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Abstract

We reconsider the classical equality 0.999 . . . = 1 with the tool of
circular words, that is: finite words whose last letter is assumed to be
followed by the first one. Such circular words are naturally embedded
with algebraic structures that enlight this problematic equality, allowing
it to be considered in Q rather than in R. We comment early history
of such structures, that involves English teachers and accountants of the
first part of the xviiith century, who appear to be the firsts to assert
the equality 0.999 . . . = 1. Their level of understanding show links with
Dubinsky et al.’s apos theory in mathematics education. Eventually, we
rebuilt the field Q from circular words, and provide an original proof of the
fact that an algebraic integer is either an integer or an irrational number.

This article is interested in circular words (Rittaud & Vivier, 2012b) as a tool
to investigate the famous equality 0.999 . . . = 1 and, more generally, decimal
expansion of rational numbers. We propose some perspectives on this famous
equality integrating mathematics, history of matematics and mathematics edu-
cation.

Informally speaking, a circular word is a finite word whose last letter is
assumed to be followed by the first one. (More rigorously, it is a finite word
indexed by Z/`Z instead of {1, . . . , `}.) Such an object allows us to remain in
Q instead of R when investigating the equality 0.999 . . . = 1, hence enables to
make use of purely algebraic and combinatorial structures, avoiding analysis
and topology.

Section 1 recalls the relevant facts about usual numeration system in base
b, where b > 2 is some integer. For convenience, most examples in the present
article are provided in base ten system, that is: with the alphabet {0, 1, . . . , 9}.
(Others examples are given in (Vivier, 2015).)

Sections 2 and 3 introduce two major extra-mathematical aspects of the
equality 0.999 . . . = 1, namely mathematics education and history of mathe-
matics and calculation. A lot of investigations has been made im mathematical
education since the 70’s and the seminal Tall’s work. We focus here on apos
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theory that proposes different mental structures to understand the phenomenon.
Also, the contribution made by xviiith century English teachers and accountants
as regards periodic decimal expansion of rational numbers is mathematically sig-
nificant. In particular, the two first mentions of the equality 0.999 . . . = 1 appear
to come from two of these authors, namely George Brown then Samuel Cunn,
with two very different viewpoints.

Section 4 is interested in the deeper mathematical structure, setting up mod-
ern tools to describe the objects and algorithms involved, namely circular words.
It begins with some definition and properties of these (in particular a combi-
natorial proof of Fermat’s Little Theorem), then defines two sets, QWCP and
QDC, both isomorphic to Q as fields but set up in a combinatorial way which
is free of any reference to the standard construction by pairs of integers. These
two sets are quite similar. The first one is best suited for educational purpose,
its elements are triples made of a finite word (correspondic to the aperiodic part
of the decimal expansion of a rational number), a circular one (for the periodic
part), and an integer (for the positioning of the comma). The second one, more
theoretical, is best suited for proofs. Its elements are pairs made of a decimal
word (i.e. a finite word with a comma, for the aperiodic part) and a circu-
lar word (for the periodic part). Since QWCP and QDC are ultimately proved
to be fields isomorphic to Q (Section 6), their elements are to be regarded as
combinatorial representations of rational numbers.

Section 5 deals with the additive structure on QWCP and QDC, which makes
them both isomorphic to Q as additive groups. Such an additive structure
enables to free the equality 0.999 . . . = 1 from any analysis consideration linked
to the topology of the real line. (All of this could be extended to the b-adic case
with only small changes, as it is briefly mention in Section 5.5.)

Section 6 presents the field structure of QWCP and QDC (multiplication
and division), making them isomorphic to Q as fields. It details the limita-
tions of such representations of rational numbers for practical purposes, then
investigates some theoretical aspects, culminating in an original proof of the
irrationality of numbers like

√
2,
√

2 +
√

3 and more generally all non-integer
roots of a unitary polynomial.

1 General facts about b-adic expansion

Let us recall the following fundamental result:

Theorem 1. Let b ∈ N with b > 1. A real number has a ultimately periodic
b-expansion iff it is a rational number.

Assuming here the existence of a b-adic expansion for any real number, this
standard theorem provides a remarkably simple proof of the existence of irra-
tional numbers (consider any non-periodic sequence of digits), also suggesting
that the irrational numbers are “more numerous” than rational ones. Some-
how, Theorem 1 can also be interpreted an “unexpected success” for the b-
expansion numeration systems: the latter, made up for practical arithmetics,
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“unexpectedly” provides a way for the abstract question of identifying rational
numbers among real numbers. (Unfortunately, this “success” does not extend
to non-rational numbers, since almost nothing is known about the b-expansion
of numbers like

√
2 or π.)

The fact that the b-expansion of u/v (for u and v integers) is periodic is con-
vincingly proved by the application of the classical algorithm of long division:
since, at each step, the remainder is an integer between 0 and v−1, the pigeon-
hole principle implies that, after all the digits of u has been considered and only
0s are to be added in the remainder in the next steps, the same remainder will
eventually appear twice, hence entering in a periodic loop (possibly reduced to
an infinite sequence of quotients equal to 0).

This proof also shows that the length of the periodic part of the b-expansion
of u/v is upper bounded by v−1 (the number of possible remainders, excluding
0 and assuming v > 1). Moreover, it provides an application of the pigeonhole
principle, whose first application is generally attributed to Dirichlet, in the end
of the xixth century, whereas the proof of Theorem 1 appears in Wallis’ Treatise
of Algebra of 1685 (Wallis, 1685, chapter LXXXIX), in which Wallis makes the
following precision:

I have insisted the more particularly on this, because I do not re-
member that I have found it so considered by any other.

As regard the pigeonhole principle, Wallis does not state anything special
about it, but the argument was already known and used at his time, its most
ancient known appearence going back at least to Jean Leurechon in 1622 (Leure-
chon, 1622; Rittaud & Heeffer, 2014).

To prove the converse of Theorem 1, a simple calculation shows that a num-
ber like 0.873873873 . . ., also written 0.873 in the sequel, is equal to 873/999, and
generalization to all possible type of ultimately periodic b-expansion is trivial.

Proposition 1. Let v > 1 be an integer and u < v prime with v. The fraction
u/v admits a purely periodic b-expansion iff v is prime with b.

By a purely periodic b expansion is meant an expansion of the form 0.M ,
where M is a finite sequence of digits (which may be regarded as an integer
written in base b).

Note that, in the case b is equal to ten, the converse of this proposition was
proved possibly for the first time by Alexander Malcolm (1730, p. 477) (see
Section 3.4).

Proof. We start by the case u = 1. Assume first that 1/v has a purely periodic
b-expansion, so 1/v = 0.M , with M can be identified with a positive integer.
Denoting by ` the length of M , we have

1

v
= 0.M =

+∞∑
n=1

M

bn`
=

M

b` − 1
,
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so b`−1b−Mv = 1, so v and b are mutually primes (by Bézout’s identity).
Now, assume v prime with b. The long division algorithm applied to 1 and

v provides the successive equalities

1 = 0v + 1

1b = q1v + r1

r1b = q2v + r2
...

rmb = qm+1v + rm+1

...

with 0 6 qm < b and 0 6 rm < v for any m. By the pigeonhole principle, we
can find m 6= m′ such that rm+1 = rm′+1. The equalities rmb = qm+1v + rm+1

and rm′b = qm′+1v + rm′+1 thus imply (rm′ − rm)b = (qm′+1 − qm+1)v. Since
|rm′−rm| < v and lcm(b, v) = bv, we must have rm′ = rm. Hence, by induction,
the b-expansion of 1/v given by the long division algorithm is purely periodic.

Consider now the general case of u < v with u and v mutually primes. If v
is prime with b, then we already know that 1/v is purely periodic, so we easily
get that u/v is purely periodic as well. Conversely, assume that u/v is purely
periodic. Since u and v have no common divisor, we can find an integer k such
that ku/v is of the form n + 1/v, so 1/v is purely periodic, so v and b are
mutually primes.

Corollary 1. For any integer v prime with b, there exists ` > 0 such that v
divides b` − 1.

In standard decimal numeration system, this means that for any integer
v /∈ 2Z ∪ 5Z, the set {9, 99, 999, 9999, . . .} contains an element which is divided
by v. For the case of b equal to ten, this quite unexpected fact was also proved
by Malcolm (1730, p. 476), in the following way.

Proof 1. Consider the b-expansion of 1/v, which is purely periodic by Proposi-
tion 1. Writing it as 0.M with ` for the length of the period, we therefore have
1/v = M/(b` − 1), so Mv = b` − 1 and we are done.

An alternative presentation makes use of the relation 0.9 = 1 in its general
form in base b: 0.β = 1 where β = b− 1.

Proof 2. Apply the long division algorithm to get the b-expansion of 1/v, written
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as 0.β/v, to get successively:

0 = 0v + 0

0b+ β = q1v + r1

r1b+ β = q2v + r2
...

rmb+ β = qm+1v + rm+1

...

with 0 6 qm < b and 0 6 rm < v for all m. By Proposition 1, the b-expansion
obtained is purely periodic. Hence, writing ` for the length of the period, we have
r`+1 = 0 (the rest of the initial division 0 = 0v+ 0), so 0.β · · ·β = v× 0.q1 · · · q`
(with ` times the digit β in the left side). Multiplying by b` then gives that

b` − 1 = v ×
∑̀
i=1

10`−iqi.

Another important property of the sequence (bn − 1)n is the following one.

Theorem 2. Let ` and `′ be two positive integers. The smallest positive integer
n such that bn − 1 is divided by both b` − 1 and b`

′ − 1 is n = lcm(`, `′).

An equivalent form is:

Theorem 2’. For any positive integers n and `, bn − 1 is divided by b` − 1 iff
n is divided by `.

Proof. Write n = k` + r with 0 6 r < ` for the Euclidean division of n by `.
The formula for the sum of the first terms of a geometric sequence gives

k−1∑
i=0

bi`+r = br
bk` − 1

b` − 1
=
bn − br

b` − 1
=
bn − 1

b` − 1
− br − 1

b` − 1
,

so b`− 1 divides bn− 1 iff it also divides br− 1 (since the left side is an integer).
Since r < `, this is the case iff r = 0.

The previous theorem is coined by Wallis (1685) in the following form:

Theorem 2”. Let v and v′ be denominators of two irreducible fractions, the
former (resp. the latter) corresponding to a periodic expansion of length ` (resp.
of length `′). If v and v′ are mutually primes, then the product of the two
fractions has a decimal expansion whose periodic part is of length lcm(`, `′).

As regards the product of two rational numbers, the following Proposition,
whose proof is a fancy application of standard divisibility criteria, shows that
the multiplication of rational numbers is much more difficult to tackle when
considering only b-expansions. Quite unexpected (especially considering the
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relative smallness of the length of the product of two fractions as given by
Theorem 2”), it is probably sufficient in itself to explain why practitioners, after
some attempts in the first part of the xviiith century (see Section 3), eventually
gave up the idea and went back to fractions and decimal approximations for
their calculations. (See Theorem 7 for a more general result in the framework
of circular words.)

Proposition 2. In the decimal numeration system, let 0.M and 0.N be two
rational numbers, with M and N of length 2 (that is: M and N are written
with two different digits). Let P be the shortest sequence of digits such that
0.M × 0.N = 0.P . In general, the length of P is equal to 198.

Proof. By Proposition 1, 0.M (resp. 0.N) is equal to some fraction u/v (resp.
u′/v′) with v (resp. v′) prime with b = 10, so the product is equal to (uu′)/(vv′).
Since vv′ is prime with 10, Proposition 1 gives that this product can indeed be
written 0.P for some P .

The fact that 0.P can also be written 0.PP (hence doubling the length)
justifies the reference to the minimal possible length for P . Write ` for it. Now,
by the proof of the converse of Theorem 1, we know that 0.M = M/99, that
0.N = N/99 and that 0.P = P/(10` − 1). Hence, we have MN/(99 · 99) =
P/(10` − 1), so (99 · 99)P = (10` − 1)MN . Thus, whenever MN is prime with
99 (hence the “in general” in the statement of the Proposition) we have that
99 ·99 divides 10`−1. In this case, the value of ` is the smallest positive integer
for which 10` − 1 is divided by 99 · 99 = 92 × 112.

First, 10`− 1 is divided by 9 whatever ` > 0 is. The quotient is equal to the
rep-unit r` = 11 . . . 11 (with ` copies of the digit 1). Since an integer belongs to
9Z iff the sum of its digits belongs to 9Z, the rep-unit r` is in 9Z iff ` ∈ 9Z.

