellar) galaxies of different types on the Hubble sequence lead to
a statistical bar frequency that is closer to observations for the MOND than the DM model.
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1. Introduction

As has been emphasized in the last years, the concordance
ΛCDM cosmological model is very successful in accounting for
large-scale structure formation (e.g., Silk 2004), but encounters
severe problems at galactic scale: in particular the highly peaked
dark matter (DM) distribution predicted by numerical simula-
tions (Navarro et al. 2004) is not compatible with most observed
rotation curves of galaxies (de Blok 2005); the predicted angu-
lar momentum of baryons condensed in galaxies is much too
low (Steinmetz 2003), and the number of predicted satellites
around a given giant galaxy is more than an order of magnitude
larger than what is observed (Moore et al. 1999). One solution
to these problems has been searched for in the energetic feed-
back provided either by violent star formation (e.g., Kravtsov
et al. 2004) or by an AGN (Croton et al. 2006). However, even
large variations of these parameters have not been successful in
solving the problems significantly for all galaxy types. Another
kind of solution is resorting to the modified Newtonian dynamics
(MOND), proposed by Milgrom (1983) as an empirical modifi-
cation of gravity, when the generated acceleration falls below
a universal value a0 ∼ 2 × 10−10 m s−2. In this model, there is no
DM anymore, but the visible mass in the inner parts of galaxies
produces a much boosted gravity force in the outer parts, with
a longer range effect. Bekenstein & Milgrom (1984) developed
a self-consistent Lagrangian theory, where the Poisson equation
is transformed into:

∇[µ(|∇Φ|/a0)∇Φ] = 4πGρ, (1)

where µ(x) is a function that is equal to unity at large x
(Newtonian regime), and tends to x when x � 1 in the
MOND regime. Far in this regime, and assuming some sym-
metry (spherical, cylindrical, or plane) it can be shown that the

MOND acceleration gM satisfies the relation (Brada & Milgrom
1995):

g2
M = a0gN, (2)

where gN is the Newtonian acceleration. This model has large
success at galactic scale, in particular explaining all rotation
curves of galaxies, and naturally the Tully-Fisher relation, as de-
veloped in the excellent review by Sanders & McGaugh (2002).

Interest has grown in the MOND theory since the proposition
by Bekenstein (2004) of a Lorentz-covariant theory (TeVeS),
able to replace general relativity, accounting for gravitational
lensing and passing elementary tests of gravity in the solar sys-
tem. Simulations have been attempted to explore the large-scale
structure formation, with encouraging results (Knebe & Gibson
2004; Nusser & Pointecouteau 2006). More recently, weak lens-
ing observations of the bullet merging cluster 1E0657-56 (Clowe
et al. 2006) claim that the spatial separation between the main
baryonic component (X-ray gas) and the total mass shows direct
evidence for the existence of collisionless DM. They find that
any modified gravity model, considering only the baryonic mass,
fails to reproduce the observations. However, Angus et al. (2007)
have re-analyzed these observations in the context of modified
gravity and show that the data are also compatible with the
Bekenstein model of MOND, in which some collisionless dark
matter exists under the form of ordinary hot neutrinos of 2 eV.

The most stringent constraints on the choice of the inter-
polation function µ(x) are expected to be obtained on a small
scale however. To better fit the rotation curve of the Milky Way,
the function µ(x) = x/(1 + x) has been proposed by Famaey &
Binney (2005), in place of the empirical initial function µ(x) =
x/(1 + x2)1/2. In addition, physical constraints and the external
field effect further reduce the choice of the interpolating function
(Zhao & Famaey 2006).
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Since the motivation of MOND and its best success concern
the galactic scales, and in particular the rotation curves fit with-
out dark matter, more physical constraints should be explored at
these scales. In particular, the stability of spiral galaxies in this
model, the secular evolution taking into account spiral waves
and bars have to be investigated, to compare the dynamical be-
havior of a typical galaxy in the Newtonian CDM model and the
MOND frame. Brada & Milgrom (1999, hereafter BM99) have
begun to tackle this problem, and have shown that the Toomre
Q-parameter could be chosen lower than in the Newtonian case,
to obtain the same stability level. The modified acceleration pro-
vided a comparable stability level with respect to bars as does
a dark matter halo in the Newtonian case. There are, however,
limitations in their model, since they considered infinitely thin
discs and ignored the z-structure, acceleration, and dynamics,
which are very different in Newtonian and MOND regimes.

In this work, we present numerical simulations of several spi-
ral galaxy models, representing the whole Hubble sequence and
a large mass range, in both CDM Newtonian and MOND mod-
els. The goal is to find specific tests and constraints to the grav-
ity theory, to be applied on a global statistical basis and confront
them to the observations. The diagnostics are to be found in the
bar frequency, the spiral morphology, the thickness of discs and
their box/peanut shapes, the surface density profiles, and the an-
gular momentum distribution. In this first approach, pure stel-
lar discs are considered, while gas and star formation will be
investigated in a future work. In the next section, we describe
the numerical code developed to solve the difficult problem of
MOND dynamics, and in Sect. 3 the analysis and diagnostics
we applied to the simulations results. Initial conditions for spiral
galaxies described in Sect. 4, are selected to be as close as possi-
ble in the plane for the two compared models: in particular they
have the same radial baryonic distribution and the same rotation
curve and velocity dispersion. Results are presented in Sect. 5
and then discussed in Sect. 6 to emphasize the fundamental dif-
ferences in galaxy evolution for the two competing dynamics.

