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ABSTRACT

Context. The past decade has shown strong development of non-rigid Earth nutation theories at the microarcsecond level, now able
to match the VLBI observations with differences of about 200 µas in rms, leading the IAU to adopt the conventional analytical model
MHB 2000 (Mathews et al. 2002, J. Geophys. Res., 107, B4). This model has been established starting from the REN 2000 rigid Earth
nutation theory (Souchay et al. 1999, A&AS, 135, 111).
Aims. Users generally do not know the differences between each coefficient of the Fourier series in MHB 2000 and the corresponding
one in REN 2000. The aim of this paper is to clarify these differences.
Methods. After recalling how the nutation coefficients were obtained in the two above theories, we catch the coefficients that are
particularly affected by the non-rigidity. Beside, we develop statistics on the coefficients that are not influenced.
Results. At the same time we show some anomalies concerning some coefficients present in REN 2000, but not in MHB 2000 and
inversely. The influence of those lacking coefficients is evaluated. Then we simutaneously calculate the REN 2000 and MHB 2000
nutations, thus showing the global contribution of the non-rigidity of the Earth on the nutation. We compare this difference against
the differences between observational data and MHB 2000.
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1. Introduction

Nutation describes the motion of the Earth’s figure axis with re-
spect to a space-fixed frame of reference. It is one of the three
components of the coordinate transformation between the ter-
restrial and the celestial frames, together with the polar motion
and the Earth’s rotation angle (UT1). Accurate knowledge of the
nutation is important for geophysics, precise positioning, space
navigation, or astrometric data reduction. Very long baseline ra-
dio interferometry (VLBI) or lunar laser ranging (LLR) give ac-
cess to the nutation angles. Global navigation and satellite sys-
tem (GNSS) measurements can also help for getting their time
derivatives. But only VLBI provides very accurate nutation time
series for more than 25 years on a very regular basis. During the
past decade, technical developments (data acquisition systems,
extension of the network) and improvements in modeling and
analysis strategies brought the precision of the routine VLBI ob-
servations down to the sub milliarc second (mas) level. In the
frequency domain, the coefficients of the nutation spectral com-
ponents can be determined with an accuracy running from a hun-
dred microarc seconds (µas) for long periods down to a few tens
of µas for shorter periods.

A recent challenge concerning nutation consists of construct-
ing an analytical theory at best matching the observational data.
A new nutation series called MHB 2000 (Mathews et al. 2002,

referred to as MHB in the following) was adopted at the IAU
XXIVth General Assembly held in Manchester, UK. It was ob-
tained by direct solution of the linearized equations of the non
rigid Earth’s rotation, with best-fit values for various geophysi-
cal parameters adjusted on VLBI data. It leads to a considerably
better match to observational data than any of the earlier series
based on geophysical models (e.g., Wahr 1981): VLBI obser-
vations against the MHB model show differences of less than
200 µas in rms.

Forced nutation is entirely due to the gravitational torques
exerted by the external bodies (the Moon, the Sun, but also the
planets whose effects cannot be neglected anymore). In order
to build the MHB series, Mathews et al. (2002) started from a
rigid Earth nutation series representing the action of the exter-
nal gravitational potential on a hypothetical rigid Earth having
the same physical characteristics (mass, harmonic coefficients
of the geopotential) as the real Earth. During the past decade,
the precision of the rigid Earth’s nutation spectral coefficients
has increased by two orders of magnitude. While the series of
Kinoshita & Souchay (1990) were calculated with a 0.01 mas
truncation level, the REN 2000 series (referred to as REN in
the following) are tabulated with a 0.1 µas truncation level. This
made it possible to use the observed nutation data sets to esti-
mate the amplitudes of a drastically larger number of nutation

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20077065

http://www.edpsciences.org
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20077065


682 J. Souchay et al.: Comparing nutation theories and observational data

coefficients with uncertainties that are about an order of magni-
tude smaller than at the beginning of the 1990s.

For the common user of nutation series, as well as for the
Earth’s rotation specialist, differences between rigid and non-
rigid Earth nutation is sometimes not perfectly understood, both
qualitatively and quantitatively. This paper is devoted to a com-
plete and detailed analysis of these differences. The contribu-
tion of non-rigidity in the global nutation signal is clarified. We
also evaluate the influence of the coefficients of nutation with
very long periods. Moreover, we point out the presence of some
specific nutation terms present in MHB and not in REN, and
reciprocally. Finally we calculate the impact of the number of
coefficients taken into account in the analytical nutation.

