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ABSTRACT

In 3D magnetic field configurations, quasi-separatrix layers (QSLs) are defined as volumes in which field lines locally display strong gradients
of connectivity. Considering QSLs both as the preferential locations for current sheet development and magnetic reconnection, in general,
and as a natural model for solar flares and coronal heating, in particular, has been strongly debated issues over the past decade. In this paper,
we perform zero-β resistive MHD simulations of the development of electric currents in smooth magnetic configurations which are, strictly
speaking, bipolar though they are formed by four flux concentrations, and whose potential fields contain QSLs. The configurations are driven by
smooth and large-scale sub-Alfvénic footpoint motions. Extended electric currents form naturally in the configurations, which evolve through a
sequence of quasi non-linear force-free equilibria. Narrow current layers also develop. They spontaneously form at small scales all around the
QSLs, whatever the footpoint motions are. For long enough motions, the strongest currents develop where the QSLs are the thinnest, namely
at the Hyperbolic Flux Tube (HFT), which generalizes the concept of separator. These currents progressively take the shape of an elongated
sheet, whose formation is associated with a gradual steepening of the magnetic field gradients over tens of Alfvén times, due to the different
motions applied to the field lines which pass on each side of the HFT. Our model then self-consistently accounts for the long-duration energy
storage prior to a flare, followed by a switch-on of reconnection when the currents reach the dissipative scale at the HFT. In configurations
whose potential fields contain broader QSLs, when the magnetic field gradients reach the dissipative scale, the currents at the HFT reach
higher magnitudes. This implies that major solar flares which are not related to an early large-scale ideal instability, must occur in regions
whose corresponding potential fields have broader QSLs. Our results lead us to conjecture that physically, current layers must always form
on the scale of the QSLs. This implies that electric currents around QSLs may be gradually amplified in time only if the QSLs are broader
than the dissipative length-scale. We also discuss the potential role of QSLs in coronal heating in bipolar configurations made of a continuous
distribution of flux concentrations.
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1. Introduction

The energy needed to power solar flares and to sustain coro-
nal heating is thought to come from the coronal magnetic field,
since its energy dominates over all other forms of stored en-
ergy. However, the coronal plasma, like most natural magne-
tized plasmas, has typical Lundquist numbers far larger that
unity. So the resistive term in the induction equation can be-
come large enough only if small-scale magnetic field gradients
(i.e. narrow current layers) are created. Regions in which either
the magnetic field, or the velocity field, or the Alfvén speed
initially have small scale gradients can naturally result in such
current layers. However, those are not necessarily typical of
the solar corona, and other situations can also exist. Magnetic
configurations with a complex topology, i.e. with separatrices,
are the most obvious configurations where current sheets can
form, when no steep gradient is initially present in the system.
Separatrices are magnetic surfaces where the magnetic field
line linkage is discontinuous. A particularly important location

for current-sheet formation, then for reconnection in a classi-
cal view, is the intersection of two separatrices, which is a null
point (a point where the magnetic field vanishes) or a separa-
tor. In most cases, a separator is a singular field line joining two
null points. More generally, current sheets are thought to form
along the separatrices when arbitrary footpoint motions are im-
posed at a line-tied boundary at the separatrices (e.g. Aly 1990;
Low & Wolfson 1988; Lau 1993).

The initial studies of the topology in 3D magnetic config-
urations have been realized by defining a magnetic field cre-
ated by discrete sub-photospheric sources (Baum & Bratenahl
1980). Hénoux & Somov (1987) proposed that reconnec-
tion along the separator can interrupt currents flowing there,
thus permitting to release the energy stored in these cur-
rents. Gorbachev & Somov (1988) further applied the theory
to an observed solar flare and showed that field lines pass-
ing close to the separator connect to observed chromospheric
bright ribbons. Furthermore, numerous analyses of flares have
shown that Hα and UV flare brightenings are typically located
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along the intersection of separatrices with the chromosphere:
they are connected by field lines which are expected to have
formed through magnetic reconnection in the given configura-
tion (e.g. Mandrini et al. 1991, 1995; Démoulin et al. 1994b;
van Driel-Gesztelyi et al. 1994).