2. Numerical model

The non-linearity of the MOND gravity leads us to use different
techniques than the usual ones for the potential solver (or force
solver).

2.1. Multigrid (MG) potential solver

The modified Poisson equation is a non-linear elliptic partial dif-
ferential equation (PDE). This kind of equation can be solved
efficiently using multigrid (MG) techniques. We have written
an N-body code in which we implemented a full multigrid algo-
rithm (FMG) with full approximation scheme (FAS) for the po-
tential solver (see Numerical Recipes, Press et al. 1992). Brada
& Milgrom (BM99) used such a code to solve (1).

Up to some point, the code works like a particle-mesh(PM)
code. Particles evolve in a 3D Cartesian grid. Density is com-
puted using the cloud in cell interpolation, the potential is de-
duced by MG techniques, the equation of motion is solved by the
leapfrog scheme. The only difference from a classical PM-code
occurs in the potential solver.

The MG computes the solution on finer and finer grids
(Fig. 1) by calculating correction terms on each level and con-
verges even more quickly than by solving the same equation
directly on the finest grid. We use the Gauss-Seidel relaxation
with red and black ordering (Press et al. 1992) to solve the sys-
tem of equations obtained by discretisation. This step is called
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Fig. 1. Full multigrid (FMG) algorithm is used to accelerate the conver-
gence in the resolution of the modified Poisson equation (see text).
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Fig. 2. Discretisation scheme of the modified Poisson equation pro-
posed in BM99. Density and potential is calculated on the grid nodes.
The gradient components in µ(x) are estimated at the Li and Mi points.

smoothing. To go from the grid level n to n + 1 we make a tri-
linear interpolation (prolongation operator, P), and inversely, the
full-weighting operator (R) is used to go to the level n + 1 to n.
The number of pre-/post-relaxations were chosen to νpre = 2 and
νpost = 1.

Here is the discrete form of (1):

4πGρi, j,k = (φi+1, j,k − φi, j,k)µM1 − (φi, j,k − φi−1, j,k)µL1

+(φi, j+1,k − φi, j,k)µM2 − (φi, j,k − φi, j−1,k)µL2

+(φi, j,k+1 − φi, j,k)µM3 − (φi, j,k − φi, j,k−1)µL3 )/h2 (3)

with ρi, j,k and φi, j,k the spatial density and potential dis-
cretized on a grid of step h, µMl , and µLl , the value
of µ(x) at points Ml and Ll (Fig. 2). The gradient com-
ponent (∂/∂x, ∂/∂y, ∂/∂z), in µ(x), are approximated by
( φ(B)−φ(A)

h ,
φ(I)+φ(H)−φ(K)−φ(J)

4h ,
φ(C)+φ(D)−φ(E)−φ(F)

4h ), it is the stable
numerical scheme proposed in BM99.

In the Newtonian case, the interpolation function is constant:
µ(x) = 1, so that Eq. (3) becomes:

4πGρi, j,k = (φi+1, j,k + φi−1, j,k + φi, j+1,k + φi, j−1,k

+φi, j,k+1 + φi, j,k−1 − 6φi, j,k)/h2. (4)
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We recognize the discrete Poisson equation with a 7-point
Laplacian stencil.

To avoid the usual 2-body relaxation in simulated galaxies
with insufficent number of particlees, the gravitational potential
is softened through a convolution with a Gaussian function (σ =
1.2 cells). This value of the softening suppresses efficiently high
spatial frequency noise, without introducing any bias (Dehnen
2001; Zhan 2006). For the following simulations, the calculation
was made on a 2573 grid. The radius of the simulation box is
50 kpc, generally the galactic disc is truncated at 20 kpc. The
same code can solve Poisson and Modified Poisson equations (it
is just the coefficients of the PDE that are constant in Newton
and variable in MOND).

2.2. Boundary conditions

In classical PM-code, fast Fourier transform (FFT) implies pe-
riodic boundary conditions. For isolated galaxy simulations,
the interactions with periodic images can be suppressed using
screening masses (James 1977). What kind of boundary con-
ditions are possible to use for simulations of isolated galaxies
with MG codes? This point is not trivial and is not developed
in BM99 code. It is particularly important in MOND where the
gravitational potential scales as log(r) far from the galaxy. It
might appear similar in Newton gravity with the dark matter
halo, but the latter is nearly spherical in general, and the in-
fluence of mass exterior to the box is considered negligible. In
MOND in the contrary, the potential at large distance is due to
the baryonic disc (with spiral arms or bar).