2. Rigid and non-rigid Earth nutations series

2.1. Overview of REN and MHB

The REN tables of the nutation for a rigid Earth (Souchay et al.
1999) were obtained starting from a Hamiltonian theory first set
up by Kinoshita (1972, 1977). They include a lot of contribu-
tions neglected or partly considered in previous tables (Kinoshita
1977; Kinoshita & Souchay 1990). These new contributions are
the indirect planetary effects contained in the lunisolar perturb-
ing function (Souchay & Kinoshita 1996), as well as the direct
planetary contributions (Souchay & Kinoshita 1997), together
with second-order terms coming from crossed nutations and
spin-orbit couplings when considering the Earth-Moon system
as a whole. Moreover they take the influence of zonal geopoten-
tial harmonics of the Earth (J3, J4) into account. Quasi-diurnal
and quasi semi-diurnal components coming from the harmonics
of degree 2, 3, and 4 (Folgueira et al. 1998, 1999) of the geopo-
tential were also added to the series. One of the by-products of
the series REN was a complete expression of the general pre-
cession in longitude ψA with its various contributions (Souchay
et al. 1996).

In parallel with these works, two concurrent theories of a
rigid Earth nutation were set up: SMART97 (Bretagnon et al.
1997) and RDAN97 (Roosbeek & Dehant 1998). In order to val-
idate the quality of REN, Souchay (1998) compared it against
the above-mentioned theories. He showed that no significant dif-
ferences exist between these works at the level of a few µas, ex-
cept for the 18.6-yr component, after fitting the dynamical flat-
tening. The agreement was still better when he compared the
nutation with what was obtained from a numerical integration
of the dynamical equations. All these various checks justify that
REN, with its coefficients truncated at 0.1 µas, looks valid at the
µas level. Note that each of the three nutation series above give
the forced nutation for each: the angular momentum axis, the
rotation axis and the figure axis.

The MHB nutation series for a non-rigid Earth (Mathews
et al. 2002) are the results of numerous efforts understanding
various effects dealing with the geophysical response of our
planet to the external torque exerted by the Moon, the Sun, and
the planets. The authors modified the dynamical equations de-
veloped in a previous work (Mathews et al. 1991) by includ-
ing several other contributions. First, the effects of anelasticity
are taken into account through complex and frequency depen-
dent compliances (deformability parameters). Another improve-
ment is the construction of an empirical ocean loading and of
current admittance functions for the purpose. The MHB the-
ory also includes the effects of electromagnetic coupling at
the core and inner-core boundaries and of non linear terms (a
more complete computation of the non linear terms is found in

Lambert & Mathews 2006). Taking as a basis the REN series for
a rigid Earth, MHB expressed the ratio between the non-rigid
nutation spectral coefficients and their rigid counterparts as a
(transfer) function depending upon the frequency and a small
number of parameters including the complex eigenfrequencies
of the three-layer Earth’s free rotational modes and the elliptic-
ity. Thus one can build the MHB series by applying this transfer
function to the REN series and then adding on the various con-
tributions not directly related to non-rigidity (listed in Table 7 of
the MHB paper).

Note that in the following we separate the nutation in longi-
tude ∆ψ and the nutation in obliquity ∆ε, since it is the way they
are expressed in the REN and MHB tables and in a large part of
the literature. Nevertheless, the MHB complex transfer function
is to be applied to prograde and retrograde nutation amplitudes,
which are given by an appropriate complex combination of ∆ψ
and ∆ε.

2.2. Characteristics of the original REN

The REN nutation series for the axis of figure of the Earth
are presented for both ∆ψ and ∆ε as the sum of sinusoidal
terms, each of them the sum of the sine and a cosine terms
whose phase is a linear combination of the 5 Delaunay argu-
ments (l, l′, F,D,Ω) and of the mean longitudes of the plan-
ets λMe, λVe, λEa etc. A last column indicates the linear evolu-
tion of the sine amplitude for ∆ψ and of the cosine for ∆ε. The
series in their final form are sorted by decreasing period. A flag
indicates the origin of the coefficients:

M1: Main Problem (Moon),
S: Sun,
PS: Planetary Sun,
PM: Planetary Moon,
T2: Terms with second-order contributions,
J3: Terms coming from the J3 zonal harmonic potential of

the Earth,
ME, VE, MA, JU, SA, UR, NE: Direct action of the planets.

The second-order contributions in the terms quoted “T2” are
generally much smaller than the first-order ones obtained by
direct application of the canonical equations in the theory
(Kinoshita 1977; Kinoshita & Souchay 1990). They come from
two different origins. The first one is the crossed nutation effects,
where the effect of the nutation modifies the true equatorial plane
so that it is different from the mean plane subject only to the pre-
cession. This difference creates an additional effect on nutation
components which is only significant for the largest coefficients.
The second origin is the spin-orbit coupling: the J2 coefficient
of the geopotential, characterizing the flattening of the Earth,
influences the Moon’s orbit, which in turn modifies the lunar po-
tential and consequently the lunar torque exerted on the Earth.
The calculation of this contribution in Hamiltonian theory needs
a complete theoretical development with considering the Earth-
Moon system as a whole. Here also, only the largest nutation
terms are significantly affected by this effect.