It remains to show for which values of ` the rep-unit r` is divided by 11 twice.
An integer belongs to 11Z iff its alternate sum also belongs to 11Z, so r` ∈ 11Z
iff ` is even. In this case, we have that r`/11 is of the form 101010 . . . 101 (with
`− 1 digits). By the same criterion, this latter integer be divisible by 11 iff the
number of 1s in it belongs to 11Z, that is: `/2 ∈ 11Z.

Taken together, the preceding conditions show that 10` − 1 is divisible by
99 · 99 iff ` is a multiple of 9, 2 and 11, so ` = 198.

Even the simple example of (0.01)2 in base ten provides an example of the
previous Proposition. Its periodic part is made of the concatenation of words
of length 2 in increasing order from 01 to 97, eventually followed by 99 instead
of 98 (i.e.: the periodic part is 010203 · · · 95969799).

Since the divisibility criteria by 9 and 11 in base ten easily extend to divibility
criteria by b − 1 and b + 1 in base b, the previous proof can be generalized
straightforwardly in any base, hence providing the following more general result.

Proposition 3. Let 0.M and 0.N be two rational numbers written in base b,
with M and N of length 2 (that is: M and N are written with two different
digits). Let P be such that 0.M × 0.N = 0.P . Most of the time, the minimal
possible length for P is 2(b2 − 1).
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2 0.999. . . = 1 in mathematics education

Studies in mathematics education on the comparison between 0.999... (or 0.9)
and 1 are numerous and old (e.g. Tall and Schwarzenberger 1978, Tall 1980,
Sierpinska 1985). It is frequently regarded as a key point in the understanding
of the set of real numbers, related to several and different notions: completeness
(there is no “hole” between 1 and 0.999 . . .), the notion of limit, infinitesimals
(between standard and non-standard analysis), the double representation of
finite decimals, the impact on Euclidean geometry (with abscissa on a straight
line), potential and actual infinity, etc. The importance of it also arises in high-
level mathematics as for example when dealing with Cantor’s diagonal argument
on the non-denumerability of R.

The equality 0.999 . . . = 1 is a part of mathematics but also of daily life,
hence useful to understand not only in mathematical classrooms. Some times
ago in Geneva, one of the authors paid with a 50 euros banknote a good whose
price was 50 swiss francs. The shop assistant proposed an exchange rate of 1.20
swiss franc for 1 euro, and started a calculation to determine the amount of swiss
francs he had to give back. He calculated in euros by computing 50− (50/1.2),
then multiplied the result by 1.2. His calculator gave the result 9.99999 and he
proposed to give back 10 swiss francs. It is not sure whether the shop assistant
understood that, when proposing the deal, he was not, in any way, rounding
the result at the advantage of his client.

It should not be thought that this phenomenon comes from the rudimen-
tary calculator used. Let’s take the case of a spreadsheet to make the previous
calculation (Table 1). For a cell format Standard or Number with at most 13
decimals, the result is the expected one, but this is not the case with more dec-
imals. What do we do with these writings? Were the previous results rounded?
Is the exact value the one obtained with 14 decimals? In short, how to interpret
the signs displayed by the computer?

Cell format (50–50/1.2)*1.2 display Some details
Standard 10

Number (2 decimals) 10.00
Number (8 decimals) 10.00000000 8 0s after the decimal point
Number (13 decimals) 10.0000000000000 13 0s after the decimal point
Number (14 decimals) 9.99999999999999 14 9s after the decimal point
Number (15 decimals) 9.999999999999990 14 9s after the decimal point
Number (16 decimals) 9.9999999999999900 14 9s after the decimal point

Table 1: Spreadsheet roundings for the calculation (50− 50/1.2)× 1.2.

All studies in mathematics education agree on the fact that it is very diffi-
cult to make the students understand the necessity of the equality 0.999 . . . = 1.
According to Weller et al. (2009), preliminary training on periodic decimal
expansions contributes to the understanding and control of this equality. The
difficulties that arise are about logic, construction of numbers, psychological
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obstacle of the strong semiotic difference between the two sides, and conceptual
complexity. Also, to preserve a distinction between 0.999 . . . and 1, many schol-
ars as well as students endorse a non-standard analysis viewpoint, writing things
like 1 = 0.9 + 0.01 (see Vivier, 2011). This shows that the equality 0.999 . . . = 1
heavily relies on the algebraic structure one wishes to define (Rittaud & Vivier,
2014).

2.1 apos theory

A particularly efficient way to describe the complexity of the conceptualization
required to understand 0.999 . . . = 1 is apos theory (Arnon et al., 2014; Dubin-
sky et al., 2005; Weller et al., 2004). This theory emphasizes on the difficulty
for a learner to go from the stage of Action (a finite number of 9s) to the stage
of Process (the digits 9 continue forever), then to the stage of Object (0.999 . . .
becomes 0.9, a “static” number), on which we can operate and justify its value
1. The biggest difficulty seems to be the transition from the stage of Process to
the stage of Object.

Interestingly enough, the different stages of the apos theory appears in the
historical development of the mathematical tools underlying 0.999 . . . = 1. Sec-
tion 3, in which some detailed aspects of the work by xviiith century accountants
is presented, can therefore be regarded as showing a scheme in the apos sense,
in which periodical expansion and periodic parts (independently of the base of
numeration) are considered as Objects.

The following quote is a good summary of the way the apos theory under-
stands the equality 0.9 = 1 (Dubinsky et al., 2005, pp. 261-262):

An individual who is limited to a process conception of .999. . . may
see correctly that 1 is not directly produced by the process, but
without having encapsulated the process, a conception of the “value”
of the infinite decimal is meaningless. However, if an individual can
see the process as a totality, and then perform an action of evaluation
on the sequence .9, .99, .999, . . . , then it is possible to grasp the fact
that the encapsulation of the process is the trancendent object. It
is equal to 1 because, once .999. . . is considered as an object, it is a
matter of comparing two static objects, 1 and the object that comes
from the encapsulation. It is then reasonable to think of the latter
as a number so one can note that the two fixed numbers differ in
absolute value by an amount less than any positive number, so this
difference can only be zero.

Of course, this is linked with the distinction between actual and potential
infinity, as Dubinsky et al. explain in their paper.

More recently, Arnon et al. (2014) suggested, specifically for 0.999 . . . =
1, the introduction of an intermediate stage between Processus and Object:
Totality in which all the 9s make a single entity. The idea is that 0.9 is regarded
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as a whole, before having access to the object itself (the number), regardless of
the understanding that this number is equal to 1. Vivier (2011) suggested a quite
similar idea by making the distinction between two objects: the number and
the period. Indeed, Totality can be seen as the encapsulation of the repetition
process of the 9s to produce the object we denote by 9 — in other words, the
transition from potential to actual infinity. Afterwards, it remains to establish
0.9 as an object (a number), regardless of the mathematical details.

2.2 Classical ways to prove the equality

Teachers are frequently uneasy when confronted to the equality 0.999 . . . = 1.
They commonly rely on calculations to justify it to their students, without these
calculations being defined beforehand. The elementary combinatorial construc-
tion given in Section 4 provides a way to overcome this difficulty, thus possibly
offering an interesting tool for teachers, even if its efficiency remains to be
checked.

Among the classical elementary justifications for 0.999 . . . = 1 inventoried
by Tall & Schwarzenberger (1978) we find the following ones:

Method 1: We have 1/3 = 0.3, so 3× (1/3) = 3× 0.3, hence 1 = 0.9.

Method 2: Write 10× 0.9 = 9 + 0.9 to get 9× 0.9 = 9, hence 0.9 = 1.

Method 3: Let a = 0.9. Dividing 1 + a by 2 by the usual long division gives
(1 + a)/2 = a, so a = 1.

Most of the time, when presented to the classroom, none of these calculations
are properly defined in the first place. All of them contain a lot of implicit
assumptions. In method 1, it is assumed that 0.3 (and its triple) represents a
rational number. In methods 2 and 3, it is assumed that the equalities between
infinite expansions can be simplified under the rule a + b = a + c =⇒ b = c.
According to Tall and Schwarzenberger (1978), method 3 is the most legitimate,
since it is the only one in which calculations are rightfully made from the left to
the right. In this article, it is also suggested the following alternative explanation
for 0.9 = 1: we have 1/9 = 0.1, 2/9 = 0.2 and so on until 8/9 = 0.8, hence
9/9 = 0.9. This could be justified by the form of the long division derived from
the alternative Euclidean division a = qb + r in which 0 < r 6 b instead of
0 6 r < b. Such an alternative long division always provides the quotient in a
decimal form that never ends.

An alternative proof, for which we did not find any reference, comes from
geometry: on the real line (or even on the rational line), the segment I = [0.9, 1]
has no point in its interior (since there is no decimal expansion between 0.9
and 1), hence I reduces to a single point. Quite convincing in itself, such an
argument still needs real analysis to be properly completed.

Other procedures can be set up, involving topology and analysis, like sum-
mation of series (Njomgang Ngansop & Durand-Guerrier, 2014 ; Tall et Vinner,
1981) or the use of the separation axiom for the standard topology of the real
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line ∀ ε > 0, |a − b| < ε =⇒ a = b made in (Dubinsky et al. 2005). It is this
latter property that lies behind Zeno’s paradox (see Fishbein 2001). More gen-
erally, Wilhelmi et al. (2007) present several ways to justify that two numbers
are equal. Nevertheless, they rely explicitely on the construction of the field R
and its general properties.

In fact, contrarily to a quite common belief, the equality 0.999 . . . = 1 is
not necessarily linked to the structure of the real line R, and can be regarded
as a fundamental property of the field Q alone. Therefore, staying in Q not
only focus on an essential issue, but also avoids technical considerations about
analysis or topological properties of the real line.

2.3 Students’ difficulties

Therefore, all these methods (for which maybe we should speak of evidences
rather than proofs) rely on some properties of a structure already set up, in
general R. Moreover, several studies (Mena et al., 2014 ; Njomgang Ngansop
& Durand-Guerrier, 2014 ; Tall & Vinner, 1981) explain that, in general, these
arguments are not convincing for students, even if they frequently acknowledge
their validity. The point is that the semiotic opposition between 0.9 and 1
appears to be too tough.

Besides, it is highly significant that the proportion of mathematically skilled
people for which 0.9 = 1 remains around 60 %, a figure quite independent from
time, country or specific preparation:

• At an undergraduate level, 28 students out of 43 (65 %) assert that 0.9 < 1
(Vivier 2011) and Tall (1980) reports 20 students out of 36, so a proportion
of 56 %.

• Mena et al. (2014) find 23 teachers and student teachers out of 40 (57.5 %)
in favor of the inequality. In the same study, the authors find 12 out of
19 teachers (63 %) enrolled in maestria of mathematical teaching and for
which 0.9 < 1.

For the sake of completeness, let us also mention the study made on a non-
mathematician population of 204 students-teachers of primary school (Weller et
al., 2009). This study found that 73.5 % of them believed that the inequality
holds, a significantly bigger proportion than for mathematically skilled people,
but by a rather small margin. Unsurprisingly, the only population for which
the margin is really large is the one of scholars of secondary school: 100 % out
of 113 scholars assert that 0.9 < 1 (Vivier 2011).

An explanation could be the direct opposition of 0.9 = 1 with the knowledge,
firmly established for numerous years, about comparison of decimal expressions.
The necessary reset of this knowledge is more difficult to do than it is for other
results like (−1)× (−1) = 1, which does not oppose any prior knowledge.

To try and overcome this difficulty, we prove that the equality 0.9 = 1 derives
from the need to make use of infinite digit sequences as numbers. Following
(Rittaud & Vivier, 2014), we argue that the equality 0.9 = 1 consists in a
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technology (in the sense of Chevallard (1999)), typical of Q but generally not
made explicit.

An experiment made in (Rittaud & Vivier, 2014) involved 29 undergraduate
students in France and relied on ancient knowledge. After a study, somehow
too fast, of the usual summation algorithm, it is observed that if the decimal
expansion of a number a has a nontrivial periodic part, then the computation
of 0.9 + a provides the same result as 1 + a (Richmann, 1999), hence the need
to assume 0.9 = 1 to preserve standard algebra. The interest of this is that it
is based solely on ancient algebraic knowledge.