Periodic conditions are not realistic at this scale and using
a box eight time larger to suppress the periodic images is too
costly in CPU time. The most natural way is to use isolated
boundary conditions. But this supposes we know the potential
at the border of the box. To solve this problem we have to make
an approximation. We use the MOND formula (Eq. (2) in the
deep MOND regime), which links the MOND acceleration to
the Newtonian acceleration. If µ(x) = x/(1 + x), one has more
generally:

aMOND = aNν (aN/a0) (5)

with

ν(x) = 0.5
(
1 +

√
1 + 4/x

)
. (6)

It is critical to use this expression directly in the Newtonian code
principally because it is not true if the system has no symme-
try (planar, cylindrical, or spherical). It is a concern even for
an isolated galaxy. During its evolution, spiral arms and bars
are formed and destroyed. The particle configuration is then not
symmetric. However, we are interested only in the outer parts of
the galaxy. We just need to determine the MOND potential on
the boundary of the simulation box, that is far from the galactic
center and its gravitational instabilities.

Brada & Milgrom (1995) proposed a test to check if the ap-
proximation aMOND = f (aN) is justified. They showed that |∇φN|
must be a function of φN out of the disc. So by plotting |∇φN|
versus φN at different positions in the box simulation we obtain
Fig. 3. The approximation is good for low φ that is far from
the galactic center. This is expected since the potential is more
spherical. Hence, our solution to solve the boundary conditions
problem is to compute the Newtonian potential by the FFT tech-
nique on a larger grid, then the Newtonian acceleration on each
edge of the simulation box. Finally we use the MOND formula
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Fig. 3. Plot of |∇φN| versus φN for a barred galaxy with grand design
spiral. The crosses represent |∇φN| = φ2

N/GM (this is the spherical ap-
proximation where the galaxy is approximated by a point mass).

to deduce the MOND acceleration and compute the MOND po-
tential on the border.

In this way, we obtain boundary conditions that are not fixed
in time and that are not required to be homogeneous. We can
take a small perturbation to the spherical symmetry like the disc
or bar shape of the galaxy into account. Even if the correction is
not very important to dynamical evolution, this makes the code
more realistic.

2.3. Tests

We have made several tests to check the validity of the solution
obtained by the MG technique: the analytical solution of a mass
point, the Kuzmin disc. We present here a more demanding test
for a totally non-symmetric system. It is the potential of a galaxy
where a bar is formed during the simulation. We compute the
MOND potential on the one hand with the MG technique and on
the other hand with a classical relaxation scheme (NAG library).
The second method is very inefficient (several hours when it
takes less one minute with MG). We plot the potential along
the bar and perpendicular to the bar. The two different methods
are in complete agreement. This plot also demonstrates the high
symmetry at the outer boundary of the galaxy. Even if there is
a bar (5 kpc), the potential at 25 kpc is quasi-spherical (within
a few %).

We have tested the dynamical evolution of a stellar disc in
Newtonian gravity with the MG code compared to a classical
FFT-PM-code. We obtained the same result for the time evolu-
tion of the bar. The code has been parallelized in open-MP since
the G-S relaxation with red and black ordering allowed this. All
red cells can be updated independently and this the same for the
black cells.

3. Analysis techniques

3.1. Fourier analysis in the galactic plane

The potential in the galactic plane is developed with the basis of
the cosine function (Φm(r)) and a phase term (φm(r)):

Φ(r, θ) = Φ0(r) +
∑
m=1

Φm(r) cos[mθ − φm(r)]
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Fig. 4. Test of the MG solver compared to the NAG routine D0ECF to
solve modified Poisson equation for a barred system with a grand de-
sign spiral structure; (1) potential perpendicular to the bar, (2) potential
parallel to the bar.

to calculate the maximum strength (Qm) of the m mode. We use
the maximum force ratio:

Qm = max

∣∣∣∣∣∣Fθ,mFr

∣∣∣∣∣∣
with the radial force:

Fr = −dΦ0

dr
and the tangential force:

max(Fθ,m) = max

(
1
r
∂Φ

∂θ

)
=

m
r
Φm(r).

The bar strength is the maximum strength of the mode m = 2. In
general, the phase term, φ2, gives the rotation speed of the barΩb
and the derivative:

Ωb =
∂φ2

∂t
·

But the mode m = 2 could correspond to a two-arm spiral struc-
ture. Then, it is more informative to calculate the Fourier trans-
form φ̂2(r,Ω) from φ2(r, t). One can distinguish the angular ve-
locity (Ω) of a structure like a bar or a spiral arm versus the
radius (r). A bar is identified by a solid rotation in the central
part of the galaxy:

Ω(r) = const. = Ωb.

3.2. Resonance

We estimate the position of resonant orbits using the epicyclic
approximation (Fig. 10). To do that, we need to determine the
angular velocity of the stellar disc (Ω),

Ω2 =
1
r

dΦ0

dr
the epicyclic frequency (κ),

κ2 = r
dΩ2

dr
+ 4Ω2

and the vertical frequency (νz),

ν2z =
∂2Φ

∂z2

∣∣∣∣∣∣
z=0

·

3.3. Heating

The heating of disc is computed by averaging the radial ve-
locity dispersion, σr(t), normalized by the initial σcrit (see
Sect. 4.2) inside the 5 kpc of the galaxy, giving the averaging
Toomre parameter:

QT =

〈
σr

σcrit

〉
r < 5 kpc

with σcrit, the critical velocity dispersion derived from the
Toomre stability criterion,

σcrit =
3.36GΣ
κ

Σ is the stellar surface density.

