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ABSTRACT

Context. Inversion techniques are the most powerful methods to obtain information about the thermodynamical and magnetic proper-
ties of solar and stellar atmospheres. In the recent years, we have witnessed the development of highly sophisticated inversion codes
that are now widely applied to spectro-polarimetric observations. The majority of these inversion codes are based on the optimization
of a complicated non-linear merit function. The experience gained has facilitated the recovery of the model that best fits a given
observation. However, and except for the recently developed inversion codes based on database search algorithms together with the
application of Principal Component Analysis, no reliable and statistically well-defined confidence intervals can be obtained for the
parameters inferred from the inversions.
Aims. A correct estimation of the confidence intervals for all the parameters that describe the model is mandatory. Additionally, it is
fundamental to apply efficient techniques to assess the ability of models to reproduce the observations and to determine to what extent
the models have to be refined or can be simplified.
Methods. Bayesian techniques are applied to analyze the performance of the model to fit a given observed Stokes vector. The posterior
distribution, that takes into account both the information about the priors and the likelihood, is efficiently sampled using a Markov
chain Monte Carlo method. For simplicity, we focus on the Milne-Eddington approximate solution of the radiative transfer equation
and we only take into account the generation of polarization through the Zeeman effect. However, the method is extremely general
and other more complex forward models can be applied, even allowing for the presence of atomic polarization.
Results. We illustrate the method with different problems, from academic to more realistic examples. We show that the information
provided by the posterior distribution is fundamental to understand and determine the amount of information available in the Stokes
profiles in these particular cases.
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1. Introduction

One of the most important breakthroughs in the interpretation of
spectro-polarimetric observations has been the development and
systematic application of inversion techniques (see e.g., Bellot
Rubio 2006, and references therein). They have allowed us to ex-
tract as much information as possible from the observed Stokes
profiles. A model that is assumed to be successful in describing
the astrophysical plasma is defined by a set of parameters, usu-
ally associated with interesting physical quantities. It can happen
that these physical parameters are not direct observables that can
be obtained directly from the Stokes profiles. Then, inversion
techniques adjust the parameters that characterize the selected
model so that the emergent Stokes profiles reproduce, as well as
possible, the observed profiles.

The initial steps in the development of inversion codes were
limited by the computational time required. These inversion
techniques often need the application of time-consuming non-
linear optimization methods. For this reason, the first generation
of inversion codes either used very simple models to reproduce
the observed Stokes profiles or introduced some additional phys-
ical ingredients in the inversion scheme so that the complica-
tions were greatly reduced (e.g., Auer et al. 1977; Keller et al.
1990). This is the reason why simple Milne-Eddington atmo-
spheres (ME, Auer et al. 1977; Landi Degl’Innocenti & Landolfi
2004) have been widely applied for the retrieval of an average

� Appendix A and B are only available in electronic form at
http://www.aanda.org.

magnetic field vector in the line formation region. Although the
assumptions on which ME atmospheres are based may not be
exactly fulfilled in the solar atmosphere, they have been exten-
sively used. The reason is their inherent simplicity and the fact
that there is an analytic expression for the emergent Stokes pro-
files in terms of the physical parameters.

A great leap forward was the development of inversion
codes based on the concept of response functions (Ruiz Cobo
& del Toro Iniesta 1992). They have facilitated the inversion
of Stokes profiles so that it is now possible to infer the verti-
cal stratification of the thermodynamic and magnetic properties
of the atmosphere if the information is present in the Stokes pro-
files. The presence of vertical variations along the line-of-sight
of the physical properties are important in explaining the strong
asymmetries observed in sunspots and faculae (Illing et al. 1975;
Sanchez Almeida et al. 1989).

The development of such powerful and computationally ef-
ficient inversion codes has led to an extensive number of appli-
cations to a large variety of solar atmospheric structures (e.g.,
Westendorp Plaza et al. 1997; Sanchez Almeida 1997; Lites
et al. 1998; Mathew et al. 2003; Bommier et al. 2007). Inversion
codes optimise a given merit function with respect to a set of
parameters. It is important, however, to be cautious regarding
several fundamental points. First, the number of free parame-
ters cannot be as large as desired. The reason is that the amount
of information available in the observed Stokes profiles might
not be enough to constrain the value of many of these parame-
ters. Reasons for this include the presence of noise that masks
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the line profile dependence on certain parameters or the fact the
Stokes parameters are insensitive to a parameter due to the in-
trinsic line formation process. Second, the parameters that we
use to describe a given model might not be completely inde-
pendent so that there exists (possibly nonlinear) combinations
of these parameters that give rise to the same emergent Stokes
profiles. Among these degeneracies, we can find the well-known
ambiguity associated with the projection of the magnetic field
vector on the plane of the sky, the degeneracy between the fill-
ing factor and the longitudinal component of the magnetic field
strength (the magnetic flux density) in the weak-field regime and
less-known degeneracies between thermodynamical and mag-
netic parameters for magnetic field structures organized on small
scales (Martínez González et al. 2006). Third, since the opti-
mization problem is usually solved with the aid of gradient de-
scent methods like the Levenberg-Marquardt scheme, the solu-
tion given by the inversion code might not be that corresponding
to the global minimum (if a global minimum is present).

Recently, several works have tackled this problem from dif-
ferent points of view. On the one hand, Asensio Ramos (2006)
has introduced the use of model selection algorithms for the in-
terpretation of spectro-polarimetric observations. Given a set of
possible models that can be used to describe the observations,
these algorithms help us select the most probable one using
a quantitative approach. These algorithms, based on Occam’s
Razor, favor models that better fit the observations with a re-
duced set of parameters, while disfavoring too complicated mod-
els even if they match the observations or those that badly
fit the observables. On the other hand, Asensio Ramos et al.
(2007b) have applied algorithms based on geometric consider-
ations to estimate the intrinsic amount of information present
in the Stokes profiles. The intrinsic dimension of the manifold
in which the observables lie can be associated with the number
of independent free parameters that can be used when propos-
ing a model to describe the observations. They have also shown
that the amount of information present in an observed dataset
increases monotonically with the number of spectral lines in-
cluded. Also of interest is the work of Socas-Navarro (2004b) for
estimating the level of detail of the stratification of atmospheric
parameters one can obtain from selected spectral lines.

An important advance in the development of inversion codes
was the application of database search algorithms in conjunction
with Principal Component Analysis (PCA) to the inversion of
Stokes profiles (Rees et al. 2000; López Ariste & Casini 2002;
Skumanich & López Ariste 2002; Casini et al. 2005). This in-
version technique only has been applied to simplified ME atmo-
spheres and to microstructured magnetic atmospheres (MISMA;
Socas-Navarro & Sánchez Almeida 2002) but nothing (except
for a computational problem) precludes using more complicated
models. It is based on the direct comparison between the ob-
served Stokes profiles and all the possible ones that can be built
by varying the parameters that describe the model atmosphere.
This comparison is not done with the profiles themselves, but
with the coefficients of the projection of both the observed and
theoretical profiles into a given basis. The key point of the PCA
inversion is that this basis set is obtained from the synthetic
Stokes profiles themselves. Consequently, it already encodes
valuable information about the line formation mechanism. The
fact that we compare the observed Stokes profile with the whole
database allows us to reach the global minimum, instead of get-
ting stuck in local minima. A by-product of using a database is
that it is possible to define an error bar and give uncertainties on
the inferred physical parameters.