From another perspective, the reorganization of the knowledge of the student
does not necessarily imply the acceptance of the equality 0.9 = 1. Indeed,
in the context of non-standard analysis it is concievable to write 0.999 . . . <
1, the difference being an infinitesimal commonly written as 0.000 . . . 1 (with
the idea that the expression contains infinitely many 0s) by students. (see
also Margolinas 1988). Nevertheless, the theory is difficult, and despite some
promising attempts to introduce it in the curriculum (Artigue 1991, Hodgson
1994), non-standard analysis remains marginal. Still, some searchers are trying
to develop it as an enlightening way to look at numbers (see Katz & Katz, 2010a,
2010b). Such a point of view is important to consider when trying to understand
the way students develop personal concepts that can sometimes oppose those of
the standard curriculum (Ely, 2010). For example, Manfreda Kolar & Hodnik
Čadež (2012, pp. 404-405) asked 93 primary preservice teachers the question
“what is the largest number?” and got once the answer 99 . . .. To the question
“What number is closest to the number 0.5?”, 67 students1 answered 0.4999 . . .
and 3 answered 0.500 . . . 1. These answers are regarded as a way to deal with
potential infinity, but we could see them as echoing a non-standard conception
of numbers as well.

2.4 From digit representations to numbers

The initial question is: how to make numbers from infinite sequences of digits.
Such sequences of digits are not sufficient per se, as Chevallard (1989) explained
in his definition of system of numbers, which contains the necessity of being
able to compare and make basic operations with usual properties. Hence, the
question becomes: how can we operationalize the set of decimal expressions?

In 1971, the French grade 8 curriculum (“classe de quatrième”) made an at-
tempt for this. The point was that the underlying motivation was to set up the
field R, hence the attempt led to difficult considerations of approximations. One
can reasonably assert that such an approach remained purely theoretical, with-
out any practical use in the classroom. Recently, Fardin & Li (2021) proposed
a more operational definition that allows to multiply two infinite sequences of
digits starting from the left, hence avoiding the problem of approximation that
arise when extending the usual algorithm which starts from the right. Their
construction consists in a non-trivial extension of the corresponding natural

1That is 68%, which is close to the percentages presented in the previous section.
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idea for addition starting from the left (in which the carry is handled by looking
separately the case in which the sum of the k-th digits is ultimately equal to 9
for all k). The point is that there is no focus on a concrete method to identify
the appearance of this case.

Considering the field Q instead of R allows us to consider only ultimately
periodic sequences of digits (see Theorem 1). At first, these are semiotic rep-
resentations in which the signs (digits and decimal points) are numerical, and
we wish to make them authentic numbers. Therefore we cannot make use of an
approch like Anatriello & Vincenzi (2019), in which operations are made using
the register of fractions.

According to Yopp et al. (2011), teachers for the end grades of primary
school should have some knowledge about the equality 0.9 = 1, since it has
an impact on arithmetic understanding of rational numbers. Such a conclusion
may be extended to a broader set of people. Indeed, it is observed in (Rittaud
& Vivier, 2014) that no student for which 0.9 = 1 shares any infinitesimal way
of thinking (Margolinas, 1988) like 0.01. Also, at a primary level, a teacher may
have to deal with the tricky situation of 0.9 and 1 considered by some pupil as a
counterexample to the fact that, between two numbers, there is always a third
one.

Duval (1996) showed how important it is for a mathematical object to be
understood in two different registers. Fractions and (ultimately) periodic dec-
imal expansion are two numerical registers for rational numbers. They should
be articulated to each other, whereas secondary school mostly consider only
fractions. Not only this could impede the cognitive appropriation of the object,
but it also paves the way to the confusion between the mathematical object
(a rational number) and the unique data structure in use to represent it (a
fraction).

Inspired by Weller et al (2009), Voskoglou (2013) made an attempt to link the
two different representations. In particular, his experiment aims at identifying
both fractionary and decimal representations of rational numbers. At it seems,
this work on several representation systems is helpful for a better understanding
of the notions of rational and irrrational numbers.

In the framework of apos theory, the study made by Weller et al (2009)
(see also Arnon et al (2014) chapter 8) is a strong case in favour of an op-
erationalization of periodic sequences of digits. It argues for the teaching of
rational numbers in both fractional and decimal registers, proposing operations
on decimal expressions with the help of a software. This software makes all the
computations by the use of fractions, something the user cannot notice since the
interface only shows the decimal register. The study shows a clear improving
of knowledge, both quantitatively and qualitatively, about rational numbers in
decimal expansion, especially as regards the two expansions of decimal numbers
(experimental group of 77 individuals, control group of 127 students-professors
of primary school). These results can be understood as the institution of peri-
odic sequences of digits as numbers, since it becomes possible to perform basic
arithmetic operations on them (see also Yopp et al 2011 and Vivier 2011). The
object “number” can therefore emerge from this. The link between these num-
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bers and fractions is done as well, an essential step to avoid the constitution
of two separates and somehow “parallel” sets of numbers instead of only one
which can be studied with two registers.

3 Periodic expansions in the history of practical
arithmetics

The equality 0.999 . . . = 1 and its links to circular words theory is part of the
history of the more general subject of the present paper, noticeably investigated
by Maarten Bullynck (2009): the representation of rational numbers by the
way of decimal numeration instead of fractions. The starting point is the result
recalled in Theorem 1: the decimal expansion (or, should we write, a decimal
expansion) of any (positive) real number x is ultimately periodic iff x is ratio-
nal. It seems that it took some time before the importance or such a result
is recognized. For example, Simon Stevin, in his famous 1585 text entitled La
Disme (Stevin & Girard, 1625) about decimal representation of numbers and
computation, ignores the periodicity property of rational numbers (see espe-
cially Proposition IV, Nota 1). An explanation could be that it took time for
mathematicians to become interested in decimal representation, which is more
a subject for accountants in the first place, and that accountants themselves
were more interested in decimal approximation than in theoretical considera-
tions about numbers. Also, the almost intractable problem of the multiplication
(see Proposition 2 and, more generally, Theorem 7) could also have been a huge
practical restraint.

As already mentioned in Section 1, the beginnning of deep mathematical
investigations from the equivalence between rational numbers and ultimately
periodic expansion, together with some complements on the size of the period,
is probably due to John Wallis in his Treatise of Algebra of 1685 (Wallis, 1685,
chapter LXXXIX). Wallis did not noticed the equality 0.999 . . . = 1, nor he
investigated the effects of arithmetic operations on decimal expansion of rational
numbers (even if his chapter VIII is quite close to this). His study is primarily
about the length of the periodic part of the decimal expansion of a fraction. His
short work (Wallis, 1685, p. 326-327) mainly indicates that this length ` is given
by writing the denominator as 2a · 5b · v with biggest possible integers a and b,
then looking for the smallest ` such that v divides the number 99 · · · 99 (with
` times the digit 9 — see Corollary 1). He also mentions that if the decimal
expansion of a fraction of denominator u (resp. u′) has a periodic part of length `
(resp. `′) and that u and u′ are mutually primes, then the length of the periodic
part of the decimal expansion of a fraction of denominator uu′ is lcm(`, `′).
(See our Theorem 2.) Also, Wallis’ final remark that “What have been said of
Decimal Fractions, may, with very little alteration, be easily accomodated to
Sexagesimal Fractions” show that he perfectly understands that all his results
have a base-b counterpart. Also, Wallis states that, for square roots like

√
2,

“we have not the like recurrence of the numeral Figures in the same order” (i.e.
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there is no periodic pattern in the sequence of decimals).
The history of the sequels of Theorem 1 split into two differents parts, the-

oretical and pratical, the latter one being the most sensible for our purpose.
We will present the details of it relevant for the present article, postponing to a
forthcoming paper the presentation of the full story of the consequences of The-
orem 1 to what was called “practical arithmetics” in the xviiith century. Before
going into this, for the record, let us present some aspects of the theoretical
aspects investigated after Wallis (see Bullynck, 2009).

Wallis’ most famous followers in studying the subject are: Johann Hein-
rich Lambert, whose first attempt to prove the irrationality of π, before his
more fruitful approach by continued fractions, consists in trying to show that
its decimal expansion is not periodic; Leonhard Euler, who presents the general
properties of decimal expansions rational numbers with the formalism of series
(Euler, 1822)2; Johann Bernoulli and eventually Carl Gauss, who provides in his
famous Disquisitiones Arithmeticae of 1801 the mathematical background to un-
derstand the properties of decimal expansions (or, more generally, b-expansions,
where b > 1 is any integer) of rational numbers: length of the periodic part,
effect of the multiplication by an integer. . .

Then the story seems to end, since Gauss proves that all that can be said
on the subject mainly rely on Fermat’s Little Theorem and its consequences.
Nowadays, b-expansion of rational numbers are more regarded as recreational
mathematics (as it is already the case for example in (Rademacher & Toeplitz,
1930, pp. 113-126)). Nevertheless, alternative numeration systems investigated
from the second part of the xxth century (with the seminal works of Rényi
(1857), Parry (1960) and others) provide new scopes for these old questions
(Rittaud & Vivier, 2012; Rittaud & Vivier, 2011; Rittaud, to appear).

Now, a more relevant part of the story surrounding Theorem 1 in our context
is about mostly forgotten English writers concerned with teaching and account-
ing necessities during the first part of the xviiith century. Starting from Wallis’
initial ideas, these numerous authors develop several new practical algorithms
to deal with periodic decimal expansion: addition, multiplication, division, and
even elevation to the n-th power. Here, to remain in the bounds of our purpose,
we limit ourselves to a brief presentation of some of the works of five authors:
Brown, Cunn, Hatton and Marsh. (The forthcoming paper on the full story
involves many more authors.)

3.1 George Brown: a mixed numeration system

We may argue that George Brown is the first to face the equality 0.999 . . . =
1, since he is seemingly the first to operate with periodic expansions in his
System of decimal Arithmetick (Brown, 1701). Nevertheless, he is not concerned
with such an equality, because of his very clever interpretation of “Infinites”
(i.e. infinite periodic expansions) that allows him to consider them as finite

2see chapter XI, section III, points 523-524, then chapter XII - see especially the scholium
in pages 174-175
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expressions. In his explanation of it right from the beginning of his study
of infinite periodic part (p. 12), the part which is closest to correspond to
0.999 . . . = 1 is:

you must reckon the figure next the Right hand of an Infinite, as
Ninth parts, but not as Tenths of the next preceding Unites ; and
for that cause, you must in Addition and Multiplication, carry one
for every Nine of the Sum, or Product ; and in Substraction and
Division, reckon upon Nine, for every one of the borrowed, or imag-
inary prefix.

Hence, when Brown writes the decimal expansion of 1/240 as 0.00416, this

latter expression is to be interpreted as
4

103
+

1

104
+

6

9 · 104
.

Brown representation is an exact one, essentially equivalent to the WCP-
representation given in Section 4.2. The only issue is the ambiguity of notation
that makes difficult to distinguish numbers like 3/10 and 3/9 (which could be
both written as 0.3). Most importantly, in Brown’s mixed numeration system,
in which the last digit is to be considered as ninths parts of the previous one,
there is no need to consider anything close to 0.999 . . . = 1.

In some way, it is a little bit disappointing that Brown, the first real user
of infinite periodic decimal expansion, is so clever that he overcomes right from
the beginning any reference to the puzzling equality. The only calculation in
his book in which we could potentially recognize it (even if, so, it is quite
abusive to interpret it this way) is the one of Figure 1, corresponding to the
sum 0.0010416 + 0.0020833 = 0.003125.

Figure 1: Brown’s calculation for the sum of two periodic decimal expansions.

In this figure, “decimal for one Penny” stands for the decimal expression of
the value of one penny expressed in pound: 1 penny is one twelfth of a shilling
and 1 shilling is one twentieth of a pound, so a penny is a (1/12) × (1/20) =
1/240-th of a pound, so 0.00416.

Most of the time, Brown remains in this context of conversion between units
of English money of the time, in which appears mainly periodic expansion of
length 1, frequently 3 or 6. He is at ease to make the correspondence between
such an expression and a fraction, as in Figure 2 (p. 46) of 29.16, straightfor-

wardly identified with 29 +
1

10
+

2/3

10
. (The written numbers in the left stand

for the product 35× 50 = 1750 and 1750/6 = 29, 166 . . ..)
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Figure 2: Brown’s identification of 29.16 with 29 + 1/10 + (2/3)× (1/10).