3.4. Units

In our code we use a unit system where the universal constant of
gravity is: G = 1, and the mass unity is Um = 2.26 × 109 M�.
The length unity is Ur = 1.02 kpc and the velocity unit is Uv =
100 km s−1. The time unit is Ut = 10 Myr. In this paper, when
the units are not indicated, they are in this unit system.

4. Initial conditions

To study the stability differences for galaxies in the MOND and
DM models, we construct a sequence of galaxies from early type
to late type (Sa, Sb, Sc, Sd). Each type of galaxy corresponds to
a set of two model galaxies, one for MOND and the other for
DM. A galaxy, for a given type, has the same spatial density for
the baryonic disc and bulge in the two models. The stellar disc
is modeled by a Miyamoto-Nagai disc:

ρd =

⎛⎜⎜⎜⎜⎝b2
dMd

4π

⎞⎟⎟⎟⎟⎠ adR2 +

(
ad + 3

√
z2 + b2

d

) (
ad +

√
z2 + b2

d

)2

[
R2 +

(
ad +

√
z2 + b2

d

)2
]5/2

(z2 + b2
d)3/2

with Md the mass of the disc (at infinity), ad and bd the charac-
teristic length and height, and the bulge by a Plummer sphere:

ρb =

⎛⎜⎜⎜⎜⎝ 3Mb

4πb3
b

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝1 + r2

b2
b

⎞⎟⎟⎟⎟⎠−5/2

with Mb the mass of the bulge (at infinity) and bb the character-
istic length.

4.1. Rotation curves

From an observer’s point of view, a galaxy must have the same
rotation curve in MOND and in DM. The shape of the rotation
curve is imposed by the MOND model. To obtain the same ro-
tation curve (in the galactic plane) in DM we adjust a Plummer
dark matter (live) spherical halo to fit the MOND rotation curve.
Parameters of the dark matter halos are given in Table 1. The
error on the fit parameters is about 2%.

4.2. Velocity dispersion

We used the same value for the Toomre parameter (QT) for
MOND and DM. The radial velocity dispersion is initialized by:

σr = QTσcrit.
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Table 1. Parameters. The characteristic length of the bulge for Sa, Sb,
Sc galaxies is 1 kpc. For the characteristic height of the Miyamoto-
Nagai disc, we choose bd/ad = 1/10. The given mass is the trun-
cated mass. The Toomre parameter value is the same in the DM and
MOND model: QT = 2. The disc is made of 2 × 105 particles, the mass
of the bulge particles is equal to the mass of the disc particle. The mass
of dark matter particles is three times the mass of the disc particle.

Run Md Mb ad Mh bh

Sa 40 12.65 4 206.4 14.8
Sb 30 5 5 173.7 14.6
Sc 20 2 6 148.8 14.5
Sd 10 – 6 129.7 13.1

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8

ρ/
ρ 0

z

Newton
MOND

Newton+DM

Fig. 5. Vertical structure at the gravitational equilibrium of a disc in
Newtonian gravity, MOND, and Newtonian with a dark matter halo.

The tangential velocity dispersion (σθ) is deduced from the
epicyclic approximation,

σθ = σr
κ

2Ω
·

For the vertical velocity dispersion (σz), the hydrostatic equilib-
rium of an isothermal infinite stellar disc in Newtonian gravity
gives:

σ2
z = HπGΣ(r)

where H is the characteristic height and Σ(r) is the surface
density.

We have calculated the vertical density profile (ρ(z)) in
MOND for an isothermal infinite stellar disc (we consider the
problem in one dimension). The equivalent pressure of the gas
of star is P = ρσ2

z . The gravitational potential Φ is given by
the modified Poisson equation. The gravitational equilibrium
(∇P = −ρ∇Φ) is obtained when:

d
dz

[
µ

( |dΦ/dz|
a0

)
dΦ
dz

]
= 4πGρ (7)

with

dΦ
dz
= −σ2

z
1
ρ

dρ
dz
· (8)

σz is a constant of z but varies with r. We solved numerically
Eq. (7), the result is plotted in Fig. 5. It shows also the verti-
cal profile in Newtonian gravity: ρ(z) = ρ0 sech2(z/H), and in
Newtonian gravity with a dark matter halo. For this plot, we se-
lected ρ0 = 2.3 × 10−6 M� kpc−1, which is a typical value of
the outer disc. The dark matter halo is a Plummer sphere with

Mh = 6 × 1011 M� and bh = 15 kpc (r = 8 kpc). In our
model we choose H = const. in the DM model as well as in
the MOND model. We want to keep the same initial height for
a galaxy in DM an MOND. Figure 5 shows that the vertical pro-
file in MOND or in Newton with a dark matter halo are quite
similar. The initial vertical velocity dispersion in MOND is the
same as in the DM model. The stellar rotational velocity is not
exactly the circular velocity (vc), but vc−va where va is the asym-
metric drift deduced from Jeans equations applied to an infinitely
thin disc. The system is relaxed initially in its axisymmetric po-
tential to have a well stable virialized initial state.