This paper addresses the development of an inversion
scheme that allows one to characterize the probability distribu-
tion of parameters of the model that better fit the observed Stokes
profiles. To this end, we adopt a Bayesian approach to infer the
most probable values of the parameters and to extract their con-
fidence levels.

2. Bayesian inversion of Stokes profiles

Our aim is to develop an inversion code that can obtain all the
physical information present in the observed Stokes profiles and
that can give us detailed statistical information. This statistical
information allows us to estimate a real error bar for each param-
eter and whether a parameter of a given model is constrained by
the observables or not. This information turns out to be funda-
mental so that one can trust the value of the inferred parameters
and properly analyze the observations.

2.1. Forward modeling

The Bayesian formalism is extremely general and can be ap-
plied to any model that explains a given set of observations. We
are interested in the Stokes profiles emerging from a given atmo-
sphere. Let S = (I,Q,U,V)† be the Stokes vector († indicating
transpose). The vectorial radiative transfer equation describes
the variation along a given ray of the Stokes vector S depend-
ing on the absorption and emission properties of the medium:

dS
ds
= ε −KS, (1)

where ε = (εI , εQ, εU , εV )† is the emission vector and K is the
propagation matrix:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ηI ηQ ηU ηV
ηQ ηI ρV −ρU
ηU −ρV ηI ρQ

ηV ρU −ρQ ηI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2)

In principle, once ε and K are known for all the points along
the considered ray, it is possible to solve Eq. (1) and obtain the
synthetic emergent Stokes parameters. However, for simplicity,
we will focus on the Milne-Eddington approximation, although
we plan to apply Bayesian inversion techniques to other more
complex problems. Of interest is the case of inversion under lo-
cal thermodynamic equilibrium (LTE; Ruiz Cobo & del Toro
Iniesta 1992) in which strong degeneracies may be present (see
Martínez González et al. 2006) and the case of scattering po-
larization and the Hanle effect with many (and even unknown)
degeneracies (House 1977; Casini & Judge 1999; Trujillo Bueno
1999, 2001; Casini et al. 2005). In the ME approximation (see,
e.g., Auer et al. 1977; Landi Degl’Innocenti & Landolfi 2004),
we assume that the ratio between the line absorption coefficient
and the continuum absorption coefficient does not vary with
depth in the atmosphere and that the line source function has
a linear dependence on the optical depth along the line-of-sight.
Furthermore, we assume that the magnetic field vector B and the
bulk velocity are constant with depth.

Here we focus on the Zeeman effect as the mechanism
that generates and modifies the polarization state of the atmo-
sphere. In this case, the elements of the propagation matrix
and of the emission vector can be easily calculated (e.g., Landi
Degl’Innocenti & Landolfi 2004). These elements depend on the
strength of the magnetic field and on the specific orientation of
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the field vector with respect to the line-of-sight. After these as-
sumptions, the well-known Milne-Eddington analytical solution
of the radiative transfer equation can be applied. In the code, the
effect of the magnetic field on the energy levels can be treated
under the simple linear Zeeman regime, under the more general
incomplete Paschen-Back regime or even hyperfine structure can
be included.

2.2. Posterior probability

The interest in extracting all the information available in the
observations has led to the systematic application of methods
based on the Bayesian approach. A myriad of problems can be
tackled within this framework that has strong theoretical roots.
We present the fundamental ideas of the formalism, although
more detailed information can be found in several monographs
(see e.g., Neal 1993). Let us assume a model M that is used
to describe a given dataset D. In our case, the model M is the
Milne-Eddington approximation. It is parameterized in terms of
the vector of physical quantities θ that contains the usual ME pa-
rameters: Doppler width of the line in wavelength units (∆λdopp),
wavelength shift due to the macroscopic bulk velocity (vmac),
gradient of the source function (β), ratio between the line and
continuum absorption coefficients (η0), line damping parameter
(a) and magnetic field vector parameterized by its modulus, in-
clination and azimuth with respect to a given reference direction
(B, θB and φB, respectively). It is customary to have some initial
information about the physical parameters. For instance, an esti-
mation of the range of variation of the physical parameters might
be available, although sometimes it can be a very rough one (for
instance, a limitation to positive or negative values). This infor-
mation is incorporated into a prior distribution p(θ). When the
information contained in the data D is incorporated in the prob-
lem, our state of knowledge of the parameters changes according
to the Bayes theorem:

p(θ|D) ∝ p(θ)p(D|θ). (3)

The posterior distribution p(θ|D) represents our state of knowl-
edge of the parameters once the information of the dataset has
been taken into account. The term p(D|θ) is the so-called likeli-
hood function and gives information about how well a particular
set of parameters predicts the observed data. The Bayes theo-
rem states that whether a model M becomes plausible after the
data D has been taken into account depends on how plausible
the model was before taking into account the data and how well
the model predicts the data. The simplicity of the Bayes theo-
rem hides all its potential and this kind of reasoning has led to a
variety of applications: it has been widely used in cosmological
analyses (e.g., Lewis & Bridle 2002; Rubiño-Martin et al. 2003;
Rebolo et al. 2004), gravitational wave analyses (e.g., Cornish
& Crowder 2005), gravitational lensing (e.g., Brewer & Lewis
2006), oscillation of solar-like stars (e.g., Brewer et al. 2007),
analysis of solar extreme-ultraviolet spectra (e.g., Kashyap &
Drake 1998) and many more. A powerful inversion code can be
built based on the Bayes theorem. Once the posterior distribu-
tion p(θ|D) is known, the position of the maximum value gives
the most probable combination of parameters that fit the data.
Not only this, but we can also analyze the confidence of the pa-
rameters. Consequently, degeneracies, ambiguities and the rest
of problems that arise in typical inversion codes (except for those
based on PCA) can be investigated in detail.

Let us analyze in detail the terms appearing on the right hand
side of in Eq. (3). As mentioned above, the prior distribution
contains all the information that we know about the parameters

without taking into account the observed data. In the most sim-
ple case, we can assume that all the parameters are statistically
independent, so that the prior distribution can be written as:

p(θ) =
Npar∏
i=1

p(θi), (4)

where the {θi} are the parameters included in the model and Npar
is the number of such parameters. Unless physical information
is available, we typically only know the range of variation of the
parameters, so that we can write:

p(θi) = H(θi, θmin
i , θ

max
i ), (5)

where H(x, a, b) is the top-hat function:

H(x, a, b) =

{
1

b−a a < x < b
0 otherwise.

