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Abstract. In a series of two papers, we present numerical integral-based methods to compute accurately the self-gravitating
field and potential induced by a tri-dimensional, axially symmetric fluid, with special regard for tori, discs and rings. In this
second article, we show that “point mass” singularities are integrable analytically for systems with aspect ratio (H/R)2 � 1.
We derive second-order accurate, integral formulae for the field components and potential as well, assuming that the mass
density locally expands following powers of the altitude (the parabolic case is treated in detail). These formulae are valid inside
the entire system: from the equatorial plane to the surface, and especially at the inner and outer edges where they remain
regular, in contrast to those derived in the classical bi-dimensional, “razor-thin” approach. Their relative precision ∼(H/R)2 has
been checked in many situations by comparison with highly accurate, numerical solutions of the Poisson equation obtained
from splitting methods described in Paper I. Time inexpensive and reliable, they offer powerful means to investigate vertically
stratified systems where self-gravity plays a role. Three formulae for “one zone” disc models are given.

Key words. gravitation – methods: numerical – methods: analytical

1. Introduction

The construction of simple but fast and reliable tools to prop-
erly describe self-gravity in astrophysical discs is of funda-
mental importance for both modelers and theoreticians. In a
first paper (Huré 2005, hereafter Paper I), we have reported
general numerical methods to compute accurately the gravity
field and potential induced inside sources by axially symmet-
ric media, whatever their shape and mass distribution. Purely
numerical tools are not always easy to implement, and can
be very time-consuming. This can be a severe problem when
the Poisson equation is coupled with other equations. On the
other hand, there are no reliable algebraic formulae to model
the potential and gravity field in discs. Actually, current ap-
proximations have a very limited range of application and
poor/unknown precision (e.g. Lantian & Xiaoci 1990). For in-
stance, formulae derived without considering the vertical ex-
tent as in the “razor-thin” disc approximation (e.g. Binney &
Tremaine 1987) do not furnish a full and reliable description of
self-gravity (effect of vertical stratification, “appropriate” value
for the softening length, etc.). Also, the monopole approxima-
tion which assumes that the inner disc is equivalent to a spheri-
cal mass distribution (e.g. Mineshige & Umemura 1996, 1997),

or the “infinite slab approximation” which neglects radial gra-
dients (Paczynski 1978), not only give incomplete solutions but
also simply fail in most situations where self-gravity becomes
important.

In this second paper, we propose an intermediate approach
between the fully numerical treatment (as considered for in-
stance in Paper I) and simple algebraic formulae which, to our
knowledge, do not exist yet. For axially symmetrical, geomet-
rically thin discs (which represent an important family of as-
trophysical discs), we show that singular kernels in the Poisson
integrals can be integrated analytically in the vertical direction,
whatever the radial density profile and disc shape (provided
the aspect ratio is small). This means i) a considerable gain
in terms of computing time since both the field and the poten-
tial are obtained from a single quadrature over the radial extent
of the system; and ii) regular, well-behaved expressions in par-
ticular at the system boundaries. Generic expressions are given
assuming that the mass density ρ locally expands in series of
the altitude. In Sect. 2, we outline the two major hypotheses
of the present calculus. We then derive in Sect. 3 an analytical
expression for secondary kernels associated with the field com-
ponents and potential. In Sect. 4, we consider the special case
where the mass density varies quadratically with the altitude
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and check the formulae by comparison with highly accurate
values obtained using the methods described in Paper I. Three
easy-to-use formulae appropriate for “one zone” disc models
are given in Sect. 5. Concluding remarks are found in the last
section.

2. Assumptions

2.1. Assumption about the aspect ratio

The general idea that underlies the present calculations1 is
based on the Taylor expansion of the modulus k of the com-
plete elliptic integrals (see Eq. (9) in Paper I) with respect
to the quantity u = z−Z

a+R , where (a, z) are cylindrical coordi-
nates of source points and (R, Z) are coordinates of field points.
For u2 � 1, we have

k2 = m2
(
1 − u2 + . . .