5. Results

5.1. Bar growth

5.1.1. Dark matter model

Figure 6 (left panel) shows the evolution of an Sa galaxy in the
DM model. At first sight, the initial Miyamoto-Nagai disc devel-
ops a bar instability in several Gyr. The bar length grows to 6 kpc
until 2 Gyr (Fig. 8); its shape is rather squarish. For this run, we
do not clearly see a grand design spiral structure during the bar
growth. They exist, but they are more visible for a colder disc
(QT = 1.5). After t = 2 Gyr, transient spirals are developed
between 10 kpc and 20 kpc, while a ring appears at the end of
the bar. The bar length continues to grow until 4 Gyr, as the
ring extends, too (6−7 kpc). During the period between 5 Gyr
and 8 Gyr, the bar changes its morphology and takes a butterfly
shape. Its length does not increase contrary to the ring that has
extended to 10 kpc. Spirals that developed at t = 2 Gyr have
driven particles to a pseudo ring at 15 kpc, for t = 4 Gyr, to
25 kpc, at t = 8 Gyr. The nature of these rings will be discussed
in Sect. 5.2.2.

Figure 7 (left) displays the maximum strength of the bar as
a function of time. One can distinguish three parts on this plot.
First, Q2 begins to increase until 2 Gyr. Then, this growth stops
suddenly, the bar strength drops in 500 Myr. After 2.5 Gyr the
bar strength grows again until 5 Gyr and appears to be constant
until 8 Gyr.

5.1.2. MOND model

In MOND, the same galaxy (with the same value for QT) shows
quite different structures (Fig. 6, right). First, a multi-spiral pat-
tern appears rapidly after 0.4 Gyr to give place to a grand de-
sign two-arm spiral at 0.6 Gyr. This spiral structure persists until
3 Gyr. The spiral arms have spread out particles up to 30 kpc.
After 4 Gyr, the bar begins to be rounder and weakened. No
rings are clearly visible in the MOND simulations.

Q2(t) is plotted in Fig. 7 (right), the bar develops very soon
(1 Gyr), compared to the DM model. The bar strength is con-
stant until 4.5 Gyr where a drop occurs suddenly (like in DM
at 2.5 Gyr). Afterwards, the bar strength remains low until the
end of the simulation. However, the bar length is still constant
(6 kpc) even if the bar strength is weakened (Fig. 8).

5.2. Pattern speed and resonance

5.2.1. Pattern speed

The bar pattern speed is represented in Fig. 9, still for the
Sa-type galaxy (QT = 2), for the MOND model, and for the
DM model with a live and analytic halo. The bar in DM with
a live halo is considerably slowed down during the simulation
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Fig. 6. Bar growth of Sa type (QT = 2) in the DM model (left panel) and the MOND model (right panel). The size of the box is 80 kpc × 80 kpc.
In the DM model, the bar develops in several Gyr. It can be noticed that the bar is surrounded by a ring at the end of the simulation. Particles are
confined in the disc. In the MOND model, the bar appears quite rapidly (in less than 1 Gyr), and a lot of particles are spread out around it up to
30 kpc.
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DM and t = 4.5 Gyr in MOND. After that, the bar strength increases again in the DM model, but not in MOND.

(25 km s−1 kpc−1 to 10 km s−1 kpc−1), while in MOND, the
pattern speed is constant (25 km s−1 kpc−1). This plot empha-
sizes the dynamical friction effects experienced by the stellar
bar against the DM particles. To confirm this result we perform
a second simulation with the DM model using an analytical dark
matter halo instead of a live halo. In this case, the pattern speed
of the bar is still constant and corresponds to the MOND result.

5.2.2. Corotation and ILR

The bar pattern speed determines the position of resonant orbits
in the reference frame of the bar rotating at Ωb. Because of ve-
locity dispersion, stars do not just have a circular motion around
the galactic center, they oscillate with the epicyclic frequency κ
(parallel to the galactic plane); likewise, they oscillate in z with
the frequency νz. In most numerical simulations (with gas and
dark matter) and in galaxies where it was possible to determine

the bar pattern speed, the bar extends to its corotation (e.g., Buta
& Combes 1996).

In the DM model, during the two first Gyr, the bar pattern
speed is about 25 km s−1 kpc−1 so that the corotation is nearly
13 kpc (Fig. 10, top), while the bar ends at 7 kpc, but as the
bar slows down, the corotation is shifted out to 20−25 kpc at
t = 8 Gyr (Fig. 10, middle). Hence the ring surrounding the
bar from t = 2 Gyr until the end of the simulation does not
correspond to the corotation resonance as it might be expected.
The epicyclic approximation (Fig. 10, middle) indicates that we
should have an outer and an inner Lindblad resonance (OILR,
IILR), that is whereΩb (the bar pattern speed) interceptsΩ±κ/2.
The IILR is located very near the center of the galaxy. The OILR
is about 12 kpc, where the ring is observed at the end of the
simulation. The bar appears to end nearly at the OILR.