(6)

As an example, consider the prior of a uniform magnetic
field vector B. In order to guarantee such uniform magnetic
field vector, we have to sample uniformly the volume element
dV = r2 dr d(cos θB) dφB. We can assume that the magnetic field
strength cannot be larger than Bmax, so that its prior is a top-hat
function that is non-zero in the interval [0, B3

max]. When focusing
on the solar atmosphere, a reasonable choice is Bmax ≈ 4000 G
so that all the physically relevant cases can be covered (quiet
Sun, sunspots, faculae, etc.). The inclination and the azimuth
have to be limited to the ranges [0, π] and [0, 2π], respectively. If
we neglect any correlation between the magnetic field strength,
inclination and azimuth, the final prior on the magnetic field vec-
tor is given by:

p(B) = H(B3, 0, B3
max)H(cos θB,−1, 1)H(φB, 0, 2π). (7)

Interestingly, it is possible to include correlations between the
parameters. As an example, let us assume that the stronger the
magnetic field, the more vertical it is. Additionally, weaker fields
can be found with all kinds of inclinations. A simple prior distri-
bution that fulfills the previous assumptions is:

p(B) =
1
C

{
1 + exp

[
−(B − Bmax)2/σ2

B

]
exp
[
−θ2B/σ2

θ

]}
× H(φB, 0, 2π), (8)

where σ2
B and σ2

θ control the shape of the prior and C is a nor-
malization constant.

The second term, p(D|θ), termed the likelihood, measures
the probability that a model determined by a set of parameters θ
fits a given observation D. To simplify the notation, it is advanta-
geous to particularize to the case of the inversion of Stokes pro-
files. In spite of this particularization, the method still remains
very general. The data D that we are facing consists of a set
of four vectorial quantities, i.e., the wavelength dependence of
the four Stokes parameters. The number of wavelength points in
each Stokes profile is indicated by Nλ. The value of the Stokes
parameter i = 0, 1, 2, 3 (that we associate with the more usual
notation I, Q, U and V) at a wavelength λ j is represented by the
quantity S obs

i (λ j). When these Stokes parameters are observed
with a spectro-polarimeter attached to a telescope, they contain
a certain level of noise. If these observational errors are indepen-
dent and have a Gaussian distribution, their distributions can be
described by their standard deviationsσi(λ j), i.e., the noise level
for each Stokes parameter at wavelength λ j. Strictly speaking,
the noise in the observed Stokes profiles should be Poissonian
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because it comes mainly from photon noise. However, for con-
sistency with other works, we choose the noise to be normally
distributed, which will be a good approximation if the number of
photons is high enough. Typically, we will deal with wavelength-
independent noise, so that only the four quantitiesσi are needed.
Let S syn

i (λ j) be the Stokes parameters that emerge when the for-
ward problem is solved in a given model M parameterized by the
vector of parameters θ. Taking into account the previous defini-
tions and assumptions, the likelihood function is defined as (e.g.,
MacKay 2003):

p(D|θ) ∝ e−
1
2χ

2
, (9)

where we have introduced the usual merit function χ2:

χ2 =
1

4Nλ

4∑
i=1

Nλ∑
j=1

⎛⎜⎜⎜⎜⎝S
obs
i (λ j) − S syn

i (λ j)

σi

⎞⎟⎟⎟⎟⎠
2

· (10)

Although we have focused on wavelength-independent noise,
the formalism allows us to accommodate wavelength-dependent
noise by using σi(λ j) instead of σi in the likelihood. Therefore,
if the information is available, it is possible to include other
sources of uncertainty like reduction residuals, cross-talk,
fringes, etc. The χ2 function that is typically used for the in-
version of Stokes profiles presents the weights {wi, i = 1 . . .4}
for each Stokes parameter. This differential weighting scheme is
not applied here, but the method can accommodate it straight-
forwardly. The only influence of this weighting is to change the
width of the maximum likelihood regions (reducing or expand-
ing the confidence regions around the maximum). However, the
location of the maximum is not changed.

3. Markov chain Monte Carlo

In the Bayesian framework, the most plausible model is the one
that maximizes the posterior distribution. Our objective is then
to sample the posterior distribution and to find the combination
of parameters that produce this maximum value. This will repre-
sent the most plausible model that matches the observed Stokes
profiles. For a small number of parameters Npar, this brute force
approach might be achievable. For instance, assuming that ten
values per parameter are desired, something like 10Npar evalua-
tions of the posterior distribution are needed. This implies that
the forward model has to be evaluated a huge number of times.
When Npar < 5, such a direct approach can be applicable if the
computing time per evaluation of the forward model is not very
large. However, this brute force approach quickly becomes im-
practical because the number of function evaluations increases
exponentially with the number of free parameters. In order to
overcome this difficulty, we have applied a Markov chain Monte
Carlo technique. Since this is the first time that such a method is
applied to the inversion of Stokes profiles, we present in detail
some important technical issues in Appendix A, although they
are widely known in other research fields. Briefly, our imple-
mentation of the Markov chain Monte Carlo scheme is based on
the Metropolis algorithm (Metropolis et al. 1953; Neal 1993).
The proposal density distribution is chosen to be a multi-variate
Gaussian with a diagonal covariance matrix. Our code uses the
convergence criterium of Dunkley et al. (2005) although other
criteria are discussed in the Appendix.

4. Illustrative examples

In order to show the capabilities of the newly developed code,
several examples are shown. Some of them deal with synthetic

data where we can investigate the behavior of the method un-
der controlled conditions. After these synthetic tests, we apply
the code to a realistic case obtained from spectro-polarimetric
observations.

4.1. Simple academic example

The first example serves as an illustration of how the MCMC
method is able to capture the presence of degeneracies. To this
end, a very simplified example is presented, where we make use
of a Zeeman triplet line, namely the Fe i line at 630.2 nm. The
emergent Stokes profiles are calculated in a Milne-Eddington at-
mosphere. The value of the parameters are: ∆vdopp = 2.4 km s−1,
vmac = 0 km s−1, β = 9, η0 = 9.8, a = 0.3, B = 100 G, θB = 45◦
and φB = 0◦. The main characteristic of such synthetic profiles is
that the magnetic field strength is so weak (B = 100 G) that the
Zeeman splitting is negligible compared to the Doppler width of
the line. As a consequence, the emergent Stokes profiles can be
described in the weak field regime of the Zeeman effect, in which
the Stokes V profile is proportional to the wavelength deriva-
tive of the intensity profile (e.g., Landi Degl’Innocenti 1992).
It is widely known that only the line-of-sight component of the
magnetic field vector (i.e., the product B cos θ, with θ the angle
between the line-of-sight and the magnetic field vector) can be
obtained from the amplitude of the Stokes V profile. On the con-
trary, when linear polarization is also present, the precise mag-
netic field vector can also be obtained. Since linear polarization
appears as a second order contribution to the emergent signal,
they are difficult to observe and a reduced noise level is funda-
mental. In this section we present an analysis with the aid of the
MCMC code of how the information retrieved from the previ-
ously described synthetic Stokes profiles degrades with the pres-
ence of noise. The noise is described by a Gaussian distribution
parameterized by the value of σ, which here is given in units of
the continuum intensity, Ic.