)
= m2 + O

(
u2

)
, (1)

where m is the characteristic (see Eq. (17) in Paper I), with
the consequence that k ≈ m at the second-order. Regarding the
complementary modulus k′ =

√
1 − k2, we have

k′2 = 1 − m2 + O
(
u2

)
, (2)

and so k′2 ≈ 1 − m2 = m′2. Basically, the condition u2 � 1 is
fulfilled in two extreme situations:

i) when
(

z
a

)2 � 1 and |Z| <∼ |z|,
ii) when

(
Z
R

)2 � 1 and |z| <∼ |Z|.
The first corresponds to field points located inside systems with
moderate/small aspect ratio H/a (namely geometrically thin
discs), where H is the semi-thickness. The second situation im-
plies that field points stand close to the mid-plane, whatever the
thickness of the system. For geometrically thick discs however,
these field points are necessarily located outside (i.e. R � aout,
where aout is the outer radius; see Fig. 2 in Paper I).

2.2. Assumption about the mass distribution

The second hypothesis concerns the mass density ρ(a, z). We
assume that it is defined as a finite series2 of powers of the
altitude z, namely

ρ(a, z) =
N∑

n=0

An(a)
( z
H

)n
, (3)

where An are positive or negative coefficients, and can depend
on the radius a. As in Paper I, the mass density is assumed to
vanish at the surface z = ±H(a), which means certain relations
between the N +1 coefficients An (see for instance Sect. 4). For

1 Background and notations are described in Paper I.
2 We are confident that such an expansion with N � ∞ does not nec-

essarily match any arbitrary density profile. In particular, as it is well
known, fitting any data sample {(zi, ρi)}N with a high-degree polyno-
mial may become physically irrelevant.

mathematical reasons, it is preferable to work with an expan-
sion following powers of u, so that Eq. (3) becomes

ρ(a, z) =
N∑

n=0

Bn(a)un. (4)

Coefficients Bn can be deduced, for each field point, from co-
efficients An from the generic relation

Bn = (a + R)n
N∑

i≥n

Ai

Hi

(
i
n

)
Zi−n, n = 0, . . . ,N, (5)

where

(
i
n

)
=

i!
n!(i − n)!

is the binomial coefficent. This rela-

tion simplifies into An(a + R)n = BnHn at the midplane. Note
that Bn depend on a, R, Z and H(a).

3. Field and potential

3.1. The vertical field

Let us start with the exact expression for the secondary kernel
associated with the vertical field (see Paper I, Eqs. (8) and (12))
which is the simplest case. We have

κ̆Z =
G

2R
√

aR

∫ H

−H
ρ(a, z)

k3E(k)

k′2
(z − Z)dz. (6)

According to Eq. (1), E(k) ≈ E(m) at the second-order, and so
we can put the complete elliptic integral outside the integral.
Using Eq. (4) and changing the order of the operators

∫
and

∑
,

the general expression for κ̆Z is then

κ̆Z ≈ 4GaE(m)
a + R

N∑

n=0

Bn(a)In+1(m′), (7)

with

In(x) =
∫ u+

u−

un

x2 + u2
du, (8)

where u± refers to the top/bottom edge of the system, that is

u± =
±H(a) − Z

a + R
· (9)

We give in the Appendix A the expression of In(x) for any
n ≥ 0. Note that the fact that these integrals are defined from a
recurrence formula is very convenient in practice. Finally, the
vertical gravity field gZ induced by a disc extending from ain

to aout is obtained by integration of Eq. (7) in the radial direc-
tion (see Eq. (11) in Paper I), namely

gZ =

∫ aout

ain

κ̆Zda. (10)

Since κ̆z is regular everywhere inside the system provided
ρ(a,±H) = 0 as assumed, gZ can be computed numerically
without difficulty for any field point satisfying (u±)2 � 1 for
any a. A few examples proving the reliability of this approach
are given in Sect. 4.
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Fig. 1. Function Q versus k.

3.2. The radial field

We shall follow the same approach as above. This case is
however a little more tricky because there are two distinct
sources of singularity (hyperbolic and logarithmic). The sec-
ondary kernel associated with the radial component is (see
Paper I, Eqs. (6) and (12))

κ̆R =
G
R

√
a
R

×
∫ H

−H
ρ(a, z)k

[
E(k) − K(k) +

(a − R)k2E(k)

2ak′2

]
dz. (11)

As in Paper I, we remove explicitly the logarithmic singular-
ity from the complete elliptic integral of the first kind. Using
Eq. (4) and changing the order of the operators as in Sect. 3.1,
we then have