The description of the magnetic field with sub-photospheric
sources, as well as its related topological analysis irrespective
of the location of the line-tied photosphere, is only an approxi-
mation to describe the organization of the magnetic field in flux
tubes: it implicitly assumes that the origin of a flare is rooted
below the line-tied boundary, where the magnetic configuration
has no reason to be that of what is prescribed by the sources.
Assuming that all the sources are located in the line-tied plane
permits this difficulty to be bypassed. However it also leads
to some undesirable effects which may not be relevant of the
solar photosphere, especially within active regions: wide ar-
eas in this plane have purely tangential magnetic fields, except
in the vicinity of the sources and of null points located at the
boundary. Also, these boundary nulls fully constrain the topol-
ogy above, which may be considered to be at least restrictive,
if not artifical. Finally, the very definition of point charges pre-
vents modeling twisting motions. This approach is nevertheless
very interesting, since it allows to use powerful mathematical
(analytical) tools, which permit many aspects of the complex
problem to be explored without the need of heavy numerical
simulations (e.g. Longcope & Klapper 2002; Priest et al. 2005).

The above results have demonstrated that the location of
energy release in solar flares is defined by the magnetic topol-
ogy and that the physical mechanism is magnetic reconnection.
However, it has been shown that the energy release did not
involve all of the separatrix; e.g. Hα flare brightenings were
always present only on a restricted part of the chromospheric
footprint of the computed separatrices. Moreover, for some ob-
served events, a coronal magnetic null related to the flare was
not always present in the configurations associated with the ob-
served photospheric magnetic field (Démoulin et al. 1994a).
Another well-known possibility getting separatrices is when
field lines are tangent to the photospheric boundary (called
“bald patches”, Titov et al. 1993). But just as with coronal
nulls, bald patches have been found only in a small fraction
of observed events (e.g. Aulanier et al. 1998). In fact, in many
flaring configurations, the computed separatrices were only as-
sociated with the magnetic nulls being also located below the
photosphere (located between the assumed sub-photospheric
sources). These studies teach us that coronal magnetic recon-
nection must occur in a broader variety of magnetic configu-
rations than traditionally thought, as derived from studies of
2D configurations. It is also worth noticing that the separatri-
ces of a magnetic configurations invariant by translation along
one direction disappear in most cases when the configuration
is fully extended to 3D (Schindler et al. 1988). This structural
instability of separatrices point also to the need of a broader
concept.

In order to address these difficulties, Démoulin et al.
(1996a,b) proposed that “quasi-separatrix layers” (QSLs) gen-
eralize the definition of separatrices to cases where there is
no coronal magnetic null. QSLs are regions where there is a
drastic change in field line linkage, while the linkage is truly

discontinuous at separatrices. For each observed flare stud-
ied with this approach, the brightenings were always found
along, or just nearby, the intersection of QSLs with the chro-
mosphere (Démoulin et al. 1997; Mandrini et al. 1997; Bagalá
et al. 2000, and references therein). These results demonstrate
that flares are coronal events, where the release of free mag-
netic energy is due to the presence of regions where the mag-
netic field line linkage changes drastically, and not necessarily
discontinuously.