We run the MCMC code on the synthetic Stokes profiles tak-
ing into account the full Stokes vector for the calculation of the
likelihood function given by Eq. (9). All the thermodynamical
parameters and the azimuth are assumed to be known and we
only allow the magnetic field strength and the inclination of the
field to vary. We test that the obtained Markov chain is converged
for the two parameters as indicated in Appendix A. Although it
depends on the complexity of the problem, our Markov chains
require lengths of the order of 50 000 accepted samples to fulfill
the convergence criterion, with a total computational time of the
order of 20 seconds on a standard computer. Finally, taking into
account that the obtained Markov chain is sampling from the
posterior probability distribution, the posterior itself can be ob-
tained simply by “making histograms”. Two different cases with
different amounts of added noise have been considered. A case in
which the added noise level isσ = 10−5, whose results are shown
in Fig. 1, and a case with a much larger noise ofσ = 10−3, whose
results are shown in Fig. 2. The two-dimensional histograms
shown in the right panels of both figures present a graphical
representation of the posterior distribution of the magnetic field
strength and inclination, p(B, θB). We show two contours indi-
cating confidence levels of 68% and 95%, respectively. The case
σ = 10−5 shows a clearly peaked posterior distribution, indicat-
ing that a very good estimation of the magnetic field strength
and inclination is possible. On the contrary, the case σ = 10−3

presents a clear degeneration between both parameters, mani-
fested by the typical “banana-shaped” posterior distribution. The
main reason for this extended posterior distribution is that the
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Fig. 1. Posterior probability distribution for the simple academic example with a noise σ = 10−5 in units of the continuum intensity, Ic. The full
Stokes vector (I, Q, U, V) is taken into account. The left panel shows the marginalized distributions for the magnetic field strength while the
central panel shows the distribution for the inclination. The right panel shows the tow-dimensional posterior distribution. The contours indicate
the confidence levels at 68% (solid line) and 95% (dashed line).

Fig. 2. Posterior probability distribution for the simple academic example with a noise σ = 10−3 in units of the continuum intensity. The posterior
clearly shows a degeneracy between the magnetic field strength and the inclination. The dashed thin line in the right panel indicates the points
where B cos θB = B′ cos θ′B, where the primed quantities are those belonging to the synthetic profile, namely, B′ = 100 G and θ′B = 45◦.

Fig. 3. Posterior probability distribution of the line of sight component
of the magnetic field, B cos θB for the simple academic example with a
noise σ = 10−3 in units of the continuum intensity. The posterior clearly
shows a peak compatible with the original value.

Stokes Q and U signals are masked below the noise level. For
such a high noise level, only the information encoded in the
Stokes V signal is available for retrieving the magnetic field
strength and inclination. Since the field is only 100 G, the line
is in the weak-field regime so that only the product B cos θB can
be estimated from Stokes V . In order to make sure that this is in-
deed the case, we have overplotted the curve B cos θB = B′ cos θ′B
with B′ =100 G and θ′B =45◦, which closely follows the shape of
the posterior. Figure 3 shows the marginalized distribution of the
line-of-sight component of the magnetic field, B cos θB, showing
that it can be recovered with accuracy. Marginalized posteriors1

P(B) and P(θB) are also shown in the left and central panels of
Figs. 1 and 2. Sharp distributions are found for the case with
σ = 10−5 noise, while distributions with enhanced tails are found

1 They are obtained by integrating the two-dimensional histogram
with respect to one of the variables.

for the case σ = 10−3. Curiously, according to the marginal-
ized distributions, a reasonably estimation of the field strength
is possible even for the highly noisy profiles, although there is a
non-negligible tail for larger field strengths. The posterior P(θB)
gives reduced information about the inclination, clearly show-
ing the B cos θB degeneracy. For comparison, we have applied
an inversion code based on the Levenberg-Marquardt algorithm
to estimate the parameters and their confidence intervals for the
case with σ = 10−3. The minimum of the χ2 function is cor-
rectly obtained for B = 98.5 G and θB = 44.1◦. However, the
symmetric confidence intervals that we obtain using the diago-
nal elements of the covariance matrix (e.g., Press et al. 1986)
produce an estimation of 98.5 ± 180.9 G for the magnetic field
strength and 44.1 ± 100.5 degrees for the magnetic field incli-
nation. According to the estimated error, the field inclination is
not constrained by the observations. These results provide a poor
estimation of the confidence intervals compared to the marginal-
ized posterior distributions shown in Fig. 2.

The utility of this test is two-fold: on the one hand, we have
demonstrated, with a simplified problem, the correct operation of
the MCMC inversion code; on the other hand, we point out the
obvious importance of having accurate Stokes profiles in order
to recover information about the magnetic field vector.

4.2. The problem of the quiet Sun

After the simple instructive example, we now focus on a more
realistic problem that presents deep implications for the recov-
ery of information about the magnetism of the quiet solar pho-
tosphere. The quiet Sun are those regions away from the most
evident manifestations of magnetic activity. In the photosphere,
it corresponds mainly to the network (magnetic flux concen-
trations in the supergranular boundaries) and the internetwork
(filling up the interior of supergranular cells). At the present
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spatial resolution of ground-based spectropolarimetric observa-
tions (0.5–1′′), the magnetic structures on the quiet Sun are
thought to be not spatially resolved (e.g., Stenflo 1994; Lin
1995; Domínguez Cerdeña et al. 2003; Khomenko et al. 2003;
Martínez González et al. 2006). This has been demonstrated
by Asensio Ramos et al. (2007a), presenting the first map of
flux cancellation in the quiet Sun. The magnetism of the net-
work is widely established as predominantly vertical kG struc-
tures filling approximately 10–20% of the resolution element.
However, the problem is more complicated in the internetwork,
where the polarization signals that we can measure by means of
the Zeeman effect are unresolved, occupying only the 1–2% of
the resolution element. Typically the Stokes V profiles have an
amplitude of 10−3 in units of the continuum intensity, Ic. The
noise that we can achieve in the observational data (∼10−4 Ic) is
only one order of magnitude smaller than the polarimetric sig-
nals in the internetwork. As it has been shown in the previous
section, it is important to have a reduced noise level in order to
obtain information about the magnetic field from the observed
Stokes profiles. In the internetwork, when the widely observed
pair of Fe 1 lines at 630 nm are used, no linear polarization sig-
nal above the noise level is found with the current instrumenta-
tion. However, even if there is a lack of signal in Stokes Q and
U, we could retrieve magnetic field strengths when the line is out
of the weak field regime. In this particular pair of lines and for
the typical photospheric physical conditions, the line can be con-
sidered in the weak field regime for fields below ∼600 G. This
would mean that the kG magnetic field strengths retrieved from
this pair of lines would be reliable (e.g., Grossmann-Doerth et al.
1996; Sigwarth et al. 1999; Domínguez Cerdeña et al. 2003;
Sánchez Almeida et al. 2003).

However, Martínez González et al. (2006) have shown that
these results should be considered with care. They show the most
simple case in which the thermodynamics compensate for the
effect of the magnetic field. These authors used the SIR2 code
(Ruiz Cobo & del Toro Iniesta 1992) to synthesize the emergent
Stokes profiles using the typical physical conditions of the in-
ternetwork. The inversion of such a profile with random initial-
izations showed that the resulting atmospheres depended on the
initialization itself if a noise level of 5 × 10−5 Ic is assumed. In
each case the change in the magnetic field was compensated for
by a small change in the magnetic temperature gradient (smaller
than 300 K) and a slight increase of the microturbulent veloc-
ity (below 1.5 km s−1). The change in the temperature gradient
produces a modification in the Stokes V ratio of the two spectral
lines while the increase in the microturbulent velocity leads to
a broadening of the line profile. This procedure clearly demon-
strated the degeneracy of the inversion problem in this particular
case. Unfortunately, the Levenberg-Marquardt algorithm used
in the SIR code for the inversion of Stokes profiles does not
produce a reliable and well-defined estimation of the errors in
the parameters that describe the atmosphere. This is the reason
why Martínez González et al. (2006) showed the degeneracy of
the inversion problem by using repeated inversions with random
initializations. In this paper, we follow the study performed by
Martínez González et al. (2006) and we extend it to the cases
in which we increase the filling factor (we improve the signal
to noise ratio) or we add a particular inclination to the magnetic
field vector (we generate a linear polarization signal). However,
our solutions are based on robust statistical techniques.