2.3. Construction of a combined REN

For clear knowledge of the origin of a given coefficient, Souchay
et al. (1999) did not gather as a single coefficient those that have
the same arguments but rather different origins as specified in
the preceding section. The purpose in this section is to give in-
formation about these coefficients and to transform the original
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series into a combined series in which only one term exists for a
given frequency.

Concerning ∆ψ, REN originally contains 1482 terms.
Among them, 1246 are single, meaning that they cannot be cou-
pled with other terms (because they do not have the same ar-
gument as any of the other ones). But 194 are double (can be
associated with another term) and 42 are triple (can be associ-
ated with two other terms). Therefore instead of the original se-
ries containing 1482 terms, a combined series can be constructed
with only 1357 (1246+97+14) terms. Concerning ∆ε, REN con-
tains 1118 terms in its original form. Among them 63 are double
and only one is triple. Then the combined ∆ε series contains
1053 terms (989+63+1).

Although it should be exhaustive to present all the combined
coefficients (double or triple) in a table, we decided to show only
the triple ones in Table 1 in order to show how a single nutation
coefficient can be affected by various contributions.

3. Comparisons between REN and MHB

As the MHB series have been constructed starting from the REN
series, it looks interesting to carry out a term-per-term associa-
tion, which means that we identify each component of one of
the series from its argument, and we search the corresponding
coefficient of the other series with the same argument. In the
general case of identification, we make a systematic study of the
differences between the amplitudes (due to the non rigidity of
the Earth). Moreover we point out the cases of non identifica-
tion (lacking terms when making the correspondence between
the two series).

3.1. Inconsistencies between the two series

Concerning ∆ψ, MHB contains 1320 coefficients that have to
be compared with the 1357 coefficients present in the combined
REN. The counts are 1037 coefficients and 1053 coefficients for
∆ε. The number of coefficients with common arguments in both
series are 1304 for ∆ψ and 1014 for ∆ε.

When looking at these differences in more details 16 coeffi-
cients for ∆ψ with arguments present in MHB are not found in
REN, among which 2 correspond to coefficients with an ampli-
tude larger than 10 µas and 7 with an amplitude between 1 µas
and 10 µas. These 9 largest coefficients are listed in Table 2. For
∆ε, 23 coefficients with arguments present in MHB are not found
in REN, none having an amplitude larger than 10 µas, whereas
11 coefficients have amplitudes between 1 µas and 10 µas. These
largest coefficents are listed in Table 3.

Reciprocally, 53 ∆ψ coefficients present in REN are not
found in MHB, among which 3 have amplitudes larger than
10 µas, and 11 have amplitudes between 1 µas and 10 µas. These
largest coefficients are listed in Table 4. For ∆ε, 39 coefficients
present in REN are not included in MHB, among which 9 have
amplitudes between 1 µas and 10 µas. They are listed in Table 5.

It looks obvious that, for most of the terms listed in
Tables 2−5, the amplitudes are the same in MHB and REN, but
with different arguments. This suggests that for these terms some
errors could have been made in the arguments when construct-
ing MHB from REN. This is for instance the case of the terms
with amplitudes 2.1 µas (sine) and 1.1 µas (cosine), or with am-
plitudes 2.4 µas (sine) and 1.2 µas (cosine) in Table 2, which
must undoubtedly be associated with the terms with these same
amplitudes in Table 4. Note that in REN a lot of terms are cou-
pled according to close frequencies, like the terms with period

Table 1. Coefficients of nutation in the series of nutation for a rigid
Earth model REN in ∆ψ with three different contributions.

Argument Period Sine Cosine Origin
days mas mas

2λJu − 5λSa –322614.513 –0.0487 0.0113 PS
– – –0.0004 0.0000 SA
– – 0.0000 0.0015 JU

– –0.0491 0.0128 TOTAL
λEa − 2λMa –5764.006 –0.0368 0.0387 PS
– – –0.0088 0.0050 MA
– – 0.0007 –0.0007 PM

– –0.0449 0.0430 TOTAL
2λJu + 2pA 5373.471 –0.0123 0.0000 SA
– – –0.0014 0.0000 PS
– – 0.0004 0.0015 JU

– –0.0133 0.0000 TOTAL
λJu 4332.589 –0.0425 0.0299 PS
– – 0.0334 –0.0047 JU
– – 0.0000 –0.0004 PM

– –0.0091 0.0248 TOTAL
2λVe − 3λEa 1454.936 0.0008 0.0485 PS
– – 0.0000 –0.0009 PM
– – 0.0000 0.0138 VE

– 0.0008 0.0614 TOTAL
λVe − λEa 583.921 –0.0022 0.0000 PM
– – 0.0846 0.0000 VE
– – 0.0661 0.0000 PS

– –0.0491 0.0128 TOTAL
λEa − 2λJu 439.332 –0.0185 0.0270 PS
– – 0.0019 0.0003 JU
– – 0.0000 –0.0004 PM