κ̆R ≈ 2G
a
R

N∑

n=0

BnFn(m′), (12)

where Q(k) = E(k) − Kreg(k), Kreg being the “regular” elliptic
integral of the first kind (see Paper I, Eq. (38) and Fig. 2),

Fn(m′) = Q(m)Jn +
1
2

[
Ln(m′) − Ln(1)

]

+
2R(a − R)
(a + R)2

E(m)In(m′), (13)

Jn =

∫ u+

u−
undu, (14)

and

Ln(x) =
∫ u+

u−
un

[
ln

(
x2 + u2

)]
du, (15)

where n ≥ 0. The expressions for Jn and Ln(x) are given in
the Appendix A. Like Kreg, Q is a weakly varying function
in the range [0, 1]. It is plotted in Fig. 1. At the second-order
in u, Kreg(k) ≈ Kreg(m) and Q(k) ≈ Q(m). It can be shown
that Eq. (12) is never singular and always takes a finite value.
The radial field gR can then be easily determined by integration
of κ̆R, that is (see Paper I, Eq. (11))

gR =

∫ aout

ain

κ̆Rda. (16)

Again, see Sect. 4 for tests.

3.3. The potential

The secondary kernel κ̆Ψ associated with the potentialΨ due to
an infinitely thin cylinder is (see Paper I, Eqs. (35) and (37))

κ̆Ψ = −2G

√
a
R

∫ H

−H
ρ(a, z)kK(k)dz. (17)

This term has already been computed in Sect. 3.2. We finally
find

κ̆Ψ ≈ −4Ga
N∑

n=0

BnPn(m), (18)

where

Pn(m) = Kreg(m)Jn − 1
2

[Ln(m′) − Ln(1)]. (19)

The integration of κ̆Ψ in the radial direction

Ψ =

∫ aout

ain

κ̆Ψda (20)

yields the potentialΨ. Again, κ̆Ψ being regular everywhere, this
operation can easily be performed.

4. The parabolic case

4.1. Formulae

With N = 2, the mass density in the disc varies quadratically
with the altitude. This case is particularly interesting for disc
modelers since vertically isothermal discs have a Gaussian den-
sity distribution along z which can be well approximated by
a parabola (e.g. Frank et al. 1992). Also, the solution of the
plane Lane-Emden equation for vertically self-gravitating discs
has a similar shape for most gas polytropic indices (Ibanez &
Sigalotti 1984). For a quadratic vertical profile vanishing at the
surface, we have A1 = 0 and A2 = −A0 in Eq. (3), whatever a.
It follows that coefficients Bn in Eq. (4) are given by


B0 =
(
1 − Z2

H2

)
A0

B1 = − 2Z(a+R)
H2 A0

B2 = −
(

a+R
H

)2
A0.

(21)

Under these circumstances, the field components and potential
are given by the simple formulae

gR ≈ 2G
∫ aout

ain

a
R

[
B0I1(m′)

+B1I2(m′) + B2I3(m′)
]

da, (22)

gZ ≈ 4G
∫ aout

ain

aE(m)
a + R

[
B0F0(m′)

+B1F1(m′) + B2F2(m′)
]

da, (23)

and

Ψ ≈ −4G
∫ aout

ain

a [B0P0(m)

+B1P1(m) + B2P2(m)] da, (24)
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Fig. 2. Top: radial field (re-scaled) in the equatorial plane due to a ge-
ometrically thin, flared disc with inner edge ain = 1 and outer edge
aout = 100. The mass density varies quadratically with the altitude.
Labels 1 to 4 refer to shape and density models listed in Table 1.
Two cases are shown: the field is computed from Eq. (22) (lines)
and compared to highly accurate solutions (circles) determined nu-
merically following the density splitting method described in Paper I.
Bottom: decimal logarithm of the relative error between the two
(i.e. the error index). Regions where the error index rises correspond
to a vanishing field.

respectively. Note that neither the shape of the system nor the
a-variation of the mass density have yet been specified at this
level. The shape H(a) appears in the integral bounds u± as well
as in coefficients Bn, whereas the function ρ(a) is assigned in
the coefficient A0 only. Thus, Eqs. (22), (23) and (24) are still
quite general. As we shall show below, these are second-order
accurate. According to the condition on u (see Sect. 2.1), they
are valid inside the entire system provided
(

H(a) − Z
a + R

)2

� 1, (25)

for any a ∈ [ain, aout].