The interpretation of the weak field regime when the mag-
netic feature is resolved is straightforward. In the weak field

2 Stokes Inversion based on Response functions.

approximation, the radiative transfer equation has an analyti-
cal solution (see Chapter 9 of Landi Degl’Innocenti & Landolfi
2004, for the conditions under which this approximation is
valid). The Stokes V profiles can be written as:

V(λ) = −4.6686× 10−13ḡλ2
0B cos θ

∂I(λ)
∂λ
, (11)

where ḡ is the effective Landé factor of the line, λ0 is the central
wavelength of the spectral line given in Å and B is the magnetic
field strength given in G. The simultaneous observation of the
Stokes I and V profiles allows us to compute the product B cos θ.
The situation in the quiet Sun is not so straightforward since the
magnetic structures occupy a very small portion of the resolution
element. Then, the modeling of these areas requires at least two
components: a magnetic component that gives rise to the polar-
ization signals and a non-magnetic one that accounts for the rest
of the pixel that is field-free3. Two complicated problems arise
due to this particularity. First, the right-hand side of Eq. (11) has
to be multiplied by the filling factor and the value that we will re-
cover would be the longitudinal magnetic flux density αB cos θ.
Second, the intensity profile that applies in Eq. (11) comes from
the magnetic component. Then, the product αB cos θ cannot be
computed from the ratio of the Stokes V profile and the wave-
length derivative of Stokes I, since the observed Stokes I comes
mainly from the non-magnetic component. If one still wants to
use the previous approach, the only way to recover the product
αB cos θ would be by computing a calibration curve. This means
that we have to assume a model atmosphere and compute the
Stokes V profile for different values of the longitudinal magnetic
flux density. As a result, the inferred magnetic field is model
dependent. In other words, the Stokes V profiles depend on the
magnetic and thermodynamic properties so, if one wishes to in-
fer the magnetic properties of the plasma, it is fundamental to fix
the thermodynamical properties first. The only technique avail-
able to overcome this difficulty is to apply inversion techniques.
However, one has to have in mind that the information encoded
in the Stokes I profile (that has ∼99% contribution from the non-
magnetic component) and in the Stokes V profile is not enough
to constrain the problem and to recover in a reliable way all the
atmospheric parameters in a two component model.

4.2.1. Recovering the magnetic field strength
in the internetwork

Here we use synthetic profiles that can be representative of the
quiet Sun to see how well we can recover the magnetic field
separately from the rest of the parameters. We synthesize the
Fe i lines at 630.1 and 630.2 nm using a two component model.
Both atmospheres have the same values of the ME parameters
except for the magnetic field strength and the filling factor. The
value of the parameters are: ∆vdopp = 0.05 Å , vmac = 0 km s−1,
η630.1

0 = 5.0, η630.2
0 = 4.5, a = 0.45 Å , and β = 8. The magnetic

flux density is fixed to 10 Mx/cm2, representative of the typical
value in the internetwork. Since the magnetic field strength is
set to 1000 G and it has been assumed to be vertical, the filling
factor of the magnetic component is set to 1%. A certain amount
of noise, characterized by a normal distribution with a standard
deviation of 10−4 Ic, is added to the profiles.

3 The term field-free might be confusing since this component
can indeed present a magnetic field that, due to its special struc-
ture, presents a zero Zeeman signal (e.g., microturbulent distribution,
isotropic distribution, etc.).
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Fig. 4. Two-dimensional posterior distributions for several combinations of the parameters for the internetwork synthetic example with a longitu-
dinal magnetic flux density of 10 Mx/cm2. The contours indicate the regions where 68% and 95% confidence levels are placed. Large degeneracies
are present in almost all the parameters, except for the gradient of the source function and the damping in the non-magnetic component.

In a Milne-Eddington atmosphere, none of the parameters is
strictly equivalent to the temperature or the microturbulent ve-
locity that are present in the LTE approximation used by SIR.
Accordingly, we select the gradient of the source function, β, and
the damping coefficient, a, in both components together with the
magnetic field strength and the filling factor as the free parame-
ters in our test. Figure 4 summarizes the results of the Bayesian
inversion. All the upper panels show the very high degree of de-
generacy between the magnetic field strength and the rest of pa-
rameters. The upper left panel indicates that magnetic fields with
all values below 2000 G can reproduce the profile with an accu-
racy better than two times the noise level. Furthermore, magnetic
field strengths between 400 and 1800 G fit the profile with a con-
fidence level smaller than the noise level (see an example of two
possible fits with different field strengths in Appendix B). An
interesting behavior is shown in the central and upper right pan-
els. The posterior distribution presents almost no variation along
these directions (damping parameter and gradient of the source
function) and they are only limited by the ranges that we have
assumed for them. Therefore, this means that the data has pro-
vided no new information for constraining these parameters (flat
likelihood) and we are only recovering information about the
priors. This is a typical example in which, due to the lack of in-
formation, the result depends critically on the prior information
and one should be very cautious with the conclusions inferred
from the calculations. Finally, the lower left and central panels
show the marginalized posterior distribution for the longitudi-
nal magnetic flux density and the damping a and the gradient of
the source function β, respectively. Again we see that the line
profiles carry reduced information about these parameters. Even
more striking is the fact that the longitudinal magnetic flux den-
sity is recovered with ∼50% error at a 68% confidence level. On
the contrary, the parameters of the non-magnetic component are
recovered with precision, as stated in the lower right panel of
Fig. 4, with differences with respect to the input values that are
well below 2.5% in both cases.

The previous analysis demonstrates that it is difficult to ob-
tain reliable information from Stokes profiles representative of

internetwork regions. However, what happens in strongly mag-
netized areas like the network, where the magnetic fluxes are
10–20 times higher than in the internetwork? To investigate this
issue, we use the same ME parameters but we assume an en-
hanced magnetic flux density of 200 Mx/cm2, where we have in-
creased the filling factor of the magnetic component to 20%. The
marginalized posterior distributions are shown in Fig. 5. In this
case, both the magnetic field strength and the longitudinal mag-
netic flux density are well recovered, together with the damping,
a. However, as a consequence of the reduced filling factor of the
non-magnetic component with respect to the internetwork case,
the gradient of the source function of the non-magnetic compo-
nent presents a more extended posterior distribution. This behav-
ior is easy to understand because there is less information about
the non-magnetic component encoded in the Stokes profiles pro-
duced by the large filling factor of the magnetic component.