– –0.0166 0.0269 TOTAL
3λVe − 4λEa 416.688 –0.0005 0.0293 PS
– – 0.0000 –0.0004 PM
– – 0.0000 –0.0039 VE

– –0.0005 0.0250 TOTAL
λEa − λJu 398.884 –0.1355 –0.0026 PS
– – 0.0116 0.0000 JU
– – 0.0016 0.0000 PM

– –0.1223 –0.0026 TOTAL
2λEa − 2λMa 389.968 –0.0385 0.0000 PS
– – 0.0012 0.0000 JU
– – 0.0005 –0.0000 PM

– –0.0367 0.0000 TOTAL
λEa 365.256 0.0005 0.0000 JU
– – 0.0003 0.0000 MA
– – 0.0000 –0.0027 VE

– 0.0008 –0.0027 TOTAL
2λVe − 2λEa 291.961 –0.0956 0.0000 PS
– – 0.0350 0.0000 VE
– – 0.0008 0.0000 JU

– –0.0598 0.0000 TOTAL
2λEa − 2λJu 199.442 –0.0010 0.0000 PM
– – 0.0389 0.0003 PS
– – 0.0014 0.0000 JU

– 0.0293 0.0003 TOTAL
3λVe − 3λEa 194.640 –0.0094 0.0000 PS
– – –0.0004 0.0000 PM
– – 0.0187 0.0000 VE

– 0.0089 0.0000 TOTAL

13.635 d and 13.632 d or 9.134 d and 9.132 d (Table 4). The
reason the corresponding coefficients must have the same am-
plitudes is easily explained by the fact that they result from the
multiplication of two sinusoidal oscillations of frequencies ω1
and ω2 with ω2 � ω1, which can be transformed into two
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Table 2. Coefficients of nutation ∆ψ with arguments present in
MHB series and not in REN.

Argument Period Sine Cosine
days µas µas

6λEa 60.876 1.4 0.0
11λEa 33.203 –1.1 0.5
l − 2F − 2Ω + 4λEa − 8λMa + 3λJu 27.091 12.6 –6.3
l − 2F −Ω − λEa 25.128 2.1 –1.1
2l − 2λEa + 3λJu 14.749 –2.1 1.1
2F + 2Ω + λEa 13.168 –2.4 –1.2
l + 2F + Ω 9.357 2.1 –1.1
l + 2F + 2Ω + λEa 8.910 13.1 –6.3
2l + 2F + 2Ω + 2λEa − 3λJu 6.641 2.4 –1.2

Table 3. Coefficients of nutation ∆ε with arguments present in
MHB series and not present in REN.

Argument Period Sine Cosine
days µas µas

2l − l′ − 2Ω 471.891 0.2 1.2
l′ − 2F + 2Ω 329.791 0.0 2.9
2λE 182.628 0.0 –3.5
2λVe + λEa + pA 85.921 0.2 –1.0
l − 2F − 2Ω + 4λE − 8λMa + 3λJu 27.091 2.7 5.5
l − 2F −Ω − λEa 25.128 0.6 1.1
2l − 2λE + 3λJu 14.749 –0.5 1.0
2F + 2Ω + λE 13.168 –2.4 –1.2
l + 2F + Ω 9.357 –0.6 –1.1
l + 2F + 2Ω + λEa 8.910 –2.6 –5.7
2l + 2F + 2Ω + 2λEa − 3λJu 6.641 –0.5 –1.1

Table 4. Coefficients of nutation ∆ψ with arguments present in the
REN series and not in MHB.

Argument Period Sine Cosine
days µas µas

10λEa − 16λMa + 4λJU + 5λSa + 2pA 182.620 –1.3 –4.3
8λVe − 11λEa + 2pA 182.240 –6.2 –9.7
−10λVe + 12λEa + 2pA 85.839 2.4 0.0
−11λVe + 13λEa + 2pA 74.837 1.7 0.0
−2l + 18λVe − 16λEa 27.562 2.1 1.1
l + 2F + 2Ω − 18λVe + 16λEa 13.663 12.6 –6.3
−l + 2F + 2Ω + 18λVe − 16λEa 13.659 –12.6 –6.3
l + 2F + Ω − 18λVe + 16λEa 13.635 2.1 –1.1
−l + 2F + Ω + 18λVe − 16λEa 13.632 –2.1 –1.1
2l + 2F + 2Ω − 18λVe + 16λEa 9.134 2.4 –1.2
2F + 2Ω + 18λVe − 16λEa 9.132 –2.4 –1.2

oscillations with respective frequencies ω1 + ω2 and ω1 − ω2
both very close to ω1. Therefore after integration (i.e., division
by the frequency), the amplitudes of these terms still remain very
close.