Physically, the magnetic energy available for flaring must
be associated with non-potential magnetic fields, so in the
presence of extended and/or narrow electric current distribu-
tions. Indeed, when photospheric vector magnetic field mea-
surements were available in the studies quoted above, two pho-
tospheric current concentrations of opposite sign were always
found in the close vicinity of the computed QSLs, both linked
by modeled coronal field lines (Démoulin et al. 1997, and refer-
ences therein). Theoretically, the formation of a strong current
layer in any QSL is expected with almost any kind of bound-
ary motion which crosses a QSL, as conjectured analytically
by Démoulin et al. (1996a). The main reason is that the mag-
netic stress of very distant regions can be brought close to one
another, typically over the QSL thickness. Unfortunately, ana-
lytical arguments for current layer formation in QSLs cannot
go too far in configurations without symmetry: the derivation
of the currents is both a non-linear and a non-local problem re-
quiring in particular integration over field lines. So Titov et al.
(2003) considered a straightened magnetic configuration be-
tween two plates, with a Hyperbolic Flux tube (or HFT) at the
center of QSLs. They calculated analytically that currents form
and increase exponentially with time in a HFT, only when the
boundary shearing motions create a stagnation point in the mid-
dle of the configuration.

MHD numerical simulations are required to analyze the
evolution of general magnetic configurations having QSLs. A
numerical difficulty is that the currents are expected to form on
the scale of the QSLs, a scale that can be many orders of magni-
tude lower than the scale of the whole studied magnetic config-
uration. The simulation of Milano et al. (1999) was the first to
show that currents did form along QSLs. But the latter were not
present in the initial uniform field configuration. They were dy-
namically formed by the prescribed boundary motions, which
consisted of two vortices with a stagnation point in between.
The numerical simulation of Galsgaard et al. (2003) was aimed
at addressing the problem of pre-existing QSLs. Unfortunately,
it considered very broad initial QSLs, with a thickness of about
one tenth of the numerical domain, so that only weak currents
formed there. The selected boundary motions produced a stag-
nation point inside the domain, which resulted in the formation
of a strong current sheet, as predicted analytically by Titov et al.
(2003). However, Démoulin (2005) extensively explained that
these strong currents were not associated with the initial broad
QSLs, but rather with a new set of much thinner QSLs that dy-
namically formed thanks both to the stagnation point and to the
large-scale boundary displacements. It is then unclear how the
results of Milano et al. (1999) and of Galsgaard et al. (2003)
can be generalized to magnetic configurations which initially
possess narrow QSLs.
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In order to really address this issue, the one conjectured
in previous studies of observed solar flares, in this paper we
instead perform MHD simulations of the slow current build-
up associated with pre-existing narrow QSLs. In Sect. 2, we
consider and analyze the properties of two potential magnetic
configurations that have large differences in QSL thickness. In
Sect. 3, we describe the numerical method which we used to
evolve both configurations with two different forms of line-
tied motions. In Sect. 4, we discuss our results in terms of
the formation conditions of narrow current layers within QSLs,
in general, and at the HFT, in particular, as a function of the
boundary flow. The results are summarized and discussed in
the frame of solar flare and coronal heating modeling in Sect. 5.
Numerical and physical issues on the width of current sheets
are discussed in Appendix A.

2. Definition and topology of the magnetic
configurations

2.1. Initial magnetic configurations

We considered a 3D Cartesian domain x ∈ [−0.65, 0.65],
y ∈ [−0.41, 0.41], z ∈ [0, 0.65], where z is altitude. z = 0 is
considered as the photospheric plane, which is treated as a line-
tied boundary in which kinematic motions were prescribed in
the MHD simulations. In this domain, we calculated two po-
tential magnetic field configurations (�b = 0) made up of four
polarities: P1 (resp. N1) is the positive (resp. negative) polarity
of an outer bipole, and P2 (resp. N2) is the positive (resp. neg-
ative) polarity of an inner bipole which contains less magnetic
flux than the outer one, but which has stronger magnetic field
concentrations.