4.2.2. Inclined fields

It is of interest to investigate the shape of the marginalized poste-
rior distributions when the magnetic field vector is inclined with
respect to the line of sight. In this case, the information pro-
vided by the linear polarization profiles can lead to better con-
straints. We use the same synthetic profile with a magnetic flux
density of 10 Mx/cm2 and we assume inclinations of 20◦, 45◦
and 70◦. In the first case, the Stokes Q signal is below the noise
level and it is not surprising that the results are comparable to
the ones in which the magnetic field vector was assumed to be
vertical. The case of an inclination of 70◦ shows the same be-
havior since, in this case, the Stokes V signal is below the noise
level. Figure 6 shows the results of the inversion for the interme-
diate case of θ = 45◦. In this case, strong signatures of degener-
acy are detected. The upper left panel shows that the magnetic
field strength is concentrated in high values. However, this does
not mean that the value of the field strength is better recovered.
First, we can see the large degeneracy with the other parame-
ters. Second, Fig. 7 shows that the marginalized posterior dis-
tribution for the magnetic field strength strongly resembles that
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Fig. 5. Two-dimensional posterior distributions for several combinations of the parameters for the network synthetic example with a longitudinal
magnetic flux density of 200 Mx/cm2. The contours indicate the regions where 68% and 95% confidence levels are placed. The magnetic field
strength can be recovered better than in the internetwork case shown in Fig. 4. However, increased degeneracies are also seen in the parameters of
the non-magnetic component due to the reduced surface covered by this component.

Fig. 6. Two-dimensional posterior distributions for several combinations of the parameters for the internetwork synthetic example when the mag-
netic field vector has an inclination of 45◦. The contours indicate the regions where 68% and 95% confidence levels are placed. In spite of the
presence of more information encoded in the linear polarization Stokes profiles, the marginalized posterior distributions show shapes very similar
to those found in Fig. 4.

of the prior. It seems that even the inclination angle cannot be
constrained with the available information. One of the reasons is
that, although the Stokes Q and U signal might become larger
than the noise, the Stokes V signal decreases and gets closer to
the noise. Therefore, some information available in Stokes V is
hidden by the presence of noise.

4.3. Realistic examples

In order to demonstrate the capabilities of the MCMC code,
we show an application to realistic Stokes profiles. They cor-
respond to a position on an umbra of a sunspot observed during

August 17, 2004 (Sainz Dalda & López Ariste 2007). The ob-
servation was carried out with the THÉMIS telescope at the
Observatorio del Teide (Spain). The telescope was operated in
the MTR mode, so that the polarization analysis was performed
for each wavelength at each pixel. Although the observation con-
sisted of a scan over a sunspot, for the purpose of demonstrating
the capabilities of the MCMC code, we only focus here on the
information obtained in one pixel of the whole scan. The ob-
served spectral region contains the previously mentioned 630 nm
pair of Fe i lines. Figure 9 presents the observed Stokes profiles.
The noise level estimated from the continuum where no polar-
ization signal is detected is of the order of 1.6 × 10−3 in units of
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Fig. 7. Marginalized distribution of the inferred magnetic field strength
(solid line) together with the prior one (dashed line). Both distributions
are very similar, making us consider that the information contained in
the emergent line profiles is very small.

the continuum intensity. This spectral region consists of two Fe i
lines at 630.1 and 630.2 nm, together with two telluric contribu-
tions. The wavelength calibration has been carried out with the
aid of the two telluric lines. The 630.2 nm line presents a higher
magnetic sensitivity and this translates into an enhanced Zeeman
splitting that also can be detected in the Stokes I profile.

The MCMC code has been applied to both spectral lines sep-
arately. We leave all the Milne-Eddington parameters free but we
only focus on the results concerning the magnetic field vector.
Stray-light contamination from the surrounding quiet Sun is also
taken into account. The results indicate a filling factor of the um-
bral component in the range 91–94%, with a confidence interval
of the order of ±3%. Figure 8 shows the results obtained from
the inversion of the 630.2 nm Fe i line. We show marginalized
posterior probability distributions. The results shown in Fig. 8
indicate that the information encoded in the observed data is
enough to constrain the characteristics of the magnetic field vec-
tor. Except for the case of the azimuth of the field, the marginal-
ized one-dimensional probability distribution functions present
an asymmetric non-Gaussian shape, with extended wings. The
parameters are constrained by the observations and the inferred
values are given in each plot, together with the 68% confidence
interval. We show the two-dimensional distributions as contour
plots, where the 68 and 95% confidence levels are indicated.

The Fe i line at 630.1 nm results are less reliable. The pos-
terior distributions are much broader than for the 630.2 nm line
and they present strong degeneracies. The elongated shape of the
p(B, θB) posterior indicates a certain degree of degeneracy be-
tween both parameters. The reason for this behavior is that the
630.1 nm line is still in the transition from the Zeeman weak-
field regime to a saturation regime. As a consequence, the B-
θB degeneracy that we have discussed in Sect. 4.1 introduces
problems in the unique determination of the field strength and
inclination. These results have been obtained assuming σ =
1.5 × 10−3 in units of the continuum intensity. This is a rela-
tively large value which allows a relaxed tolerance in the quality
of the fit, resulting in increased tolerance in the inferred parame-
ters. Clearly, due to the different magnetic sensitivity, noise dif-
ferently affects both spectral lines. Since the Zeeman splitting
in the 630.2 nm line is clearly visible, the information about the
magnetic field strength is readily available from the peak sepa-
ration in the Stokes V profile. This separation is much less af-
fected by noise. Once the field strength is fixed, the inclination
and azimuth of the field are easily obtained. Contrarily, since the
630.1 nm line is partially in the weak-field regime, the magnetic
field strength has to be obtained from the amplitude of the Stokes

V profile, together with the rest of Stokes parameters. The esti-
mated value of the field strength crucially depends on the value
of the tolerance σ. As a proof of this, we have verified that the
shape of the p(B, θB) surface shown in Fig. 10 approximately fol-
lows cos θB ∝ 1/B and that the width is related to the tolerance
σ.

The results of both inversions should also be regarded in con-
junction, as shown in Fig. 11. If the line formation region of both
lines would have been exactly the same, one would expect to find
equivalent results from both lines. Since this is not the case (e.g.,
Shchukina & Trujillo Bueno 2001), some differences might ex-
ist. In spite of this, the posterior distributions clearly overlap in
a region of the space of parameters that describes the magnetic
field vector. The results clearly demonstrate that the combination
of the two lines produces a slight improvement in the restriction
of the parameters. However, the result is very similar to what
we find using only the line at 630.2 nm. The field azimuth is
compatible with a value of 217.4+7.0

−7.8 degrees. We have restricted
the range of variation of the azimuth arbitrarily to [π, 2π], thus
avoiding ambiguities. However, we have verified that the code is
able to correctly capture the intrinsic azimuth ambiguity when
the range of variation is set to [0, 2π]. The field inclination given
by both lines is consistent with 45.4+3.0

−3.2 degrees, while the mag-
netic field strength is consistent with 1768.6+165.9

−133.8 G. Figure 11
shows what we consider one of the most appealing properties of
the Bayesian method for the inversion of Stokes profiles. It is
possible to assess the amount of information given by one spec-
tral line individually and combine many lines in order to investi-
gate whether the added information helps in better constraining
the model parameters.