The global rms of the signal obtained for a 10-yr time span
by summing the components listed in Tables 2–5 are 14.9 µas,
6.8 µas, 17.2 µas, and 7.5 µas, respectively.

3.2. Coefficients with common arguments in the two series

Table 6 shows the number of coefficients per interval of am-
plitude when REN and MHB are restricted to their common
terms (1304 for ∆ψ and 1014 for ∆ε).We can observe that the
increase in the number of coefficients steadily ranges between
2.5 and 3 when we turn from a given interval of amplitude to the
following one, except for the first and last intervals. Moreover,
in order to measure the influence of the non-rigidity of the Earth

Table 5. Coefficients of nutation ∆ε with arguments present in the
REN series and not in MHB.

Argument Period Sine Cosine
days µas µas

10λEa − 16λMa + 4λJU + 5λSa + 2pA 182.620 –1.9 0.6
10λVe − 11λEa + 2pA 182.240 –4.2 2.7
l + 2F − 3D + 2Ω 126.514 0.0 2.3
l + 2F + 2Ω − 18λVe + 16λEa 13.663 –2.7 –5.5
−l + 2F + 2Ω + 18λVe − 16λEa 13.659 –2.7 –5.5
l + 2F + Ω − 18λVe + 16λEa 13.635 –0.6 –1.1
−l + 2F + Ω + 18λVe − 16λEa 13.632 –0.6 1.1
2l + 2F + 2Ω − 18λVe + 16λEa 9.134 –0.5 –1.1
2F + 2Ω + 18λVe − 16λEa 9.132 –0.5 1.0

Table 6. Number of coefficients of nutation ∆ψ and ∆ε in common in
REN and MHB for a given amplitude interval.

Interval of amplitude No. coeff. No. coeff.
mas in ∆ψ sin ε0 in ∆ε
10 000 < x 0 0
1000 < x < 10 000 1 1
100 < x < 1000 1 1
10 < x < 100 7 5
1 < x < 10 17 13
0.1 < x < 1 40 35
0.01 < x < 0.1 129 100
0.001 < x < 0.01 328 273
0.0001 < x < 0.001 781 586
Total 1304 1014

Table 7. Number of coefficients of nutation ∆ψ sin ε0 and ∆ε for each
interval of difference x in amplitude between REN and MHB.

Interval of amplitude No. coeff. No. coeff.
mas with diff. x with diff. x

in ∆ψ sin ε0 in ∆ε
10 < x 2 2
1 < x < 10 3 2
0.1 < x < 1 12 11
0.01 < x < 0.1 22 27
0.001 < x < 0.01 58 57
0.0001 < x < 0.001 139 191
Total 236 290

on the nutation, it is useful to compare one by one these com-
mon coefficients. In Table 7 we show the number of coefficients
for a given interval of amplitude of the difference between REN
and MHB.

The 10 coefficients of ∆ψ for which the difference
REN–MHB is larger than 0.5 mas are presented in Table 8, to-
gether with the absolute value of the ratio of this difference with
respect to the nominal value in MHB. Globally we remark that
the largest differences correspond to the largest coefficients, with
arguments Ω, 2F − 2D + Ω, l′, 2F + 2Ω, l, 2Ω, and respective
periods 18.6 yr, semi-annual (182.621d), annual (365.26d), fort-
nightly (13.661d), monthly (27.555d) and 9.3 yr. Moreover the
ratio of the non-rigidity contribution is typically on the order of
a few percent, but can reach 15% for the annual component with
argument l′.

The same kind of remark can be made for the largest differ-
ences in ∆ε shown in Table 9. Note that the non-rigidity con-
tribution for the semi-annual component (19.7041 mas) is very
close to that of the Ω component (22.7292 mas), whereas in the
case of ∆ψ it was smaller by a factor of two (39.6391 against
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Table 8. Coefficients of nutation ∆ψ with the largest difference between MHB and REN.

Argument Period Sine Cosine total radio
days mas mas mas diff./amplitude

Ω 6798.384 74.1760 2.9560 74.2349 0.0043
2Ω 3399.192 –1.5742 –0.0757 1.5760 0.0076
l′ 365.260 22.0841 1.1817 22.1157 0.1498
2F − 2D + Ω 182.621 –39.6154 –1.3696 39.6391 0.0301
l′ + 2F − 2D + 2Ω 121.749 –1.7443 –0.0524 1.7451 0.0338
−l + 2D 31.812 0.7410 –0.0168 0.7412 0.0472
l 27.555 3.3482 –0.0872 3.3493 0.0471
2F + 2Ω 13.661 –6.1301 0.2796 6.1365 0.0270
2F + Ω 13.633 –0.8772 0.0380 0.8780 0.0227
l + 2F + 2Ω 9.133 –0.5633 0.0816 0.5692 0.0189

Table 9. Coefficients of nutation ∆ε with the largest difference between MHB and REN.