Between the two ILR x2, orbits must exist and destroy the
bar. Figure 11 displays the velocity field in the reference frame
rotating with the bar, and the potential outline indicating the bar
orientation. Corotation is well identified when vectors change
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orientation (r ∼ 25 kpc). The trajectory of particles are parallel
to the bar potential like x1 orbits, not perpendicular (like x2 or-
bits). We have performed an orbit analysis to determine the ex-
istence of x1 and x2 orbits in this bar potential. The result is that
the bar is not dominated yet by x2 orbits. We have launched par-
ticles in the bar potential rotating at Ωb = 10 km s−1 kpc−1. The
value of the Jacobi’s integral,

EJ =
1
2

ṙ2 + Φ − 1
2
|Ωb × r|2

of particles varies between hmin = −38 (in our system units,
G = 1 see Sect. 5.2.2), the bottom of the potential well, to hmax =
−13, the potential nearly the corotation. x2 orbits exist between
r = 3−3.5 kpc in an energy range about −20 < EJ < −18.
For lower Ωb like 5 km s−1 kpc−1, x2 orbits appears clearly and
more frequently between r = 2.5−9 kpc in an energy range of
−26 < EJ < −13. Figure 10 gives just an indication on the reso-
nance with the epicyclic approximation. It can be noted that the
drop in bar strength between 2 Gyr and 2.5 Gyr is correlated with
ILR formation and its analogue in the z-direction (peanut forma-
tion, see the next section). In the MOND model the bar always
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ends near its corotation (Fig. 8), while the DM bar is relatively
shorter.

5.2.3. Vertical resonance and warp

It can be shown that νz and κ have a similar evolution. An equiv-
alent resonance of the ILR exists in the z-direction if Ωb =
Ω − νz/2. When particles resonate both in the plane and per-
pendicular to it, their vertical oscillations can be amplified and
a peanut shape results.

The drop in the evolution of the bar strength coincides with
the peanut resonance, in DM as well as in MOND. At this mo-
ment particles are elevated out of the galactic plane. Stars are
less bound and orbits become more oval, the bar strength is thus
weakened. Figure 12 illustrates the moment when the peanut is
formed. At t = 2.5 Gyr in the DM model, and t = 4.5 in the
MOND model, particles between 2 kpc and 8 kpc resonate and
are detached from the galactic plane.

To confirm that the drop in the bar strength is really due to
the peanuts, we have performed a 2D-simulation for the DM and
MOND models. In this case the bar strength is not weakened
during its evolution Fig. 13. There is no drop at t = 2.5 Gyr in
the DM model or at t = 4.5 Gyr in the MOND model.

Like ILR and corotation in the DM model, the position of
the z-resonance is also shifted out when the bar pattern speed
decreases. In our simulation, dynamical friction acts quite pro-
gressively on the bar. The radial shifting of the peanut lobes is
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continuous. Martinez-Valpuesta et al. (2006) have observed sim-
ilar phenomena in the formation of a peanut galaxy, but they dis-
tinguish two episodes. They obtained a short bar due to chaotic
orbits that appear between the ILR and vertical-ILR.

Figure 14 shows several edge-on views of the galaxy in the
DM and MOND models. In MOND simulation, the galactic
disc is more easily warped than in DM. The disc begins to take
a U-shape, to finally flare. The ratio h/hr, where h is the equiv-
alent characteristic height and h the characteristic length for
an exponential disc, is about 0.26 in the MOND model and 0.22
in the DM model at r = 25 kpc. It is not as different as can
be expected because hr in MOND is larger (7 kpc) than in the
DM model (5.5 kpc). Particles are ejected radially further than
in the DM model because of the angular momentum transfer (see
Sect. 5.4); the disc is thus less compact. The origin of the flare
comes from the vertical velocity dispersion that is more impor-
tant in MOND for outer regions than in the DM model (Fig. 15).
In MOND, vertical instabilities are developed because of the
self-gravity, and the disc heats more.

We have seen that the weakening of the bar coincided with
the peanut’s occurrence. Let us note that the peanut is not the
only way to weaken a bar in a pure stellar disc. If the disc
is too cold, it develops a bar instability very quickly so that
the stars have no time to follow a typical orbit with a constant
bar strength. The corresponding disordered motions of the stars
weaken the bar. This can be shown in a 2D (planar geometry)
simulation (Fig. 16).

5.3. Heating

The problem now is to understand why the bar strength contin-
ues to increase after the z-resonance in DM and not in MOND.
Part of the explanation can be found by following the evolution
of QT for the two models. The value of the Toomre coefficient in-
dicates the heating rate of the disc. In these simulations, QT starts
at a value of 2 in the whole disc. The evolution in the DM model
and MOND model (Fig. 17) is differentiated from the beginning
like the evolution of the bar strength.