When possibly confronted with periodic parts of length greater than 1,
Brown avoids it by an approximation, without any elaboration. In one case
(p. 46), presented in Figure 3, he uses a kind of improvisation: when comput-

ing 297.5/11, which is 27.045, Brown writes 27 +
1

22
instead, the fractional part

being deduced from the rest 0.5 to be divided by the divisor 11.

Figure 3: Brown’s avoidance of periodic expansion of length more than 1.

3.2 Samuel Cunn: operating on periodic expansions and
0.999. . .

The work of Samuel Cunn (Cunn, 1714) in the field of periodic decimal ex-
pansions is the second substantial one since Wallis. Contrarily to Brown, Cunn
mentions the previous work of Wallis, as well as some minor considerations made
by two other authors, but seems unaware of Brown’s book and has a very differ-
ent standpoint. Cunn’s full chapter on the subject shows a clear understanding
of many issues. It is quite frustrating that he does not provide any proof for
the many results he states, all of them being very accurate.

In his preliminary definitions, Cunn makes the difference between decimal
an non-decimal numbers, what he calls terminates and interminates, noticing
two pages later that “Every Terminate may be consider’d as Interminate, by
making Cyphers the Repetend”.3

The way Cunn understands ultimately periodic expansions is very combina-
torial, being in particular highly interested in the length of the periodic part

3He also unifies finite and periodic decimal expansions by defining the notion of compleat
decimal, but without using it afterwards; he also avoids talking explicitely about aperiodic
expansions, opposing compleat decimals to approximate ones, “that hath some places true,
but all the following ones uncertain”. This separation may be understood as algorithmical,
in the sense that approximate decimals are those for which there is no obvious rule for their
sequence of digits.
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of an expansion. Cunn’s perspective is close to what we call the WCP repre-
sentation of numbers in Section 4.2. He mentions explicitely what corresponds
to the shift identification and circular powers identification. He understands it
both ways, that is: a repetend like 56 can be extended as 565656, but also “if
the Repetend consists of some other Repetend of fewer places, retain the latter
only”. He also states in a general forms results given by Wallis, as well as the
equality 0.N = N/99 . . . 9 (with as many 9s as the length of N). He explains
precisely, and with examples, how to add and substract ultimately periodic
expansion, but also how to multiply and divide them.

With such an approach, it is quite inevitable that Cunn is also interested
specifically in 0.999 . . ., writing what is possibly the first explicit remark on this
expression, made as a theorem stating that (Cunn, 1714, p. 63):

Instead of .9999 an so on continually, put an Unit, for that is either
equal to this, or else wants of it less than any thing assignable.

Unfortunately, this observation is nowhere followed by anything else, nei-
ther for a more rigorous proof nor in subsequent rules and examples. Hence, we
cannot know for sure the reason why Cunn made such a fundamental observa-
tion. Even some of his subsequent examples which could explicitely require the
identification of 0.999 . . . and 1 (like 3.176 × 0.3 = 0.9530) are treated with a
method that does not need it.

After addition and substraction, Cunn goes for multiplication, which is much
more difficult as we already mentioned in Proposition 2 (see also Section 6).
He states his results in increasing complexity, eventually providing complete
algorithms, valid in all possible cases. Two statements given by Cunn (1714, p.
66) are particularly striking:

If any required Root of some terminate Number be not exactly had
from the Places given, it cannot be exactly had.

If any required Root of some circulating Expression doth not repeat
from the Repetend once used, it cannot repeat at all.

Even if these sentences are quite imprecise, we can interpret them as stating
that if x ∈ D then n

√
x is either decimal or irrational, and that the same is true

for x ∈ Q. It is probable that, here, Cunn is simply restating the corresponding
remark made by Wallis (see the beginning of section 3). Unfortunately, he does
not try to go beyond this statement and provide any clue for a proof in the spirit
of his repetends. (See Theorem 9 for such a proof of a more general statement.)

3.3 Edward Hatton: accounting and recreational mathe-
matics

Hatton’s presentation of decimal arithmetics can be seen as a rationalization
of some ideas on numbers sometimes rather naive. For example, in (Hatton,
1721, p. 131), Hatton defines decimal numbers as fractions whose denominator
is a power of 10, then goes for the decimal expansion of them, and eventually
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consider decimal numbers as possibly “infinite” (i.e. with infinitely many dig-
its). One may interpret it as an implicit shift from the arithmetical definition
of decimal numbers (fraction of denominator 10n) to a combinatorial one (a
sequence of digits), the latter one being praised by Hatton “because so like to
an intire Number” (Hatton, 1721, p. 13).

In (Hatton, 1721, p. 147), Hatton presents what is possibly the first historical
example of an explicit computation leading to a number ending with infinitely
many 9s, namely the product 0.12564 × 0.00009 = 0.0000113079, as shown in
Figure 4. (In Hatton’s notation, the “r 1” means that the one last digit is to be
repeated ad infinitum, as he explains it in (Hatton, 1721, p. 134).)

Figure 4: Hatton’s computation of 0.12564× 0.00009 = 0.0000113079.

As before, both factors are regarded as “Decimals”. The justification for
this calculation consists in reporting adequately the carry for the periodic part.
To quote Hatton, who is quite clear here (Hatton, 1721, p. 147-148):

Note, That in the fourth Example, because the 4 is repeated ad
infinitum, therefore I say, 9 times 4 is 36, and 3 (which would be
carry’d if you actually put down another 4) is 39 ; put down 9, and
carry 3. Now if you had put down and multiplied 100 Fours of those
repeated, so many Nines would also be repeated in the Product ;
but for brevity-sake I only put down one of each with an r.

The main difference with Cunn is the fact that Hatton introduces the sign
r1 to unify the infinite sequence of digits.

Hatton is not really interested in a general theory of calculation with periodic
expressions. In his second work on the subject (Hatton, 1728), he sees the
question merely as practical or recreational. He provides a few examples for
which a quite naive algorithm is sufficient (as it is already the case in (Hatton,
1721) even if there are more examples and details in the latter). Still, Hatton’s
1721 book proves that Hatton does understand how to calculate with periodic
expansions.

Nevertheless, one of his calculations makes it quite clear that identifying 0.9
and 1 is beyond his scope (see Figure 5).
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Figure 5: Hatton’s non-identification of 362139999.9 with 362140000.

3.4 Alexander Malcolm: 0.9 = 1 and beyond

In 1730, Alexander Malcolm (1730, p. 472) provides what is possibly the first
general statement about the existence of two decimal expansions for decimal
numbers (Figure 6), as well as a rigorous proof of it.

Figure 6: Malcolm’s assertion on decimal expansions of decimal numbers.

By the “Repetend of any Circulates”, Malcolm means the periodic part of
the decimal expansion of a number. Also, Malcolm writes 9̇ for our 9, hence
the equality .9̇ = 1 corresponds exactly to our 0.9 = 1. The theorem he refers
to states the general correspondence between rational numbers and ultimately
periodic expansions, based on the equality 0.M = M/(10` − 1), where ` is the
number of digits in M . Malcolm proves this theorem at length, by the use of
the formula of the sum of the terms of a geometric sequence.

3.5 John Marsh

Wherever all previous authors consider periodic decimal expansions rather as
an aspect of decimal arithmetics among others, John Marsh is the first, in 1742,
to write a book fully devoted to this single notion (Marsh, 1742). (For an
extensive presentation of his work, we refer to (Melville, 2018).) Marsh is fully
aware of the authors before him, but want to get rid of some mistakes he found
in their works. He produces general algorithms for multiplication and division,
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and understands the problems arising by rapidly increasing length of periodic
decimal parts in calculations (see our Proposition 2).

Marsh does understand very well the equality 0.999 . . . = 1, and states the
same general result as Malcolm (see previous section), providing some more
general examples like 19.9 = 20 and 399.9 = 400 (Marsh, 1742, p. 16). His
justification of the equality is mainly topological, close to the argument given
in (Dubinsky et al., 2005, p. 261-262).

Figure 7: Marsh’s argument for 0.9 = 1

The equality 0.9 = 1 seems very natural to Marsh, as illustrates his first
sentence of his proof (“The Reason is manifest”). Marsh is possibly the first
author to show this equality in action at length, providing a lot of examples of
its usefulness in subsequent calculations. His first explicit case (Marsh, 1742, p.
36) is a calculation reproduced here in Figure 8, corresponding to the calculation
0.571428 + 0.285714 + 0.142857 = 0.9 = 1. It appears among his first examples
of computation with periodic expansions.

Figure 8: A computation made by Marsh with periodic expansion, mentioning
the identification of 0.9 with 1.

Beforehand (Marsh, 1742, p. 32), we may find the same kind of identification
reproduced in Figure 3.5 but only in an indirect manner, in the calculation
0.93 + 0.73 + 0.26 + 0.06.

The result is 2.00 and not 1.99 since the rule Marsh is following (given p.
30) is more or less equivalent to consider the “circulate” digits of each number
as ninths parts, as Brown does (see Section 3.1).

20



Figure 9: Another calculation made by Marsh, with the implicit assumption
that 0.9 = 1

3.6 An APOS interpretation

The work of the previous authors (and some others) on decimal expansion of
rational numbers can be interpretated in the framework of apos theory. Here
we focus on two aspects. The first one is the number obtained, with infinitely
many digits. It may be understood as a process or object, here referred as P1

and O1. The second aspect is the understanding of the periodic part, which can
also constitute a process or an object, P2 and O2. Besides the production of
decimals by division (P1 and P2), we are interested more specifically in opera-
tions on objects O1 and O2 (which can also be interpretated as stages of apos
theory) as well as the equality 0.9 = 1 which allows to regard a fraction and its
corresponding decimal expansion as equivalent, defining a rational number.

Wallis is at the stage of objects O1 and O2, furthermore asking for the length
of the periodic parts. He is much interested in O2, and not so much in O1. He
does not consider operations on periodic parts, and does not seem to remark
the equality 0.9 = 1. He uses commas to circumscribe a periodic part, as in
0.803, 571428, 571428, 57&c. Wallis has a more general notion of a number,
mentioning the sexagesimal numeration system and, above all, real numbers
(Wallis, chapter LXXXIX):

But the concinnity which thus appears in the interminate Quo-
tient of a Division, (the same numbers again returning in a con-
tinual Circulation ;) is not to be expected in like manner in the
Extraction of Roots, (Square, Cubick, or of higher Powers.) For
though the Surd Root may be continued by Approximation in Dec-
imal parts, infinitely: Yet we have not therein the like recurrence of
the numeral Figures in the same order, as in Division we had. As√

2 = 1.41421356+. Which yet hiders not but that this approxima-
tion may be safely admitted in practice; and if so supposed infinitely
continued, must be supposed to equal the Root of that Surd number;
as truly as 0.33333, &c, infinitely, to equal 1

3 .

The stage Totality is recognizable, with a specific + sign, meaning that the
digits that come next are different from the first ones, providing the status of
an object.
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Brown seems to be at the stage O1, operating on O1 as if it were decimal
numbers (by appending enough digits). We can also interpret what he does as
a desencapsulation of O1 allowing to operate (stage Action). This is facilitated
by the fact that the numbers he deals with come from English monetary units,
hence have periodic parts of length 1, essentially 3 and 6 (deriving from 1/3
and 1/12). For example, he does not identify the periodic part of 908/19, only
writing “etc”. He seems to be at the P2 process stage, since he does not operate
directly on periodic parts, even if the circular powers identification (see section
4.2) is recognizable (Brown, p. 11):

Here you see the Decimal, for one penny is infinite, and yet you may
limit it at any one of the reiterated Figures after Decimal thirds, or
you may extend it as much further as you pleased.

Cunn is at stage O1, with an understanding of the equivalence between pe-
riodic decimal expansions and fractions, the use of integers of the form 99 · · · 99
for the denominator, operations made on O1 by algorithms showing the Process
stage. He is also at stage O2. He uses explicitely the word “period”, and iden-
tifies 222222 with 2 (circular powers identification), with a specific notation for
these, made of slashes delimiting the period (as in 8.59/35881/ for 8.5935881). He
even provides, for a multiplication, a period of length 24. He gets the identity
0.9 = 1, refers to Wallis and makes use of his notation + for the aperiodicity of
square roots.