4.2. Examples

Figure 2 shows the mid-plane radial field computed from
Eq. (22) and compared to reference values gref.

R determined fol-
lowing the numerical method described in Paper I. The decimal
logarithm of the relative deviation between the two (called the
“error index” in Paper I, see Eq. (28)) is also plotted. Here, we
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Fig. 3. Same legend and same conditions as for Fig. 2 but for the ver-
tical field component (surface value).

Table 1. Five models for the shape and radial mass density de-
fined to check the reliability of analytical secondary kernels. Model 4
corresponds to a typical astrophysical case: a flared disc with den-
sity decreasing outwards. The last model mimics a “jump” (over
one scale height) of the density, a situation that can occur in time-
dependent simulations. In practice, we take here H/ain =

1
10 , ajump =

1
2 (ain + aout).

Model Semi-thickness H Density ρ

1 const. uniform

2 const. ∝a−1

3 const. ∝a−2

4 ∝a ∝a−2

5 ∝a ∝ 1
a2

[
2 + tanh

a−ajump

H

]

have considered a disc extending from ain = 1 to aout = 100
with shapes and radial density profiles listed in Table 1. We
see that, in all models 1 to 4, approximations for the secondary
kernels are very good. The relative error is less than (H/a)2,
as expected from the order of the k-expansion. Figures 3 and 4
display results obtained for the surface vertical field and mid-
plane potential under the same conditions. The same conclu-
sions hold. Finally, Fig. 5 gives the results obtained for model 5
(see Table 1) which corresponds to a flat disc with a density
“jump” in the middle. This case can be met for instance in time-
dependent simulations if density waves propagate or shocks are
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Fig. 4. Same legend and same conditions as for Fig. 2 but for the mid-
plane potential.

present in the medium. Again, the analytical approach appears
very good, and with the expected accuracy.

We have checked the reliability of our formulae in many
other cases and for N ≥ 2 and our treatment appears indeed
reliable. For very large values of N (say larger than 10), a spe-
cial care must be taken in the numerical implementation. The
reason is that coefficients Bn can be large while integrals In, Jn

and Ln take tiny values. Further, we recommend the use of an
adaptive mesh (as in Paper I; see Sect. 4.1), in order to perform
efficiently radial quadratures in Eqs. (10), (16) and (20) since
integrands remain peaked around field points.

5. Surface and equatorial values: The case
for “one-zone” disc models

In “one-zone” disc models (Pringle 1981), physical quantities
are currently known at two key-altitudes: the surface and the
mid-plane. Regarding hydrostatic equilibrium, vertical grav-
ity is requested at the disc surface. For dynamical equilib-
rium, radial gravity (and potential) is rather needed at the
mid-plane. Integral expressions given before are valid at any
altitude Z, and in particular at these two places where they
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Fig. 5. Same legend and same conditions as for Figs. 2 to 4 but for
model 5 (see Table 1). This case corresponds to a density jump at
ajump = 50 with width ∼H.

simplify considerably. After rearrangement, we finally find3

gZ(R, h) ≈ −4G
∫ aout

ain

aρ0E(m)
a + R

{
2h
H

−1
2

[
1 +

(a − R)2

H2
− h2

H2

]
ln

(a − R)2 + (H − h)2

(a − R)2 + (H + h)2

−2h(a − R)
H2

(
atan

H − h
a − R

+ atan
H + h
a − R

)}
da, (26)

gR(R, 0) ≈ 2G
∫ aout

ain

aρ0H
R(a + R)

2Q(m)

+4
R
H

E(m)atan
H

a − R
+ ln

(a − R)2 + H2

(a + R)2 + H2

da (27)

3 Expressions (27) and (28) have been obtained in the case N = 0,
i.e. uniform density in the vertical direction. For geometrically thin
discs, variations with the altitude remain small and Eqs. (27) and (28)
should be sufficient. If necessary, the reader can derive the full expres-
sions in the case N = 2, but these are much bigger.
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and

Ψ(R, 0) ≈ −4G
∫ aout

ain

aρ0H
a + R

[
− ln

(a − R)2 + H2

(a + R)2 + H2

+2Kreg.(m)

−2(a − R)atan
H

a − R
+2(a + R)atan

H
a + R

]
da (28)

where h denote the disc semi-thickness at the field point, i.e.
h = H(R). Note that good approximations for E(m), Q(m) and
Kreg.(m) instead of “exact” values should be sufficient for most
astrophysical applications, given the precision of Eqs. (26)
to (28). According to Abramowitz & Stegun (1964), we can
take