Argument Period Sine Cosine total radio
days mas mas mas diff./amplitude

Ω 6798.384 1.5408 –22.6769 22.7292 0.0025
2Ω 3399.192 –0.0323 0.5877 0.5886 0.0066
l′ 365.260 –0.1924 7.5220 7.5245 1.0182
2F − 2D + Ω 182.621 –0.4587 19.6988 19.7041 0.0344
l′ + 2F − 2D + 2Ω 121.749 –0.0174 0.8187 0.8189 0.0365
l 27.555 0.0358 0.2975 0.2996 0.4433
2F + 2Ω 13.661 0.1374 2.9250 2.9282 0.0299
2F + Ω 13.633 0.0318 0.6603 0.6611 0.0329
l + 2F + 2Ω 9.133 0.0367 0.2928 0.2951 0.0229

74.2349). Note also the specifity of the annual term (l′) whose ra-
tio is larger than 1: the geophysical contributions are much larger
for this sole term than the nominal value for a rigid Earth model.
The reason is the proximity of a resonance associated with the
(retrograde) free core nutation (period of about 430 days)

4. Long periodic coefficients and truncation level

In this section we carry out complementary studies to answer the
following two questions:

• what are the influences of the very long periodic coefficients
on the global nutation and to what extent can their effect be
simply approximated by polynomials?
• what are the cumulative effects of the smallest coeffi-

cients and to what extent (of amplitude) can they be ig-
nored in comparison with the accuracy and the precision
of present observations of the nutation, noticeably through
VLBI measurements?

4.1. Long periodic coefficients

A substantial number of terms in both ∆ψ and ∆ε have such a
large period that, for a rather long time interval (e.g., one cen-
tury), their effect can be assimilated to a secular trend. Therefore
it looks worthy studying how the global nutation effect given by
these coefficients could be fitted by a single polynomial. Note
that for all 142 coefficients in ∆ψ and for 94 coefficients in ∆ε
with period longer than 18.6 years (corresponding to the largest
nutation term with argument Ω) their amplitude in REN and
in MHB are exactly the same, meaning that the effect of non-
rigidity is negligible.

Figure 1 shows four curves for ∆ψ corresponding to a given
threshold for the period. Thus the bold curve represents the
global nutation ∆ψ by keeping the 142 coefficients with peri-
ods laonger than 6798 days (18.6 years). We observe that this
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Fig. 1. Curves showing the global nutation ∆ψ from MHB when keep-
ing the terms with period larger than the leading 18.6 yr component
(bold), larger than 10 000 d (close to the first one), larger to 50 000 d
(lightly rounded), and larger than 100 000 d (close to a straight line).

curve shows some dominant oscillations that are still present
when keeping the 125 coefficients with T > 10 000 d (second
curve very close to the first one). By contrast, the third and fourth
curves obtained respectively by keeping the 48 coefficents with
T > 50 000 d and the 32 coefficients with T > 100 000 d can be
easily assimilated to a low-order polynomial and a straight line.

Figure 3 shows the curve obtained by keeping all the terms
with T > 50 000 d, together with the curve obtained by fitting
a cubic regression. The post-fit residuals are shown in Fig. 5
together with the post-fit residuals after fitting with a fourth-
order polynomials and a fifth order one. The fitting polyno-
mials are P3(T ) = −1.39 − 0.7192T + 0.4052T 2 − 0.1048T 3,
P4(T ) = −1.335− 1.156T + 1.192T 2 − 5.942T 3 + 0.098T 4, and
P5(T ) = −1.341−1.088T+1.001T 2−3.907T 3+0.006T 4+0.15T 5
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Fig. 2. Curve showing the global nutation ∆ε from MHB when keeping
the terms with period larger than the leading 18.6 yr component (bold),
larger than 10 000 d (close to the first one), larger to 50 000 d (dashed,
lightly rounded), and larger than 100 000 d (well-separated from the
others).
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Fig. 3. Curve showing the global nutation ∆ψ from MHB when keeping
only the terms with period larger than 50 000 d (bold) with the curve
obtained through cubic regression.

where T is expressed in Julian centuries from J2000.0 and the
unit for Pi(t) is the mas.

We can also observe that, although the original signal is vary-
ing secularly with an amplitude of 1 mas for 250 years, the resid-
uals in Fig. 5 remain in a 0.08 mas interval (cubic regression) and
a 0.05 mas one (4th-order regression).

We have done the same kind of study for∆ε which variability
for a 250 years time span from J2000.0 is of the order of 0.5 mas
(peak to peak). 94 coefficients are retained for T > 6798 d,
77 for T > 10 000 d, 33 for T > 50 000 d and 20 ones for
T > 100 000 d. Note that, whatever the threshold adopted for the
period, the signal (Fig. 2) does not present a net secular trend as
for ∆ψ.