Our results indicate that the information obtained from the
630.1 nm line alone is low and that it cannot restrict the magnetic
field vector for the noise level that we obtain in the observations.
We have inverted both lines simultaneously following the same
scheme as presented above. We do not show a graphical repre-
sentation of the results because they are very similar to those
inferred from the 630.2 nm line which can be found in Fig. 8,
as also suggested by Fig. 11. We must accumulate information
from many spectral lines, with the hope that the combined ef-
fect allows us to better constrain the physical parameters (Semel
1981; Socas-Navarro 2004a; Asensio Ramos et al. 2007b).

5. Concluding remarks

The framework that we have presented here is very general
and is applicable to any existing Stokes inversion code. Once
a model that can be used to calculate the emergent Stokes pro-
files is available, the MCMC method can be used to efficiently
explore the posterior probability distribution function. Presently,
we are obtaining enormous amounts of Stokes profiles observa-
tions from existing ground-based instrumentation like THEMIS
(López Ariste et al. 2000), TIP (Martínez Pillet et al. 1999) and
POLIS (Beck et al. 2005) and with the space-based instrumenta-
tion like the recent mission HINODE. The pressure will be even
greater once the new generation of larger solar telescopes like
GREGOR and ATST becomes available. Therefore, much effort
has been put into developing fast inversion codes that can cope
with such large amount of observations. Inversion codes based
on PCA (Rees et al. 2000) and artificial neural networks (Socas-
Navarro 2005) are good candidates for such work.

Our approach here has a different philosophy. We understand
that Bayesian inversions cannot compete in speed with these fast
algorithms (they cannot even compete with standard inversion
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Fig. 8. One-dimensional and two-dimensional marginalized posterior distributions for the parameters that define the magnetic field vector for the
inversion of the Fe i line at 630.2 nm. The distributions clearly indicate the presence of a peak belonging to the value of the parameters that produce
the best fit. We have indicated in the one-dimensional posteriors the most probable value of each parameter (large arrow), together with the 68%
confidence interval (small arrows). Note the presence of asymmetric confidence intervals. The two-dimensional posteriors have been represented
with contours indicating the confidence levels at 68% (solid line) and 95% (dashed line).

Fig. 9. Stokes profiles observed in the umbra
of a sunspot (solid lines). The well known
630.2 nm Fe i line presents a larger magnetic
sensitivity that translates into an enhanced
Zeeman splitting. The noise in the observa-
tions is of the order of 1.5×10−3 in units of the
continuum intensity. The symbols show the fit
obtained when taking the most probable value
of the parameters inferred from the Markov
chain.

codes based on Levenberg-Marquardt optimization). However,
the Bayesian approach is the only one that can be used to inves-
tigate in detail the accuracy of inversions, the sensitivity of the
parameters to the noise and give confidence intervals to all the in-
ferred parameters. Furthermore, it can be used to rule out a given
model due to its lack of ability to fit a given observed Stokes pro-
file. Our approach can make use of the well-developed machin-
ery behind the Bayesian formalism (e.g., Marshall et al. 2006;
Liddle 2007). For instance, model selection techniques based
on the calculation of the evidence can be introduced. Similarly
to the results presented by Asensio Ramos (2006), the simplest

model that fits the observations well is preferred to more com-
plicated models (even if they produce a slightly better fit).

In spite of the intrinsic high computational load of the
MCMC method, one of its advantages is that it is easily par-
allelizable. Many Markov chains can be run simultaneously in
different isolated threads with no communication between them.
Once the chains are finished, they can be combined into a large
chain. Since each Markov chain (after the burn-in period) sam-
ples from the posterior distribution, we obtain a very large
chain that also samples from the posterior distribution. Except
for the presence of a burn-in period in each chain, the gain in



A. Asensio Ramos et al.: Bayesian inversion of Stokes profiles 969

Fig. 10. Same as Fig. 8 but for the Fe i line at 630.1 nm. The two-dimensional representations of the posterior distribution clearly indicate the
presence of a degeneracy between the inclination and the magnetic field strength. This translates into very broad one-dimensional marginalized
distributions.

Fig. 11. Combined posterior probability distribution for the 630.1 and 630.2 nm lines. Note that there is a region of compatibility between both
lines, that gives a magnetic field of ∼1700 G, an inclination of ∼45◦ and an azimuth of ∼220◦.

computational time is roughly proportional to the number of
threads. A more refined way of parallelization is to start a chain
and, after the burn-in period, subdivide it into different threads.
At the end, all the threads are combined and we end up with a
long chain. In this case, the gain in computational time is slightly
larger than in the previous case.

The inversion code for the Milne-Eddington case (Bayes-
ME) is freely available from the authors. The present version
of the code is extremely versatile and it has a very good conver-
gence rate. However, we plan to introduce different refinements
in the future. The most straightforward is the modification of the
proposal density so that non-diagonal elements of the covariance
matrix can be taken into account. Although the convergence rate
assuming a diagonal covariance matrix is acceptable, this refine-
ment can lead to a reduction in the length of the chains because
more structure of the posterior distribution is captured in the pro-
posal density.
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Appendix A: Markov chain Monte Carlo

A.1 Metropolis algorithm

This approach directly samples the posterior distribution using
a Markov chain. The elements of the chain are the vector of pa-
rameters θ that are used to describe each model. The Markov
chain is a stochastic process {θ0, θ1, . . . , θn} in which each ele-
ment θi only depends on the previous one θi−1. The key idea of
the MCMC method is to choose the next point in the chain de-
pending on the previous point such that the distribution of the
chain asymptotically tends to be equal to the posterior distribu-
tion, i.e.:

lim
n→∞ p({θ0, θ1, . . . , θn}) = p(θ|D). (A.1)

Several methods are available, although we will focus on the
Metropolis algorithm (Metropolis et al. 1953; Neal 1993) that,
in spite of its simplicity, gives extremely good results. The algo-
rithm can be defined as follows:

1. Choose a starting vector of parameters θ0. If some informa-
tion is available about the value of some of the parameters,
it is advantageous to start close to the solution. However,
this condition is not mandatory for the convergence of the
Markov chain.

2. Calculate the posterior probability given the data p(θ0|D).
This includes the calculation of the priors and the likelihood
(including the calculation of the forward modeling problem).

3. Obtain a new vector of parameters θi sampling from a pro-
posal density distribution q(θi|θi−1). We will explain this step
more in detail afterwards.

4. Evaluate the posterior probability p(θi|D).
5. Evaluate the ratio

r =
p(θi|D)q(θi|θi−1)

p(θi−1|D)q(θi−1|θi)
· (A.2)

Admit θi in the Markov chain with probability

β = min [1, r]. (A.3)

If a point is rejected, include θi−1 in the chain.
6. Go back to step to 3.