Heating in the DM model. In the DM model, the disc heats
progressively. When the peanut is forming, it weakens the bar
and QT ∼ 2.7. This value is not enough to avoid bar formation,
which is why bar strength increases again. A disc in DM model
needs a value of about 4 for QT to be stable and not form a bar.

Heating in the MOND model. In MOND, QT increases to 3.5
in a few Gyr. The apparition of a z resonance weakens the
bar strength. At this time, the MOND disc is thus more sta-
ble because particles have more velocity dispersion. The bar
strength does not increase anymore. We have performed another
MOND simulation with QT = 3.5 from the beginning. A weak
bar is formed with a strength of about 0.12. That corresponds
with the bar obtained at the end of the simulation with QT = 2
initially.

In MOND, all the matter participates to the dynamics; the
galactic disc is completely self-gravitating, hence it heats up
more than a disc rotating in a dark matter halo. The fact that
no ring is clearly visible in the MOND simulation can be under-
stood since the disc is hotter and might not sustain these features.
The pitch angle of a density wave depends on QT. For a hot sys-
tem, the theory predicts that the spiral will be more open than
for a cold one; it is thus more difficult to form a ring.

5.4. Angular momentum exchange

Another crucial point for the bar formation is the exchange of an-
gular momentum. For the bar to grow, particles of the disc have
to lose angular momentum to fall in the inner region and have
an elliptical orbit instead of a circular one. Angular momentum
can be exchanged between the inner and outer parts.

Angular momentum and dark matter. In DM, the halo can re-
ceive angular momentum from the disc. It is well illustrated in
Fig. 18: the disc loses about 30% of angular momentum in the
halo. In other terms if the halo increases its angular momentum,
it will be less compact and will inflate. Figure 19 represents the
time evolution of several radii comprising a fraction of the mass
between 10% to 90% by 10%. One can notice the expansion of
the radius below 60%. At t = 1 Gyr, 90% of the mass is included
in a sphere of 29 kpc; at t = 8 Gyr this mass is in a sphere of
32 kpc radius.

This exchange, which is efficient after 2 Gyr, contributes to
bar formation (especially after the drop). Then the disc is not
too hot and density waves can propagate. One can notice that the
core of the halo is unaffected.

Angular momentum in MOND. In MOND, the disc does not
lose lot of angular momentum. Angular momentum is ex-
changed inside the disc itself. Figure 20 shows the evolution of
the same radius (10−90%) of the mass versus time for the disc.
The inner part of the disc loses angular momentum as expected
because of bar formation (contraction of the disc below 8 kpc),
and the outer part of the disc receives angular momentum from
the inner region (90% of the mass is inside a 15 kpc at the be-
ginning and extends at 20 kpc at the end). This occurs during
the first 3 Gyr, and the transfer is mediated by the spiral arms
seen in Fig. 6. They evacuate angular momentum from the inner
part to the outer part of the disc, and spread out particles around
the disc. This is possible when the disc is not too hot. After this
phase there is a saturation when the disc becomes stable and no
density wave can propagate and increase the bar strength.
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Fig. 12. Peanut formation in the DM (left) and MOND (right) models. These plots display 〈z2〉1/2 of particles at several radii in a function of time.
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at t = 8 Gyr. In the MOND model the peanut stays at the same place all along the simulation.
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Fig. 14. Edge-on view of an Sa galaxy, shows the characteristic peanut
shape. In the DM model (left), the position of the peanut lobes are ra-
dially shifted out as the bar slows down. In the MOND model (right),
the peanut keeps the same size, one can notice the warp and flaring of
the disc.

5.5. Dark matter compared to MOND along the Hubble
sequence

A series of simulations have been run to explore the parameters
of galaxies along the Hubble sequence according to Table 1. In
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Bar weakens because of non-adiabatic bar growth (see text).

the DM model, from the early-type to late-type galaxies the ratio
between the visible mass and the dark matter inside the optical
radius increases. Thus, late-type galaxies are less self-gravitating
than early types, so they are more stable (Fig. 21).

In MOND, galactic discs are cold and form a bar in a few Gyr
whatever their type. The evolution scheme seen for the Sa type
is reproduced for the Sb, Sc, and Sd type too. Even if the disc
in MOND is cold and unstable at the beginning, it heats quickly
and stabilizes itself along its evolution (Fig. 21).
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Peanuts are formed for galaxies with a sufficiently massive
bulge like Sa and Sb galaxies. In this case, the peanut occur-
rence weakens the bar. But in the DM model, the bar strength
increases again because of the angular momentum transfer be-
tween the disc and the dark matter halo. While in MOND, the
bar strength keeps low, and the disc heats up because of instabil-
ity and stabilizes itself.

For Sc and Sd galaxies in the MOND model, the bar is
formed too quickly (a few galactic rotations) because the system
is too unstable. The stars have no time to settle in orbits sup-
porting the bar at a given bar strength, since the orbital structure
of the bar varies on a time scale shorter than the orbital period.
These galaxies present a strong bar during a short time at the
beginning of simulation to finish with a weak bar.