One of Hatton’s calculations makes it quite clear that identifying 0.9 and 1 is
beyond his scope (see Figure 5). Nevertheless, we can consider that he is at the
stage O1, since he succeedes in making computation with them. He is also at the
stage O2, with a specific notation. The Object is very clearly stated. However,
he desencapsulates it into the Process when writing “because the 4 is repeated”
to compute the product, then reencapsulates the Process into the Object with
the notation r6 to indicates that six digits are to be repeated. He carries out
some multiplications involving 1/3, hence with periodic parts of length 1. He
seems quite close to Brown when he makes calculations with appending decimals
rather than considering true periodic parts (apart from very simple cases like
3r + 6r).

Malcolm is at stages O1 and O2, with operations at the Process stage (with
algorithms). He identifies clearly the equality 0.9 = 1, based on a geometric
series (without details). The equivalence between fraction and periodic decimal
expansion is explicit, with the periodic part as a numerator and 10` − 1 as
a denominator. Malcolm’s notation for periodic part is made of a point over
the initial and final digits of it. Also, Malcolm provides some examples of
multiplication of periodic decimal expansions, but rather suggests to convert
them into fractions (Malcolm, p. 483): “it is much more tedious than the
Multiplication of Finite Decimals, considering how easily the Finite Value of a
Circulate is found ; and how easy it is to divide their Denominators”.

In his treatise, Marsh considers the full set of (positive) rational numbers
and provide complete computation algorithms (referring to Wallis, Brown, Cunn
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and Malcolm). He is at stage O1 and O2 with his algorithms for standard oper-
ations (Process), but also writes a chapter on powers and roots. Multiplication
reiterated could indicates that he is at the Object stage for operations. He also
identifies the equality 0.9 = 1, with an explicit topological argument relying on
a geometric series. He makes the equivalence between fractions and periodic
expansions explicit, and he uses Malcolm’s notations for periodic parts.

None of these authors set up a coherent and complete structure of the set of
rational numbers from periodic decimal expansion, even if Cunn, Malcolm, and
above them Marsh, were not far from it. To be more precise, consider the apos
notion of Schema, defined in (Arnon et al. p. 111) as “a tool for understanding
how knowledge is structured and its development through the learning process”.
More specifically, we are interested in the schema for the set of rational numbers,
in the three stages intra-Q, inter-Q and trans-Q. The same paper explains these
stages as follows:

In apos theory, the Intra-stage of Schema development is charac-
terized by a focus on individual Actions, Processes, and Objects in
isolation from other cognitive items. At the Intra-stage, the student
concentrates on a repeatable action or operation and may recognize
some relationships or transformations among Actions on different
components of the Schema. (p. 114)

The Inter-stage is characterized by the construction of relationships
and transformations among the Processes and Objects that make up
the Schema. At this stage, an individual may begin to group items
together and even call them by the same name. (p. 116)

As a student reflects upon coordinations and relations developed in
the Inter-stage, new structures arise. Through syntheses of those re-
lations, the student becomes aware of the transformations involved
in the Schema and constructs an underlying structure. This leads to
development of the Schema at the Trans-stage. A critical aspect of
the Trans-stage is development of coherence. Coherence is demon-
strated by an individual’s ability to recognize the relationships that
are included in the Schema and, when facing a problem situation,
to determine whether the problem situation fits within the scope of
the Schema. In some cases, the constructions involved in the math-
ematical definitions of a concept show coherence of the Schema; this
means the individual is able to reflect on the explicit structure of the
Schema and select from it the content that is suitable in solution of
the problem. (p. 118)

Hence, we can specify the three stages of the Schema for rational numbers:

• Intra-Q: periodic decimal expansions derive from fractions, with possibly
the periodic part at a Process or Object stage, and also possibly Actions
on these objects (operations). Wallis, Brown and Hatton are at this stage.
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• Inter-Q: the fundamental relationship is the equality 0.9 = 1, which pro-
vides the link between the two equivalent representations of rational num-
bers. These ones can be properly defined as periodic decimal expansions,
which are not subordinate to fractions anymore. The periodic parts are
seen as objects, operations with algorithms can be at the Process stage.
Notions of topology may arise to justify that 0.9 = 1. This stage is reached
by Cunn and Malcolm.

• Trans-Q: the structure of periodic decimal expansions is coherent, with
full equivalence with fractions, and operations as Objects and with their
algebraic properties, defining the field Q. With his treatise devoted to
periodic decimal expansions and operations at the stage Object, Marsh is
at this stage, even if not completely since he does not identify the structure
of Q with decimal expansions. (The fact is that algebraic structures were
not really considered for themselves at the time.)

It seems that such an analysis about periodic decimal expansions was never
carried on to its end, since the reference Schema is mainly the one for R (as
we can already see for Wallis). In the next section, the aim is to set up a
mathematical framework that could constitute the basis for a Schema trans-Q.

4 Combinatorial definitions for sets isomorphic
to Q

Here and in the next sections, we are interested in more strictly mathemati-
cal aspects of circular words in base b. We wish to investigate what can be
done with a purely combinatorial definition of the set Q without making use
of fractions. Our aim is to define two set (hereafter named QWCP and QDC)
that will be eventually proved to correspond to Q. Both definitions derive from
the characterization of rational numbers given by Theorem 1, namely: for any
integer b > 2, a number is rational iff its b-expansion is ultimately periodic.

The definition of the two setsQWCP andQDC are quite similar, but are suited
for different purposes. The first one remains close to the usual perception of
b-expansion, the second one is better for theoretical reasoning. Ultimately, such
representations will allow us to define the field Q (Sections 5 and 6), and to
provide a new and quite simple proof that algebraic integers are either integers
or irrational numbers (Section 7).

4.1 Circular words

Let b > 2 be a fixed integer. A b-expansion of a number x is a codage of x by
a sequence, called a word, of elements of the alphabet A := {0, 1, . . . , β}, where
β := b−1. A finite word W is generically written w0w1 · · ·w`−1 (with wi ∈ A for
all i), where ` is the length ofW , also written |W |. For W ′ = w′0 · · ·w′`′ , we define
WW ′ as the concatenation of W and W ′, that is: WW ′ = w0 · · ·w`w

′
0 · · ·w′`′ .

Defining W 1 := W , we also put, for any n > 2, Wn := WWn−1.
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Occasionaly there will be some ambiguity with the notation for exponents,
but the context will make things clear. For example, the expression β` will
always stand for the concatenation of ` copies of the single-letter word β (and
never for the value β to the `-th power), whereas bn will always denote the usual
power of the natural number b.

The application N(w0 . . . w`−1) :=
∑
i<`

wib
`−1−i defines a one-to-one corre-

spondence between the set of finite words with w0 6= 0 and the set N∗. Such
an application corresponds to the usual writing in base b (in which the right-
most letter w`−1 corresponds to units). To avoid cumbrous notations, we will
frequently confuse W and N(W ) in the sequel. Again, the context will make
things clear.

We already encountered infinite periodic words in the previous sections, de-
noted by W (as in 0.9 or 0.873). A slightly distinct notion is the notion of

circular word of length `, a word W̃ whose letters are indexed by Z/`Z instead
of {0, 1, . . . , ` − 1}. Intuitively speaking, a circular word it is a finite word in
which its final letter is followed by its initial one (indexed by 0, so one may
speak of dotted circular words for the sake of precision). The set of circular

words of length ` is denoted by Ã`, and the set
⋃
`>1

Ã` of all circular words

on the alphabet A is written Ã. The shift σ on Ã is the bijection such that
σ( ˜w0 . . . w`−1) = ˜w1 . . . w`−1w0 for any circular word of length `.

Despite its natural appearance in decimal expansion of rational numbers, the
study of circular words seems to be very recent (Rittaud & Vivier, 2012b, 2011;
Rittaud, to appear), apart from its intuitive utilization.4 Here is a classical and
interesting application:

Theorem 3 (Fermat’s little theorem). Let p be a prime number. For any
integer b, we have bp ≡ b (mod p).

Proof. Since p is prime, for any W̃ ∈ Ãp not of the form w̃p, we have that
W̃ , σ(W̃ ), . . . , σp−1(W̃ ) are different circular words. Hence, Ãp splits into
subsets made of exactly p elements (the equivalence classes under the equivalence

relation W̃ ∼ W̃ ′ iff W̃ ′ = σk(W̃ ) for some k, except for the words of the form
w̃p), plus the subset {w̃p, w ∈ A}, which contains exactly b elements. Therefore,

the cardinality of Ãp, equal to bp, is also of the form kp + b, where k is some
integer. We thus have bp ≡ b (mod p).

Note that, apart from the primality of p, the proof relies on combinatorics,
not on arithmetic. A way to generalize the theorem is to consider circular words
with some combinatorial constraints. For example, let A := {0, 1}, and consider

4Wallis already coins the term “circulation”; Marsh uses indifferently the terms “circulant”
and “repetend”; between Wallis and Marsh, William Jones (Jones, 1706, p. 104-105) talked
of “circulating figures”, Samuel Cunn (1714, p. 61) of “circulating numbers”, Alexander
Malcolm (1730, p. 150) of “circulating decimals”. Some years after Marsh, John Robertson
(Robertson, 1769) speaks of “circulating fractions”.
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the set of circular words of length ` in which the subword 11 does not appear

(note that 11 appears in the word 1̃0`−21 because of the circular structure). It
can be shown that its cardinality is given by the Lucas sequence (L`)` defined by
L1 = 1, L2 = 3 and L` = L`−1 +L`−2 (see Rittaud & Vivier, 2012b). The same
proof as before then gives the following variant of Fermat’s Little Theorem: for
any prime number p, we have Lp ≡ 1 (mod p). This result can, of course, be
generalized to other combinatorial constraints5.

4.2 The set QWCP of word-circular-point representation of
rational numbers

This set is in some sense the most natural one, and from a teaching perspective
the simplest one. As presented in Section 3, it is, at least in an implicit way,
the representation chosen by English authors of the xviiith century involved in
the study of periodic decimal expansion for practical arithmetics.

Consider the rational number whose decimal expansion is 24.83756. We
will say here that its word-circular-point representation (WCP) is the triple

(24837, 5̃6,−3). In this triple, the part 24837 corresponds to the aperiodic part

of the expansion, 5̃6 corresponds to the periodic part, and −3 localizes the
position of the decimal point (by counting the number of digits between it and
the beginning of the periodic part, counted negatively if the decimal point lies
in the aperiodic part and positively otherwise). Also, to get negative rational
numbers, we would need to symmetrize the set, which can be done by defining
quadruples (s,W, P̃ , c) with s ∈ {+,−}. This would be quite cumbrous, so we
will not consider it in the following, but in Section 5.3 where it is needed to get
the group structure.

It is easy to prove that the rational number that corresponds to the given
triple (W, P̃ , c) is bc

(
W + P/β|P |

)
= bc(W + 0.PPP . . .). To make this ap-

plication bijective, several identifications are to be made to take into account
that several expressions of the form (W, P̃ , c) correspond to the same rational
number. These identifications are:

1. the leading zeroes identification: (W, P̃ , c) ≡ (0W, P̃ , c);

2. the circular powers identification: (W, P̃ , c) ≡ (W, P̃ k, c) for any k ∈ N∗;

3. the “0.999 . . . = 1” identification: (W, β̃, c) ≡ (W + 1, 0̃, c);

4. the shift identification: (W, P̃ , c) ≡ (Wp0, σ(P̃ ), c − 1), where p0 is the

initial letter of P̃ ;

Definition 1. The set QWCP is the set of triples (W, P̃ , c) quotiented by these
four identifications.

5A lot of what is presented here can probably be generalized to b-expansions for algebraic
values of b. (The previous example corresponds to the case b = (1 +

√
5)/2.) Nevertheless,

the extension of the theory for these values is in no way trivial and still a work in progress.
For example, Theorem 4 does not hold for b = (1 +

√
5)/2.
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Most of the English authors of the xviiith state the circular powers and the
shift identifications, mainly for the purpose of addition (see Section 5.1).

The three first identifications are somewhat inescapable: the first one pro-
vides a rule for the aperiodic part, the second one a rule for the periodic part,
and the third one articulates the link between the two, link without which the
structure would reduces to a direct product. There is still a gap between the
two firsts, easily accepted at an elementary level, and the third one, much more
difficult to accept (see Section 5.4 for a way to make the third one “natural”;
note also that we will make use of it only when the addition of rational num-
bers is defined). As for the shift identification, it does not rely on a fundamental
structure, it is more a technical identification, which is less satisfactory in a theo-
retical meaning. This inconvenience will be overcome by our second construction
(section 4.3), in which there will be no need for such a shift identification.