It has been shown that the previous numerical scheme leads
to a Markov chain whose probability distribution converges to-
wards the posterior distribution (e.g., Metropolis et al. 1953).
The advantage with respect to the brute force approach is that
the number of evaluations of the posterior distribution no longer
increases exponentially with the number of parameters, but lin-
early. As a consequence, we can treat much more complicated
problems with a reduced computational effort. The reason for
this behavior is that since the chain is sampling the underly-
ing posterior distribution, the regions of larger probability are
evaluated more times. The proposal density distribution is usu-
ally chosen to be symmetric, thus q(θi|θi−1) = q(θi−1|θi). As a
consequence, the ratio to be evaluated in step 5 simplifies to
r = p(θi|D)/p(θi−1|D).

A.2 The proposal density

The key ingredient of the Metropolis MCMC algorithm is the
proposal density. In the ideal case, one should choose q(θi|θi−1)
as close to the posterior distribution as possible. In the limiting
case that the proposal distribution exactly matches the posterior
one, one is carrying out a perfect sampling: more samples are

performed in the regions of larger probability. Consequently, all
the proposed steps will be included in the Markov chain. This
case is obviously unrealistic because it assumes that our aim
(i.e., the evaluation of the posterior distribution) already has been
achieved.

The power of the MCMC scheme lies in the fact that even
naïvely chosen proposal densities lead to an algorithm that ef-
ficiently samples from the posterior distribution. However, it is
also true that a careful selection of the proposal density greatly
improves the convergence rate of the algorithm. Common pro-
posal densities include Gaussian or uniform distributions cen-
tered on the current value of the parameters to propose a new
value of the parameters. In our case, we have chosen a combi-
nation of Gaussian and uniform distributions. Both cases lead to
a symmetric proposal density. For the initial Nunif steps of the
chain, we propose parameters following a uniform distribution
in each parameter. The limits of the uniform distribution are free
parameters chosen to be equal to their range of variation. The
minimum values for all the parameters are put in the vector θmin

while the maximum values are included in the vector θmax. Then:

q(θi|θi−1) ∼ U(θmin, θmax). (A.4)

After the first Nunif steps, some information about the posterior
probability is known. Therefore, statistical properties like the co-
variance matrix C can be estimated. At this point, we change to
a Gaussian proposal density centered on the current value of the
parameters. Ideally, one should propose with the following dis-
tribution:

q(θi|θi−1) ∼ exp
[
−α

2
u†C−1u

]
, (A.5)

where u = θi − θi−1, u† stands for the transpose of the u vec-
tor and α is a constant whose meaning will be discussed later.
Sampling from such a proposal density would require the diag-
onalization of the covariance matrix due to the matrix inversion
(e.g., Dunkley et al. 2005). This proposal density is very use-
ful for problems in which strong degeneracies are present in the
problem, so that the posterior distribution shows very elongated
maxima. However, in the first version of our inversion code, we
neglect the non-diagonal elements of the covariance matrix. We
have verified that this approximation gives extremely good re-
sults in our case (in spite of the degeneracies present in the prob-
lem). The inclusion of non-diagonal terms in the covariance ma-
trix is left for future revisions of the code.

When we only take into account the diagonal elements of the
covariance matrix, the proposal of each parameter can be done
independently of the rest of parameters. Random numbers fol-
lowing a normal distribution with unit variance are picked and
the proposed value for each parameter is obtained by multiply-
ing them by their corresponding variances. The variances are up-
dated after a fixed number of iterations of the Markov chain. It
is not necessary to use the whole Markov chain to estimate the
variances, because the following updating rule can be applied to
update the variance of parameter i at step n:

σ2
i (n) =

n − 1
n
σ2

i (n − 1) (A.6)

+

[
θi(n) − θi(n − 1)

]2
(n + 1)2

+

[
θi(n) − θi(n)

]2
n

, (A.7)

where θi(n) is the value of the proposed parameter, θi(n − 1) is
the average of the parameter i taking into account the first n − 1
elements of the chain, while θi(n) takes also into account element
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Fig. B.1. Synthetic profiles with added noise
(diamonds) together with two different syn-
thetic profiles corresponding to models present-
ing magnetic field strengths differing by 900 G
(solid lines). Since both models fit the profiles
below 1σ, there is no objective reason to favor
one of them.

n in calculating the average. The average can also be updated
following the rule:

θi(n) = θi(n − 1) +
θi(n) − θi(n − 1)

n + 1
· (A.8)

The constant α is used to tune the convergence process. It has
been demonstrated (Gelman et al. 1996; Dunkley et al. 2005)
that, in order to efficiently sample from a posterior distribution,
the acceptance rate of models should be of the order of 25%. We
use α to shrink or broaden the proposal density so that such an
acceptance rate is assured. We have verified with an extensive
test phase that this technique behaves consistently and the chain
rapidly samples the posterior distribution.

A.3 Convergence

The convergence of the Markov chain is a critical issue (e.g.,
Gelman & Rubin 1992; Lewis & Bridle 2002). A chain
is said to be converged when the statistical properties of
its elements reflect with “enough accuracy” the statistical
properties of the underlying distribution that is being sam-
pled. A problem arises for what “enough accuracy” means.
Great efforts have been put into the development of powerful
convergence tests (e.g., Gelman & Rubin 1992). The key
ingredient in dictating the convergence rate is the proposal
density distribution. One of the most widely applied methods
of convergence testing is the one proposed by Gelman & Rubin
(1992). The main drawback is that it works by generating
several Markov chains with random initial points. A posterior
analysis of their statistical properties helps us to distinguish
when a chain is sampling from the posterior distribution. At
this point, the elements of the chain can be used to obtain
information about the statistical properties of the posterior
distribution that we are sampling. Our code uses the alternative
of Dunkley et al. (2005) to test for convergence. It is based

on the idea that the Fourier power spectrum of a the Markov
chain would be flat and equal to the variance of the underlying
distribution if complete convergence is obtained. However, the
chain can be considered as converged under much less restrictive
conditions (see Dunkley et al. 2005, for details).

At the beginning of the MCMC algorithm, the chain typ-
ically proposes large jumps through the parameter space until
the regions of high posterior probability distribution are located.
This is especially true when the initial point of the chain is very
far away from the regions of large posterior density. The chain,
once it has migrated to these regions, proposes smaller jumps.
The initial steps of the chain are not representative of the under-
lying posterior p(θ|D). They are usually known as the “burn-
in” of the chain and these elements are typically discarded.
Following Dunkley et al. (2005), one easy way to locate the
number of elements of the “burn-in” is to locate the maximum
value of the posterior pmax and discard the first elements of the
chain until p(θ|D)/pmax > f , with f ∼ 0.1–0.2. When the ini-
tial point of the chain is close to the high probability region, this
scheme leads to a “burn-in” of a few (or even zero) elements.

Appendix B: Profiles

According to Fig. 4, fields above 500 G and below 1800 G fit
the synthetic profile with added noise with a precision smaller
than 1σ. When this constraint is relaxed to 2σ, the fields can be
even larger or smaller. Using the three plots of the upper panel
of Fig. 4, it is possible to detect a large number of combinations
where fits inside the 68% confidence level can be obtained with
sub-kG and kG fields. As an example, we show in Fig. B.1 a fit
to the synthetic Stokes profiles with added noise with a field of
600 G and with a field of 1500 G. There is no objective reason to
prefer one fit over the other within a 1σ uncertainty, as is consis-
tent with the results presented in Fig. 4. Note that this result was
pointed out for the first time by Martínez González et al. (2006).