The global value of ∆ε by keeping only the terms with
T > 50 000 d is shown in Fig. 4 with the curve representing
the fitting polynomial after cubic regression. The residuals, after
adopting this regression and two other ones of 4th and 5th or-
der, are shown in Fig. 6. Notice that here the 5th order poly-
nomial regression leads to significantly smaller residuals than
the two other ones, i.e., between ±0.01 mas. The fitting polyno-
mials are P3(T ) = 1.624 − 0.0424T + 0.4452T 2 − 0.1803T 3,
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Fig. 4. Curve showing the global nutation ∆ε from MHB when keeping
only the terms with period larger than 50 000 d (bold) with the curve
obtained through cubic regression.
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Fig. 5. Curves showing the residuals after the cubic regression for ∆ψ
in Fig. 3, after polynomial regression with order 4 and order 5 (close
curves).

P4(T ) = 1.687 − 0.545T + 1.35T 2 − 0.7432T 3 + 0.1126T 4,
P5(T ) = 1.649− 0.8261T + 0.05515T 2 + 0.6378T 3 − 0.5089T 4.

Therefore we can conclude that, for a time span on the scale
of one century, a large number of long periodic terms in the nu-
tation series might be advantageously replaced by a polynomial
of order 3, 4, or 5 according to the degree of approximation re-
quired. Notice that the polynomials Pi have been defined for a
250-year time span between 2000 and 2250, and their values
could be noticeably affected by the time span considered.

Following these results we must emphasize the ambiguity
consisting in assimilating the linear trend due to long-period nu-
tations with precession. In the case of the general precession in
longitude, roughly 50′′/y, a linear trend of about 1 mas/cy am-
plitude as observed in the expressions Pi above corresponds to a
relative 2 × 10−7 ratio.

4.2. Truncation level vs. VLBI

In the following paragraph, we use the IERS EOP C 04 data set
(Gambis 2006, referred to as C04 in the following) provided by
the International Earth Rotation and Reference Systems Service
(IERS) as observational reference. This data is obtained by a
weighted combination of individual VLBI data sets provided by
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Fig. 6. Curves showing the residuals after the cubic regression for ∆ε
in Fig. 4, after polynomial regression with 4th. and 5th. order (close
curves).
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Fig. 7. Curve showing the global nutation ∆ψ in MHB obtained by keep-
ing only the coefficients smaller than 10 µas, 5 µas, and 1 µas easily
identified by decreasing order of amplitude.

various VLBI analysis centers. The use of another individual or
combined VLBI data set would not lead to significantly differ-
ent results. To efficiently compare the nutation models with their
observational counterparts, one has to remove any signal that is
not linked to the nutation modeling. This is the case of the ret-
rograde free-core nutation (RFCN) whose physical aspects are
briefly discussed in the last section of this paper. In terms of
signal processing, the RFCN shows a quasi periodic retrograde
oscillation of period between 430 and 460 days and of variable
and unpredictable amplitude (∼200 µas) and phase. Although
unpredictable, the RFCN can be removed from VLBI observa-
tions using a least-square fit of a sinusoid with fixed period (e.g.,
at the MHB value of 430.21 days) but unknown phase and am-
plitude. A 2-yr sliding window shifted by one year accounts for
the time variability of the amplitude and the phase.

Then we adopt three truncature thresholds both for ∆ψ
(Fig. 7) and for ∆ε (Fig. 8): these are 10 µas, 5 µas, and 1 µas.
Adopting a 10 µas threshold leads to ignoring a signal with
roughly ±0.1 mas (peak to peak, see Figs. 7–8), which is quite
big in comparison with (i) the non-rigid Earth contributions to
the leading coefficients, and (ii) the accuracy of observational
data (0.1 mas). By contrast, ignoring all the coefficients smaller
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Fig. 8. Curve showing the global nutation ∆ε in MHB obtained by keep-
ing only the coefficients smaller than 10 µas, 5 µas, and 1 µas easily
identified by decreasing order of amplitude.
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Fig. 9. Curve showing the global nutation ∆ψ in MHB obtained by
keeping only the coefficients smaller than 10 µas, (very flat) in com-
parison with the residuals between MHB and observational data (large
amplitude).

than 1 µas does not significantly affect the difference between
observations and model, as can be seen in Figs. 9 and 10 for ∆ψ
and ∆ε, respectively. The curves with large amplitudes represent
the differences between the observed nutation angles as given by
the C04 data set once the RFCN oscillation is removed, and the
MHB model, whereas the flat curves (bold) represent the global
nutation given by the coefficients with amplitudes smaller than
1 µas. While the first ones have amplitudes ranging in the inter-
val ±0.5 mas in ∆ψ and in ∆ε (peak to peak), the amplitudes of
the second ones do not exceed 0.15 mas.