Even if we will not elaborate on this later, observe that the integer c is more
important for addition than for multiplication in QWCP. Indeed, addition of
numbers given on a b-expansion form requires a clear positioning of the digits,
whereas multiplication does not. As can be checked, Marsh’s algorithm for
multiplication (Section 3.5) does not fundamentally need a value c. Algebraic

properties of the set made of pairs (W, P̃ ) has some historical roots since, as
shown by historians like François Thureau-Dangin (1930, p. 117) and Christine
Proust (2007, p. 249-251), such a numeration system without position was
the underlying mathematical structure in use in the Babylonian sexagesimal
numeration system, four millenia ago.

4.3 The set QDC of decimal-circular representation of ra-
tional numbers

This second representation is interesting in that it can be seen as a more natural
extension of the set Db of b-decimal numbers (i.e. the set of all rational numbers
which can be written on the form δ = u · be with u ∈ Z and e ∈ Z).

First, we define a ring Db isomorphic to the ring Db in a combinatorial way
similar to the previous ones. An element δ of Db is a finite word W on the
alphabet A together with an integer c with 0 6 c 6 |W | (c corresponds to the
place of the “decimal” point, with c = 0 for c after the rightmost letter of W )
and a sign s ∈ {+,−}. The necessary and sufficient identifications that make
Db isomorphic to Dd are therefore: (s,W, c) = (s, 0W, c) = (s,W0, c+ 1).

Up to some more identifications, the set QDC is then defined as Db × Ã. To
understand the way it is done, consider again the rational number r = 24.83756.
Its representation by a pair (δ, P̃ ) consists, in some sense, in forcing its periodic
part to start right after the decimal point by writing the number as the sum
24.181 + 0.65, so the number is represented by the pair (24.181, 6̃5). This is the
decimal-circular representation.

The (δ, P̃ ) corresponds to the rational number δ + P/β|P | = δ + 0.PPP . . ..
As for the identifications we need to make ultimately QDC isomorphic to Q
as fields, they appear to be more natural than those for QWCP. The leading
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zeroes identification now derives from the preliminary construction of Db and,
most importantly, the shift identification is not required anymore. Moreover,
there is no need for an ex post symmetrization since Db is already a group. The
remaining identifications are:

• the circular powers identification: (δ, P̃ ) = (δ, P̃ k) for any k ∈ N∗;

• the “0.999 . . . = 1” identification: (δ, β̃) ≡ (δ+1, 0̃), where δ = 1 is defined
in a standard way.

Definition 2. The set QDC is the set of pairs (δ, P̃ ) quotiented by these iden-
tifications.

In a teaching perspective, the main inconvenient of QDC is that the decimal
number δ may strongly differ from the usual aperiodic part of the represented
number. For example, the DC representation of 2.14444 . . . is (1.7, 4̃), hence its
integer part is not equal to the integral part of its δ. It can even occur in some
cases that δ is negative whereas r is positive, as the example of 0.47777 . . . =
(−0.3, 7̃) shows.

Apart from this inconvenience and the cumbreness it produces for ordering
considerations (see Section 4.4), QDC appears to be considerably more tractable
than QWCP in most aspects.

4.4 Order on QWCP and QDC

Order on QWCP and QDC are slightly difficult to be defined on a proper way,
since the identifications forced by ≡ makes it dfficult to provide a definition
simply from triples (W, P̃ , c) and (δ, P̃ ).

First, we can define the lexicographical order 6 on the set of finite words
on the alphabet A in the following way: for W = w` · · ·w1 and W ′ = w′`′ · · ·w′1
with ` < `′, replace first W by 0`

′−`W to ensure both words have the same
length, then let k be the biggest index for which wk 6= w′k (if any; otherwise
W = W ′). Then, W and W ′ are in the same order as wk and w′k are in A.

In Ã, we can define a lexicographical order as well: to compare two circular

words P̃ and P̃ ′, we use the identifications P̃ k = P̃ and P̃ ′k′ = P̃ ′ to get two
circular words of the same length, then use the lexicographical order to decide
which one is bigger than the other.

In QWCP, to compare (W, P̃ , c) and (W ′, P̃ ′, c′), we first use the circular

powers and shift identifications to transform c′ into c and to have |P̃ | = |P̃ ′|,
then the leading zeroes identification to get |W | = |W ′|. Since the sets A` and

Ã` are ordered by the lexicographical order (both denoted by <), a first natural
order on QWCP is the semiotic one, here denoted by ≺ (and 4):

(W, P̃ , c) ≺ (W ′, P̃ ′, c)⇐⇒
{
W < W ′ or

W = W ′ and P̃ < P̃ ′,
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the binary relation 4 being defined in the same way, only replacing P̃ < P̃ ′ by
P̃ 6 P̃ ′.

Such a semiotic order suggests, as scholars and students often believe, that
0.9 < 1 (since (0, 9̃, 0) ≺ (1, 0̃, 0)). To take into account the “0.999 . . . = 1”
identification, the order 6 we wish to define is the following one:

(W, P̃ , c) 6 (W ′, P̃ ′, c)⇐⇒


(W, P̃ , c) 4 (W ′, P̃ ′, c) or

W ′ = W + 1, P̃ = 0̃ and P̃ ′ = 9̃ or

W = W ′ + 1, P̃ = 9̃ and P̃ ′ = 0̃.

Now, let us compare the DC representations of x = (δ, P̃ ) and x′ = (δ′, P̃ ′).

By the circular powers identification, we may assume that |P̃ | = |P̃ ′| = `. By
the equalities x = δ + P/β` and x′ = δ′ + P ′/β`, we easily get that x < x′ iff
b`(δ− δ′) < δ− δ′ +P ′ −P (where P and P ′ are to be understood as integers).
This way to present the inequality allows to minimize the non-combinatorial
calculations to be made too compare x and x′ (recalling that multiplying by b`

corresponds to a shift).

5 The abelian groups (QWCP,+) and (QDC,+)

5.1 Abelian structure on circular words

Circular words of length ` can be added in the same way as for usual b-expansion
of integers, except when, as in the right example in Figure 10, the sum of the
leftmost digits (7 + 5) produces a carry, which has to be put on the rightmost
place (thus changing the 6 into a 7).

Figure 10: Examples of summations of circular words.

The addition in Ã` is associative, commutative and admits 0̃` as a neutral

element. Unfortunately, this addition does not make Ã` a group, since none of

its elements admits an inverse element (apart for 0̃` itself). To get an abelian

group, the following observation can be made: for any W̃ ∈ Ã` \
{

0̃`
}

, we have

W̃ + β̃` = W̃ . In other words, β̃` is an “almost neutral element” of (Ã`,+)
(see also (Rittaud & Vivier, 2012a). If we can make it a true neutral element,
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then Ã` becomes a group: indeed, the opposite of any W̃ is the circular word
in which each letter w of W̃ is replaced by β − w.

The idea, behind which lies for a part the equality 0.999 . . . = 1, is therefore

to identify 0̃` and β̃`, thus defining a new set, G`, quotient of Ã` under the single

equivalence 0̃` = β̃`. On this new set the addition is well-defined (since we have

0̃` + β̃` = β̃` = 0̃`) and makes G` an abelian group. Since G` is also monogenetic

(a generator is 0̃`−11) and contains b` − 1 elements, we have:

Theorem 4. The abelian group G` is isomorphic to Z/(b` − 1)Z.

Note that, in G`, the shift corresponds to the multiplication by b. As a con-
sequence, any subgroup H is shift-invariant (that is: σ(H) = H).

Now, put G =
⋃
`>1

G`, and let G∗ be the quotient set G̃/ ≡ defined by the

equivalence relation that identifies a circular word with all its nontrivial powers,
that is:

W̃ ≡ W̃ ′ ⇐⇒ W̃m = W̃ ′n for some positive m and n.

Thus, an addition in G∗ can be easily derived from the addition in G`. For

example, we have 5̃4 + 6̃27 = 5̃45454 + 6̃27627 = 1̃73082, and it is easily proved
that such a definition is consistent.

Theorem 5. The set G∗ equipped with this addition is a abelian group. Any
finite subgroup of it is monogenetic. If p is a prime number, then the set Pp made
of all circular words of order p (plus the neutral element) is a finite subgroup
isomorphic to Z/pZ iff b and p are mutually primes.

Proof. The first part of the theorem is trivial. Consider a finite subgroup of G∗,
say H. By identification of circular words with their powers, it is possible to
find an ` > 0 such that any element of H has a representative in G̃`. Hence,
from Theorem 4 we deduce that H is monogenetic.

Now, for any ` > 0, consider the set L` of all the elements of G∗ of order
p which admits a representative of length at most `. As before, there exists
`′ > 0 such that all the elements of L` has a representative in G`′ . Hence,
completing the set with the neutral element of G`′ , It is easily proved that we
get a subgroup of G`′ . Again by Theorem 4, L` is therefore either reduced to
the neutral element or equal to Z/pZ.

The last remaining thing to do is to prove that, for some big enough `, the
set L` is nontrivial iff b and p are mutually primes. Two different presentations
of the proof can be given: a purely algebraical one and a presentation with the
help of common fractions. Here we give both of them, the first one being more in
line with the genral way we construct our sets, the second being an unexpected
application of Proposition 1.

Let us first provide the algebraical proof. First, assume b and p without any
common divisor. By Fermat’s little theorem, there exists ` > 0 and v ∈ N such
that b` − 1 = vp, hence v is of order p in Z/(b` − 1)Z which is isomorphic to G`
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by Theorem 4, so we are done. Now assume b = kp and that there exists g ∈ G`
of order p. By the group isomorphism, we can therefore find v ∈ Z such that
vp ≡ 0 mod (b` − 1), so we can find an integer c such that vp = c(b` − 1). Since
p and b` − 1 are mutually prime and p divides c(b` − 1), p divides c, so c = pc′

and v = c′(b` − 1), so g cannot be of order p.
Now for the second presentation of the proof. Again, assume first that b and

p have no common divisor. Then, the b-expansion of 1/p is purely periodic by
Proposition 1, and the circular word associated to its period provides an element
of L` (for big enough `). Conversely, assume that L` has a nontrivial element

W̃ , and consider the number x = 0.W . We then have that n := px ∈ N∗, so
n/p = x has a purely periodic b-expansion, hence p and b are mutually primes
by Proposition 1.

5.2 The commutative ring Db and its action on circular
words

The standard action of Z on Ã defined by the addition with “circular carry”
extends naturally to an action of the ring Db, which therefore makes Ã a module
over Db, hence also on Db (as defined in Section 4.3). Such an extension goes
as follows: let δ = u · be ∈ Db, and let (s,W, c) be its counterpart in Db. Let

P̃ ∈ G∗. . Then, δP̃ is defined as σc(s ·WP̃ ) (or, equivalently, as σe(uP̃ )) where
σ is the shift operator on circular words and W stands for its corresponding
integer. Observe that, in this expression, σc, s and W commute (as well as u
and σe).

5.3 Abelian structure on (QWCP,+) and (QDC,+)

The simplicity of the addition in G` cannot remain unchanged when considering
ultimately periodic b-expansion of rational numbers, since we have to deal with
a possible carry. Therefore, we need some complement to get the additive struc-
ture from the additive structure of circular words. Defining binary operations
is a task simpler in QDC than in QWCP. Nevertheless, because of the distinct
interests of these representations, we will do it for both of them.

For any word W and any ` > 0, define q`(W ) as the quotient of the Euclidean
division of W by β`. Most of the time we will simply write q(W ) instead, under

the following type of assumption: let P̃1 and P̃2 be two circular words, of lengths
`1 and `2. Then, q(P1+P2) stands for q`(Q1+Q2), where ` is a common multiple

of `1 and `2 and Q̃i = P̃
`/`i
i .

With such definition (which in fact corresponds to the definition of a carry),
we can define addition in QWCP and in QDC. As announced, it is immediate in
the latter one:(

δ, P̃
)

+
(
δ′, P̃ ′

)
:=
(
δ + δ′ + q(P + P ′), P̃ + P̃ ′

)
.

31



As regards QWCP, we have to suppose that the decimal points are at the
same place to add conveniently the two numbers:(

W, P̃ , c
)

+
(
W ′, P̃ ′, c

)
=
(
W +W ′ + q(P + P ′), P̃ + P̃ ′, c

)
,

and to add two numbers with different values for c we need to make use of the
shift identification. Such a theoretical cumberness is a quite strong argument in
favour of the use of QDC instead, even if the shift identification often remains
an easy task in practice.