E(m) ≈ 1 + 0.4630151m′2 + 0.1077812m′4

−
(
0.2452727+ 0.0412496m′2

)
m′2 ln m′2, (29)

Kreg.(m) ≈ 1.3862944+ 0.1119723m′2 + 0.0725296m′4

−
(
0.1213478+ 0.0288729m′2

)
m′2 ln m′2 (30)

and

Q(m) ≈ −0.3862944+ 0.3510428m′2 + 0.0352516m′4

−
(
0.1239249+ 0.00123767m′2

)
m′2 ln m′2 (31)

which have a precision of ∼10−5.

6. Concluding remarks

In this article, we have derived second-order accurate, inte-
gral expressions for the field components and potential, in the
case of systems with small to moderate aspect ratio. These for-
mulae are valid inside the system as a whole (and even out-
side provided u2 � 1): from the mid-plane to the surface,
and especially at the edge where other approximations gen-
erally fail to reproduce the correct behavior of the field and
potential. This means that these formulae can be used to self-
consistently model vertically averaged discs (e.g. Cannizzo &
Reiff 1992) as well as vertically stratified discs (e.g. Cannizzo
1992; D’Alessio et al. 1998; Huré 2000) when prone to self-
gravity. Because formally correct for N → ∞ (even if this is
not the case in practice), these relations are well suited to vari-
ous kinds of theoretical problems (stability analysis, etc.).

Although the precision reached here (i.e. H2/a2 in relative)
should be sufficient for many applications, it is possible to in-
crease the accuracy of the secondary kernels by expanding the
modulus to orders higher than 2 (the case considered here).
Note that this would imply the expansion of elliptic integrals
to equivalent orders, meaning a treatment probably more com-
plex than the one presented here, but this is feasible.

The formulae derived here are expected to fail for u >∼
0.3 (corresponding to u2 >∼ 10%). A priori, this means that
discs with aspect ratios H/2a >∼ 0.3 are out of range. However,
our formulae continue to be quite satisfactory for aspect ratios
much larger than the above limit. This is illustrated in Fig. 6
which displays the potential (and error index) computed from
Eq. (24) at the surface, at the midplane and in between, for a
system with H/a = 1 (model 4 in Table 1). In this example,
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Fig. 6. Same legend and same conditions as for Fig. 4 (model 4) except
that the flared disc is geometrically thick with H

a = 1. The potential
and the error index are given at the mid-plane, at the surface as well as
in between (i.e. Z = H/2). Curves for the potential have been slightly
shifted up and down by a factor of 10% for clarity.

the potential is good within less than 10% everywhere. Thus,
the present approach which is well suited to geometrically thin
discs can be applied to geometrically thick discs, but with some
caution and within reasonable limits.

Acknowledgements. We thank D. Pelat for comments on some math-
ematical points.

Appendix A: Useful formulae

Integral In(x) as defined by Eq. (8) is (see for instance
Gradshteyn & Ryzhik 1994):

In(x) =

[
un−1

n − 1

]u+

u−
− x2In−2(x) for n ≥ 2, (A.1)

In(x) =
1
2

[
ln

(
x2 + u2

)]u+

u−
for n = 1, (A.2)

xI0(x) =
[
atan

u
x

]u+

u−
for n = 0, x � 0, (A.3)

and

I0(x) = −
[
1
u

]u+

u−
for n = 0, x = 0. (A.4)
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Integral Jn(x) (see Eq. (14)) is

Jn =



[ln |u|]u+
u− n = −1,

[
un+1

n+1

]u+

u−
otherwise.

(A.5)

and integral Ln(x) (see Eq. (15)) is

L2n(x) =
1

2n + 1

u2n+1 ln
(
x2 + u2

)
+ 2(−1)nx2n+1atan

u
x

−2
n∑

k=0

(−1)n−k

2k + 1
x2n−2ku2k+1


u+

u−
, (A.6)

for even values of n, and

L2n+1(x) =
1

2n + 2


(
u2n+2 + (−1)nx2n+2

)
ln(x2 + u2)

+

n+1∑

k=1

(−1)n−k

k
x2n−2k+2u2k


u+

u−
(A.7)

otherwise.
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