Finally we calculate the residuals δψ and δε obtained by sub-
tracting the truncated MHB series with a given threshold from
the C04 series (i.e., we do not take into account the coefficients
under this threshold). The results are presented in Table 10. We
consider two cases, one with the original C04 series, the other
with the C04 series from which the RFCN is removed. We note
that, as long as we neglect the coefficients in MHB smaller than
5 µas, the residuals are not significantly affected by the trunca-
tion. Nevertheless the situation worsens significantly when the
truncation threshold exceeds 10 µas both for δψ and δε. In con-
clusion we can assert that ignoring the 781 coefficients for ∆ψ
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Table 10. rms of the global nutations ∆ψ and ∆ε when ignoring coefficients under a given threshold, together with the corresponding residuals of
the C04 minus MHB both by taking or not the RFCN correction into account.

Threshold δψ rms δψ rms δψ rms δε rms δε rms δε rms
ignored coeff. C04–MHB C04–RFCN–MHB ignored coeff. C04–MHB C04–RFCN–MHB

µas mas mas mas mas mas mas
0 0.0000 0.4551 0.3887 0.0000 0.2089 0.1792
0.5 0.0038 0.4552 0.3885 0.0034 0.2088 0.1789
1.0 0.0079 0.4551 0.3884 0.0066 0.2101 0.1804
5.0 0.0356 0.4559 0.3948 0.0289 0.2106 0.1828
10.0 0.0591 0.4577 0.3879 0.0452 0.2126 0.1837
50.0 0.2426 0.4663 0.3818 0.1659 0.2696 0.2456
100.0 0.4121 0.5355 0.4677 0.2714 0.3911 0.3684
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Fig. 10. Curve showing the global nutation ∆ε in MHB obtained by
keeping only the coefficients smaller than 10 µas, (very flat) in com-
parison with the residuals between MHB and observational data (large
amplitude).

and 586 for ∆ε with amplitude smaller than 1 µas in MHB (see
Table 6) will not influence the quality of interpretation of obser-
vational data.

5. Concluding remarks: a word on the remaining
variance

In this paper we have described in detail the term-by-term differ-
ences between the REN nutation series for a rigid Earth model
and the MHB nutation series for a non-rigid Earth model. After
listing abundantly the characteristics of these series and studying
the effects of their truncation to a limited number of terms, we
pointed out the effects of non-rigidity on the leading coefficients.
We think that all these studies are useful for the common user of
nutation series.

It was mentioned earlier that the VLBI-derived nutation an-
gles against the MHB model show differences of about 200 µas
in rms. This remaining variance points out limitations in our
knowledge of the Earth’s interior and the interactions between
solid Earth and geophysical fluid layers, the latter effects be-
ing typically around 80 µas, i.e. half the full variance (see
e.g., Dehant et al. 2003, and references therein). Other ma-
jor difficulties deal with geodetic VLBI measurements that
present very high sensitivity to instrumental capabilities and
to observational and analysis strategies. This includes the in-
fluence of the VLBI network geometry on Earth orientation

determination (Feissel-Vernier et al. 2004; Lambert & Gontier
2006), the troposphere gradient modeling (MacMillan & Ma
1999), the constraints on the radio- source coordinates to free
the nutation offsets from reference-frame effects (Ma et al.
1998; Feissel-Vernier et al. 2005), and some software issues.
Moreover, an unpredictable signal shows up in the VLBI resid-
uals at the level of 200 µas, which is due to the excitation of the
Earth’s free rotational mode associated with the ellipsoidal liq-
uid core rotating inside the visco-elastic mantle and known as the
retrograde free core nutation (RFCN). This free mode is thought
to be excited by the external fluid layers. However, although
the amplitude of the RFCN oscillation is globally explained by
the diurnal atmospheric pressure variations on the crust (see,
e.g., Vondrák & Ron 2006), its amplitude and phase variability
in time, noticed in VLBI observations (see, e.g., Herring et al.
2002), is still under investigation, a fact partly due to a lack of
reliable meteorological data in the diurnal band (Lambert 2006).

In the next years, a strong challenge will be to describe
the Earth rotation in a consistent relativistic framework. It is
well known that the notion of rigid body is generally ill-defined
in Relativity, even in the first post-Newtonian approximation
(Thorne & Gürsel 1983). Nevertheless one may find some at-
tempts in the literature to extend rigid Earth nutation from a
Newtonian to relativistic framework (Brumberg 1972; Damour
et al. 1993; Klioner 1996; Xu et al. 2004). Usually to get this
extension, one has to apply a four-dimensional transformation
between geocentric and barycentric quantities on the right-hand
side of the Newtonian equations of motion. This approach is not
satisfactory and an alternative exists. By using the approxima-
tion of rigidly rotating multipoles (Klioner et al. 2003), it is then
possible to derive a set of equations that describes the Earth rota-
tion with respect to the Geocentric Celestial Reference System.
This way has to be carefully investigated as soon as possible
in order to fully understand the influence of Relativity on Earth
rotation and the impact on high-precision analysis of Earth’s ori-
entation observational data.
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