In the case QWCP, as is briefly indicated in Section 4.2, elements are in fact
quadruples (s,W, P̃ , c) with s ∈ {+,−}. The general definition of the addition

has to be given also for two quadruples of different signs, say (+,W, P̃ , c) +

(−,W ′, P̃ ′, c). By the “0.999. . . =1” identification, we can assume that none of

the quadruples contains the circular word 9̃, hence it makes sense to compare P̃
and P̃ ′ with the lexicographical order. Also, by the shift identification, we can
suppose c = 0. We then have

(+,W, P̃ , 0)+(−,W ′, P̃ ′, 0) =


(+,W −W ′, P̃ − P̃ ′, 0) if W >W ′ and P̃ > P̃ ′

(+,W −W ′ − 1, P̃ ′ − P̃ , 0) if W > W ′ and P̃ < P̃ ′

(−, 0, P̃ ′ − P̃ , 0) if W = W ′ and P̃ < P̃ ′

the other cases being obtained by a simple symmetrization.
There is no need for such exhaustion of cases in the context of QDC, which is

another argument in favor of its use. Nevertheless, the opposite of an element is
less simply written: −(δ, P̃ ) = (−δ−1,−P̃ ). To avoid this quite counterintuitive

minus 1, a possibility would be to define the circular words P̃ in an alphabet
A symmetric around 0 (and reconsider the theory accordingly). The problem
is then that the expression of numbers would become even more different from
the common one, and also that this symmetrization could work only for a odd
value of the base b.

Eventually, what precedes leads to the following

Theorem 6. QWCP and QDC are abelian groups.

5.4 0.999. . . =1 from the additive structure

The additive structure defined on section 5.3, either on the triples (W, P̃ , c) or on

the pairs (δ, P̃ ), provides a powerful argument to make the equality 0.999 . . . = 1
sensible. Indeed, observe that, under the rules defining the addition, we have,

for any P̃ ′ 6= 0̃`:

(W +W ′ + 1, P̃ ′, c) =

{
(W, β̃, c) + (W ′, P̃ ′, c)

(W + 1, 0̃, c) + (W ′, P̃ ′, c)

and

(δ + δ′ + 1, P̃ ′) =

{
(δ, β̃) + (δ′, P̃ ′)

(δ + 1, 0̃) + (δ′, P̃ ′)
.
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Therefore, the cancellation property (a + x = b + x ⇒ a = b) strongly

supports the identifications (W, β̃, c) = (W + 1, 0̃, c) and (δ, β̃) = (δ + 1, 0̃),
which corresponds to the equality 0.999 . . . = 1.

It is an important fact that the identification between 0.999... and 1 is re-
quired for the additive structure of the set of rational numbers. It comes from
algebra, and not from analysis for the completness of R as often mentioned,
even if this identity has implication for continuum of the real numbers set.

It is worth mentioning that in the ”equation method” to prove that 0.9 = 1
(in which 0.9 is written as x, to write that 10x = 9 + x then 9x = 9, hence
x = 1), the cancellation property is used as well. Hence, the process in itself is
directly linked to the assumption that the property is legitimate.

5.5 The b-adic case

For the record, let us also mention briefly that the previous constructions also
allow to define periodic b-adic numbers, which are also the ones that are rational
in Qb by a classical theorem analogous to Theorem 1. Instead of (W, P̃ , c) or

(δ, P̃ ), we may write (P̃ ,W, c) and (P̃ , δ), since b-adic numbers are those whose
expansion in base b has infinitely many digits to the left. The identifications to
be made are the same as in the case of rational numbers, with the only exception
of the “0.999 . . . = 1” one, which has to be replaced by a different one, namely
the “. . . 999 = −1” identification, that writes (β̃,W, c) ≡ (0̃,W − 1, c) for the

WCP representation, and (β̃, δ) ≡ (0̃, δ − 1) for the DC one.

6 Multiplicative structure

6.1 Preliminaries

Theorem 4 could provide us a notion of multiplication for circular words. A
possible presentation of it is to consider the set of circular words of length ` as
the quotient ring Z[X]/(X`− 1, X − b). The point is that such a multiplication
does not correspond to multiplication of periodic parts of b-expansion of rational
numbers.

Let us consider two circular words W̃ and X̃ of lengths ` and `′ respectively.
Their product W̃ × X̃ may be defined as the circular word Ỹ of length n such
that (W/β`) × (X/β`′) = Y/βn, provided that the existence of n is ensured6.
For example, since 0.12× 0.4 = (12/99)× (4/9) = 53872/999999, we may define

1̃2 × 4̃ as 0̃53872. The only contentious point is that, to make this definition
sensible, 0̃ and 9̃ should not be identified anymore, since 0̃ is absorbing whereas
9̃ is neutral.

6This idea may be indirectly recognized in some multiplications made by Marsh (1742),
where he considers only expressions like 0.M to be multiplied together. Nevertheless, since
Marsh does not consider circular words independently of numbers, he does not operate directly
with them.
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Not only we know that no multiplication in G` can therefore correspond
to the multiplication of periodic parts of rational numbers, but an important
difficulty for concrete multiplication of circular words also derived from the
fact that, as illustrated by Proposition 2, the length increases surprisingly fast.
Attempts made by English authors like those mentioned in Section 3 to provide
extensive algorithms were valuable, especially Marsh’s, but remained cumbrous
since none of them endorsed a theoretical point of view which is helpful to get
both a complete algorithm and a rigorous proof of its validity.

In Section 6.2, we provide a generalization of Proposition 2 for the existence
and smallest value of n for the length of Y , knowing those of W and X (under

the previous notation). Such an n allows to define W̃ × X̃ as the circular word

Ỹ of length n such that Y = WXβn/(β` × β`′). Then, an explicit expression
of βn/(β` × β`′) is given in Section 6.3 for ` = `′ = 1, obtained as a conse-
quence of the proof of Theorem 7 (and shown as being a simplifying assumption
without loss of generality). Eventually, Section 6.4 provide an algorithm for
multiplication in Q from circular words.

6.2 Length of a product

This section is devoted to the following result, that extends what we proved in
Proposition 2 in the particular case of b = 10 and ` = `′ = 2.

Theorem 7. Let ` and `′ be two positive integers. The smallest positive integer
n fort which bn−1 is divided by (b`−1)(b`

′ −1) is n = (bgcd(`,`
′)−1) · lcm(`, `′).

In particular, observe that the only case for which n is not strictly bigger
than both ` and `′ is the trivial one b = 2 and min(`, `′) = 1, which has no
interesting structure since a rational number with a periodic part of length 1 in
base 2 necessarily belongs to D2.

The case b = 2 is also interesting in that it is the only case for which, when
` and `′ are mutually prime, the smallest integer n such that bn − 1 divides
(b` − 1)(b`

′ − 1) is the same as the one such that bn − 1 divides both b` − 1 and
b`

′ − 1 (see Theorem 2).
Theorem 7 shows how worse the circular standpoint is compared to usual

fractions as regards practical calculation. Observe also that this result, which
expresses the (typical) length n of 0.M × 0.N as a function of the lengths ` (of
M) and `′ (of N), is very different from Theorem 2 which gives that the length
of the periodic part of 1/(mn) is the l.c.m. of the lengths of 1/m and 1/n (as
asserted first by Wallis) when m and n are mutually primes.

The proof of Theorem 7 can be given in a standard way, but we will also
provide a more fancy presentation. This latter shows how a convenient notation
is sometimes useful to help the understanding of theoretical calculations that
are otherwise quite tiresome.
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6.2.1 Notation and beginning of the proof

We put gcd(`, `′) = d, ` = ad and `′ = a′d. (Thereofore, a and a′ are mutually
primes.) Also, we write lcm(`, `′) = m, so a′` = a`′ = m.

By Theorem 2, any n such that bn− 1 is a multiple of b`− 1 belongs to `N∗,
and the same holds for `′ instead of `. Therefore, we have n ∈ mN∗. What
remains to be proved is that the smallest positive integer k for which bkm− 1 is
divided by (b` − 1)(b`

′ − 1) is k = bd − 1.
First, divide bkm − 1 by b` − 1. The formula for the sum of the first terms

of a geometric sequence gives

bkm − 1

b` − 1
=
bka

′` − 1

b` − 1
=

∑
06j<ka′

b`j =: Sk.

Now, our aim is to compute the Euclidean division of Sk by b`
′ − 1, looking

for the smallest k for which the rest is equal to 0. It is for this part of the proof
that a fancy presentation can be helpful.

6.2.2 A“fancy” presentation of the end of the proof

In numeration in base b, the value Sk can be written as the concatenation of
ka′ copies of the word 0`−11. Also, in the Euclidean division of Sk by b`

′ − 1 we
are preparing to do, we are not interested in the quotient but in the rest.

Consider one of the digits 1 in the base b-expansion of Sk, located at some
position `j (i.e. corresponding to b`j), and apply to it the standard way to
divide by b`

′ − 1. The successive steps makes our digit 1 “jump” by `′ places to
the right, again and again, until it attains some place among the `′ rightmost
digits. Now, consider the digit 1 located at the position `(j − 1), then apply
to it the same algorithm. This new 1 is now jumping to the right, `′ places at
a time, until it reaches one of the `′ rightmost places. The (circular) distance
between the positions of our two final 1s is equal to ` modulo `′.

For the sake of clarity, assume first that ` and `′ are mutually primes. There-
fore, the successive 1 that compose Sk are stacking together in all the possible
`′ rightmost places at the end of their jumps. After the jumps of the first `′ 1s,
each of these places contains exactly one 1. After the jump of the next `′ ones,
each of the `′ rightmost places contains exactly two 1s, etc. Therefore, for Sk

to be divisible by b`
′ − 1 we need a number of 1s in Sk multiple of `′β, so that

the jumps of all the 1s eventually produce an expression of the form (pβ)`
′

at
the rightmost places, which is equal to p · β`′ . The smallest choice is of course
p = 1, so the right value for k is the value for which the number of 1s in Sk is
exactly `′β. The number of 1s in Sk being equal to ka′ = k`′ (since ` and `′ are
mutually primes), we eventually get that k = β.

Now for the general case of gcd(`, `′) = d. The final positions of the 1s after
their jumps are of the form id, for all integers i such that 0 6 id < `′. And, as
before, the `′/d = a′ first 1s displaced are all located at different places. The
next a′ ones stack on the first a′ ones, etc., so after βa′ 1s of Sk made their
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jumps, we get a rest which is the word (0d−1β)a
′
. Take a′ more 1s of Sk and we

get the word (0d−1b)a
′
, whose proper b-expansion writes (0d−210)a

′
. It is then

quite easy to see that we need βda′ digits 1 in Sk to reach a rest equal to β`′ .
Since the number of 1s in Sk is ka′, we eventually get that k = βd = bgcd(`,`

′)−1.

6.2.3 Standard writing of the end of the proof

Let j be such that 0 6 j < ka′, and let `j = q`′+ r be the Euclidean division of
`j by `′, where 0 6 r < `′. The Euclidean division of b`j by b`

′ − 1 is therefore

b`j =

(
br

1− bq`′

1− b`′

)
· (b`

′
− 1) + br.

In the sequel, we write u mod v for the rest of the Euclidean division of u
by v. Hence we can write

Sk =
∑

06j<ka′

b`j

=
∑

06j<ka′

(
b`j mod `′ 1− bq`′

1− b`′

)
· (b`

′
− 1) + b`j mod `′

=

 ∑
06j<ka′

b`j mod `′ 1− bq`′

1− b`′

 · (b`′ − 1) +
∑

06j<ka′

b`j mod `′ .

Let us write S′k for the last sum of the latter expression. Of course, S′k is

positive and increases with k. Therefore, if we can find a k for which S′k = b`
′−1,

then this will ensure that this k is the one we are looking for.
Recall that ` = ad and `′ = a′d, so we can write

S′k =
∑

06j<ka′

bdaj mod da′

=
∑

06j<ka′

(
baj mod a′

)d
=

∑
06s<k

∑
06t<a′

(
ba(sa

′+t) mod a′
)d

=
∑

06s<k

∑
06t<a′

(
bat mod a′

)d
= k

∑
06t<a′

(
bat mod a′

)d
.
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Since a and a′ are mutually primes, this is equal to k
∑

06i<a′

(bi)d, so

S′k = k
1− bda′

1− bd
= k

1− b`′

1− bd
.