The pattern speed of the bar is plotted in Fig. 22. In MOND
the pattern speed is always constant for a given galaxy. Early-
type galaxies have a higher bar pattern speed than late types (the
disc is more massive). In DM, the bar is always slowed down
by dynamical friction due to the halo. Late-type galaxies need
more time to form a bar (Fig. 21), so their pattern speeds are less
slowed down than for early types.
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Fig. 19. In the DM model, the dark matter halo inflates because of an-
gular momentum exchange from the disc to the halo.
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during the bar growth.

We have made a statistical study of the bar strength for typ-
ical galaxies of the Hubble sequence. Figure 23 shows the bar
frequency obtained using the time spent by a galaxy with a given
bar strength. Two tendencies are clear from this plot. First, galax-
ies in the MOND model have stronger bars (Q2 > 0.25) than in
the DM model. The MOND discs are more unstable at the begin-
ning so they form a strong bar very quickly. Secondly, there is
a hole at low bar strength in the MOND model that is not present
in the DM model. This is due to the dark matter halo that stabi-
lizes the disc at the beginning, so it takes more time to a galaxy
to form a bar. The bar strength distribution obtained from the
observations presents some characteristics that are reproduced
with the MOND model. In particular, there is a small proportion
of galaxies with a very weak bar, and a few galaxies have very
strong bar (e.g., Block et al. 2002; and Whyte et al. 2002).

6. Discussion and conclusion

In this paper, the dynamical evolution of pure stellar discs in
MOND is compared to Newtonian gravity with DM, using nu-
merical simulations. We have developed an N-body code that
solves the modified Poisson equation in three dimensions using
MG technique for the potential solver. The simulations in the
DM models have been performed with the same code by solving
Poisson equation with the same MG technique.
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For isolated galaxy evolution, the main difference between
the MOND gravity and the Newtonian gravity with dark mat-
ter is the self-gravity of the disc. Even if the acceleration in
MOND scales as M1/2 instead of M in Newtonian gravity
(BM99), the dark matter halo in the DM model stabilizes more
efficiently the disc. From a given initial state, the MOND disc
is more unstable than the DM disc in the sense that it develops
a bar instability sooner, for the same Toomre parameter value.

One of the main effects of the dark matter halo is the dynam-
ical friction experienced by the stellar bar against the DM par-
ticles. The bar pattern speed is slowed down in the DM model.
This does not exist in MOND. The bar pattern speed in MOND
keeps constant all along the evolution, thus higher than in the
DM model. This has consequences on the position of the res-
onances like corotation. Bar lengths are often compared to the
corotation radius. In this case, bars obtained with MOND end
closer to the corotation radius.

The 3D simulations reveal several differences between
MOND and Newtonian gravity with dark matter. Peanuts are
formed in the DM model as well as in the MOND model, but
peanut lobe positions, which correspond to the z-inner Lindblad
resonance, depend on the bar pattern speed. In MOND, the
peanut always remains the same size (Ωb = const.), contrary to
the DM model where the lobes are radially shifted far from the
center (about 12 kpc). In MOND, successive instabilities due to
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Fig. 23. Bar frequency in the simulated Hubble sequence in MOND
(top) and in DM (bottom). Bars are stronger with MOND and there is
a dearth of galaxies without bars in MOND, but not in the DM model.

self-gravity make the vertical velocity dispersion higher, in the
outer region of galaxies, than in the DM model. There is a higher
tendency for MOND discs to warp and flare.

Two mechanisms to weaken a bar have been described. First,
for galaxies with a massive bulge (early type) a peanut reso-
nance can be formed. This vertical motion of stars dilutes the
bar concentration in the plane and makes the bar strength de-
crease. Secondly, if the disc is cold and unstable, it forms a bar
so quickly that the orbital structure of the bar varies on a time
scale shorter than the orbital period, and the stars cannot settle
on orbit supporting the bar.

The present simulations reveal that the dark matter halo
has two contradictory influences on the disc stability. On the
one hand, the DM halo stabilizes the disc and delays the bar for-
mation; on the other hand, it can reinforce the bar growth when
the bar is forming by accepting the angular momentum from the
disc stars, in particular after the peanut’s formation. In contrast,
peanut galaxies in MOND should have low bar strength.

Statistically, the MOND bar frequency corresponds better to
the observations than to the DM model. Indeed, there is a hole
in the barred galaxy distribution for low bar strength and more
galaxies distributed at high bar strength. But in this work, only
stellar discs are considered without any gas component. Bar for-
mation and destruction is affected by the gas component in the
spiral galaxies. In particular gas accretion allows galaxies to
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have several bar cycles (Bournaud & Combes 2002). Gas com-
ponents will be added in future works.

Through this work, we help to develop numerical tools for
testing MOND. Using this code, many physical situations could
be simulated. More complex systems will be studied, such as in-
teracting galaxies where MOND might reveal larger differences
compared with the DM model.
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