Therefore, the value k = bd−1 makes S′k reach the value b`
′−1. Hence, k = bd−1

is the value we are looking for, and Theorem 7 is proved.

6.3 Multiplication of circular words

As mentioned in Section 6.1, product of circular words of length ` and `′ involves
the expression βn/(β` × β`′), where n is given by Theorem 7. The standard
writing of the end of the proof of this theorem (Section 6.2.3) already provides
a part of the answer. Indeed, with the notation in use there, for k = bd − 1 we
have

βn

β` × β`′
= 1 +

∑
06j<(bd−1)a′

b`j mod `′ 1− bq`′

1− b`′
,

the initial 1 being a consequence of the fact obtained in the end of Section 6.2.3
that S′k = b`

′ − 1 for k = bd − 1.

The words W̃ and X̃ being of length ` and `′, the circular powers identifi-
cation allows us to assume ` = `′. Now put B = b`, so that we may replace the
alphabet A = {0, . . . , b− 1} by A′ = {0, . . . , b` − 1}. In practice, such a change
of base from b to B consists in grouping digits by blocks of length `. This will
not provide an optimal algorithm, since such a change in notation will lead to
a product W̃ × X̃ of length (baa

′d − 1)aa′d instead of (bd − 1)aa′ (Theorem 7).
Nevertheless, not only we are not really interested in optimality here (since we
already know from Proposition 2 that it is pointless) but such a simplification
will greatly clarify the following. (Without it, we would be led to quite technical
considerations about continued fraction expansion of a/a′.)

What precedes shows that, up to a change of basis, we may assume that
` = `′ = 1, so n = b − 1. Our aim is therefore to get an explicit expression of
βn/(β` × β`′) = βb−1/(β × β). The previous equality becomes

βb−1

β × β
= 1 +

∑
06j<b−1

1− bj

1− b

= 1 +
∑

06j<b−1

∑
06i<j

bi

= 1 +
∑

06i<b−2

∑
i<j<b−1

bi

= 1 +
∑

06i<b−2

(b− i− 2)bi.
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Hence, we can eventually define the multiplication of circular words of length
1 (and therefore of any length, by the circular powers identification and a change
of base) in the following way:

Definition 3. Let p and p′ be two letters of A = {0, . . . , β}. The product p̃× p̃′
is the circular word Q̃ of length β such that

N(Q) = pp′

1 +
∑

06i<b−2

(b− i− 2)bi

 .

Complementary algorithmic considerations could be of some help to shorten
the calculation of such a product, since the last factor has a particular form.
(For example it is 12345679 in base ten.) For the same reason as before, we will
not consider it here.

6.4 The fields QWCP and QDC

From Definition 3 we can deduce the multiplicative structure on QWCP and
QDC. For the first one, the definition is

(W, P̃ , c)×(W ′, P̃ ′, c′) := (WW ′+q(WP ′)+q(W ′P ),WP̃ ′+W ′P̃+P̃×P̃ ′, c+c′).

(According to the assumptions made in Section 5.3, q(WP ′) stands for

q`′(WP ′) where `′ is the length of P̃ ′. The same remark holds for other ex-
pressions of the same kind.)

Now for QDC. For δ = kbc ∈ Db (with k ∈ Z and c ∈ Z), q(δP ′) stands for

q(kP ′)bc, and r̃(δP ′) for σc(r̃(kP ′), where r(kP ′) is the rest of the Euclidean
division of kP ′ by β`. With the help of Section 5.2, we then have

(δ, P̃ )× (δ′, P̃ ′) = (δδ′ + q(δP ′) + q(δ′P ), r̃(δP ′) + r̃(δ′P ) + P̃ × P̃ ′).

To get the field structure, it remains to show how to define a division. It
is not very difficult to generalize the usual algorithm of long division to get a
combinatorial definition of the division (see (Vivier, 2015) for some examples).
Eventually, the fact that we have indeed built the field Q can be proved by
showing that the application N defined by

N(s,W, P̃ , c) := s ·
(
N(W ) +

N(P )

β`

)
· bc

is a bijective morphism of rings between QWCP and Q and

N(δ, P̃ ) = δ +
N(P )

β`

is another between QDC and Q.
Eventuelly, we get the following

Theorem 8. QWCP and QDC are fields, both isomorphic to Q.
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7 Irrationality of algebraic numbers

As recalled in introduction (see (Bullynck, 2009) for details), Lambert once
tried to prove the irrationality of π by showing that its decimal expansion is
aperiodic. This idea, unsuccessful for π, can be applied to show the irrationality
of simpler numbers, namely the square root of integers. Such a proof seems to
be new. Here is a general statement:

Theorem 9. Let Q ∈ Z[X] be a unitary polynomial. Any (real) root of it is
either an integer or an irrational number.

Also, let Q ∈ Db[X] for some integer b > 1, with coefficient for Xdeg(Q) equal
to 1. Any (real) root of it is either in Db or irrational.

In particular, applying this theorem to the polynomial Q(X) = X2 − 2
shows that

√
2 is irrational, as well as

√
n for n not a perfect square (with

Q(X) = X2 − n), or
√

2 +
√

3 (with Q(X) = X4 − 10X2 + 1).
To apply the second part of the theorem to prove that, for example, 3

√
3.57 is

irrational (with Q(X) = X3−3.57), we have to prove that it is not decimal. For
this, we can use the complementary fact that, for any decimal number δ with
exactly k nontrivial digits after the decimal points, δn has exactly nk nontrivial
decimal digits after the decimal point. (Indeed, if k is the smallest integer such
that δ = u/10k for some integer u, then, since 10 is quadratfrei, δn = un/10nk

cannot be simplified as a fraction with denominator a smaller power of 10 than
10nk.) Hence, δ := 3

√
3.57 cannot be in Dten, otherwise the number k of its

digits after the decimal point would satisfy 3k = 2, an impossibility.7

In the following, for any rational number x, we write `(x) for |P̃ |, where

(δ, P̃ ) is the DC-representation of x with P̃ of minimal length.

Proof. We prove first the second part of the theorem. Let Q ∈ Db[X] satisfy the

hypotheses, and let α ∈ R be a root of Q. Assume α rational, and write (δ, P̃ )
for its DC-expansion in base b. It is enough to prove that α− δ is irrational, so
without loss of generality we assume δ = 0.

Consider the successive integral powers of α. Since Q has dominant co-

efficient equal to 1, for any n ≥ q there exists values d
(n)
i ∈ Db such that

αn =

q−1∑
i=0

d
(n)
i αi (with q = deg(Q)). This implies:

P̃n =

q−1∑
i=0

d
(n)
i P̃ i (*)

(Here, P̃ i should not be confused with P̃ i; by P̃ i we mean the iterated

product of P̃ by itself in G∗.)
To end up the proof, we need the following intermediate result:

7An alternative reasoning would be to consider the last digit of the product.
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Proposition 4. Let P̃ be some nontrivial circular word. The sequence (`(P̃n))n
goes to infinity.

Note that the sequence in Proposition 4 may not be strictly increasing.
Indeed, for b = 7 and P̃ = 1̃5, we have P̃ 2 = 0̃3, so `(P̃ 2) = `(P̃ ) = 2.

Proof of Proposition 4. The sequence of rational numbers that corresponds to
the sequence ((0, P̃n))n is strictly decreasing to 0. Hence, in the sequence (P̃n)n
it is impossible to find the same circular word twice. Since for any integer ` > 0
the number of circular words of length at most ` is finite, the pigeonhole principle
forces the sequence (`(P̃n))n to go to infinity.8

Now observe that the length of the right side of (∗) is upper-bounded. Hence,

by Theorem 4, P̃ is trivial, so α ∈ Db, and the second part of the theorem is
proved.

For the first part, for Q ∈ Z[X] a unitary polynomial, the second part of
the theorem applied to all integers b > 1 shows that any rational root α of Q

belongs to α ∈
⋂
b>1

Db = Z.

8 Conclusion

In this article, based on history, didactics and mathematics, we were interested
in a schema (in the apos meaning) of the field Q, in the three stages intra-Q,
inter-Q and trans-Q. The equality 0.9 = 1 seems to be an important proxy of
the level of understanding of decimal expansion of rational numbers, since it
draws the frontier between the intra- and inter- stages.

In teaching of mathematics, it is common that periodic decimal expansions
of rational numbers remains in general at the stage inter-Q, or even intra-Q,
the equality 0.9 = 1 being interpretated in the framework of real numbers
(note that we could also define a schema for R). Yet it seems to us that a
complete understanding of the schema Q is an important prerequisite before the
construction of R (even a partial one). For example, constructions by Dedekind
cuts or Cauchy sequences can be interpretated as an action on the object Q,
obtained by thematization9 of the schema. The point is that if the schema
thus thematized is not complete as regards the periodic decimal expansions,
difficulties may arise, since it is crucial to have in mind the equality 0.9 = 1.
Indeed, (−∞, 0.9]∪[1,+∞) is a partition of QWCP which is not suitable as a cut,
and the sequence 0.9, 0.99, 0.999, and so on, is a Cauchy sequence which would
not converge in QWCP. (By the way, some introductory notions of topology can
also be presented in Q.)

The set R can also be defined directly from D, considering infinitely many
decimals, as in (Lebesgue, 1938) or (Fardin and Li, 2021) (see also Bronner’s

8An alternative reasoning consists in showing that the number of 0s in P̃n goes to infinity.
9Thematization is the mental mecanism that allows to consider a schema as an object, on

which one can make actions.
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notion of idecimality (Bronner, 1997 and 2005)), but this approach has several
issues:

• there is no (finite) algorithm for operations in R (despite Fardin an Li’s
attempt), whereas there are in Q, which can provide some sense to the
operations made on infinitely many digits.

• the Totality stage is compulsory for R, but a numeral writing is not al-
ways an Process: Totality (in the sense of apos) is not, in general, the
encapsulation of a process. Sure, some processes are required for writing
numbers like 0.101101110111101111 . . . or 0.1234567891011 . . ., and also
for writing numbers defined as a limit, like e or π. This can be eased in
Q by the periodic parts regarded as Objects.

• 0.9 = 1 has therefore to be considered in the (rather elaborate) context of
real numbers, whereas it could be treated in Q first.
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secondaire au travers des évolutions curriculaires, Actes de la XIIIème
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Rademacher, H. & Toeplitz, O. (1930). Von Zahlen und Figuren, Julius
Springer.
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http://eptcs.org/Published/WORDS2011/Papers/i6/arXiv.pdf.
Rittaud, B. & Vivier, L. (2012a). Does Numerology Allow a group to have
Two Identity Elements?, The American Mathematical Monthly 119, 4,
439.
Rittaud, B. & Vivier, L. (2012b). Circular words and three applications:
factors of the Fibonacci word, F-adic numbers, and the sequence 1, 5, 16,
45, 121, 320,. . . , Functiones et Approximatio 47, 2, 207–231.
Rittaud, B. & Vivier, L. (2012). Circular words, F-adic numbers and the
sequence 1, 5, 16, 45, 121, 320.. . . , Functiones et approximatio commentarii
mathematici, 47.2, 207-232.
Rittaud, B. & Vivier, L. (2014). Different praxeologies for rational num-
bers in decimal system – the 0.9̄ case, Proceedings of Cerme 8, Antalya,
Turquie.
Robertson, J. (1769). Theory of circulating fractions, Philosophical Trans-
actions of the Royal Society XXXII, 207–213.
Sierpinska, A. (1985). Obstacles épistémologiques relatifs à la notion de
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¡https://hal.archives-ouvertes.fr/tel-01223012/document¿ Wallis, J.
(1685). A Treatise of Algebra, John Playford.
Weller, K., Brown, A., Dubinsky, E., McDonald, M. & Stenger, C. (2004).
Intimations of Infinity, Notices of the AMS 51, 7.
Weller, K., Arnon, I. & Dubinsky, E. (2009). Preservice Teachers’ Under-
standing of the Relation Between a Fraction or Integer and Its Decimal
Expansion, Canadian Journal of Science, Mathematics and Technology
Education 9, 1, Routeledge.
Weller, K., Arnon, I. & Dubinsky, E. (2009). Preservice Teachers’ Under-
standing of the Relation Between a Fraction or Integer and Its Decimal
Expansion, Canadian Journal of Science, Mathematics and Technology
Education, 9(1), Routeledge.
Wilhelmi, M., Godino, J. & Lacasta, E. (2007). Configuraciones epistèmicas
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