Each of the four polarities results from point-sources lo-
cated at various depths beneath the photosphere. Throughout
this paper, both configurations are labeled by Φ = 120◦
and 150◦, which are the angle between the axes of both bipoles
when the field is potential at t = 0. The magnetic field b of
these configurations is given by:

bx(x, y, z) = Σ4
i=1 Fi (x − xi) r−3

i ,

by(x, y, z) = Σ4
i=1 Fi (y − yi) r−3

i ,

bz(x, y, z) = Σ4
i=1 Fi (z − zi) r−3

i ,

ri =

√
(x − xi)2 + (y − yi)2 + (z − zi)2. (1)

The values of the free parameters for each polarity (xi, yi, zi, Fi)
are given in Table 1. Typical field lines for both configurations
are shown in the upper row of Figs. 1 and 2. Note that the point
sources are used only to define the initial magnetic field. Later,
only the magnetic field for z ≥ 0 is considered (Sect. 3).

The chosen settings imply that there is neither a magnetic
null point in z ≥ 0 nor field lines tangential to the photospheric
boundary at z = 0, so there are no separatrices in the do-
main. Topologically speaking, the configurations are bipolar,
equivalent to an arcade, even though they display four con-
trasted magnetic field concentrations. The following numbers
permit to estimate the degree of contrast at z = 0 for Φ = 120◦
and 150◦: bmax

z (inP2) � 35, bmax
z (inP1) � 25, and bmin � 3.

Table 1. Parameters of the magnetic configurations.

Polarity Parameter Φ = 120◦ Φ = 150◦

x1 0.5 0.5

P1 y1 0 0

z1 −0.2 −0.2

F1 1 1

x2 −0.5 −0.5

N1 y2 0 0

z2 −0.2 −0.2

F2 −1 −1

x3 −0.05 −0.0866

P2 y3 0.0866 0.05

z3 −0.1 −0.1

F3 0.4 0.4

x4 0.05 0.0866

N2 y4 −0.0866 −0.05

z4 −0.1 −0.1

F4 −0.4 −0.4

2.2. Definition of quasi-separatrix layers

QSLs are defined as regions where there is a drastic change in
field-line linkage (Démoulin et al. 1996a,b). More precisely,
let us consider the mapping from one photospheric polar-
ity to the opposite one: r+(x+, y+) �→ r−(x−, y−) and the re-
versed one r−(x−, y−) �→ r+(x+, y+). These mappings can be
represented by some vector functions [X−(x+, y+), Y−(x+, y+)]
and [X+(x−, y−), Y+(x−, y−)], respectively. The norms N(r+)
and N(r−) of the respective Jacobian matrices in Cartesian co-
ordinates are:

N± ≡ N(x±, y±) (2)

=

√(
∂X∓
∂x±

)2

+

(
∂X∓
∂y±

)2

+

(
∂Y∓
∂x±

)2

+

(
∂Y∓
∂y±

)2

·

A QSL was first defined by the condition N(x±, y±)� 1 in both
photospheric polarities (Démoulin et al. 1996b).

Let us now consider a field line linking photospheric lo-
cations (x+, y+) and (x−, y−), which both have different normal
field components bz+ and bz−. In this case, a difficulty with the
definition of QSLs by Eq. (2) is that N(x+, y+) � N(x−, y−)
if bz+ � bz−, so QSLs do not fulfill a unique condition, in gen-
eral, when defined by Eq. (2). Recently, Titov et al. (2002) de-
fined another characteristic function for QSLs which is inde-
pendent of the mapping direction: the squashing degree Q. It is
calculated as follows:

Q+ =
N2
+

|bz+/b∗z−|
≡ Q∗− =

N∗2−
|b∗z−/bz+| ≡ Q , (3)

where asterisking the functions indicates that their argu-
ments x− and y− are substituted in X−(x+, y+) and Y−(x+, y+),
respectively. With this new prescription, a QSL is defined
by Q � 2, the value Q = 2 being the lowest value possible
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Fig. 1. Top views of the magnetic configurations
for two orientations of the central bipole with
respect to the large one (Φ = 120◦ and 150◦):
potential field (top row) and configurations re-
sulting from the translational (middle row) and
twisting (bottom row) motions applied at z = 0
(see Fig. 5). The horizontal (resp. vertical) axis
corresponds to the x (resp. y) coordinate. Pink
(resp. blue) contours show positive (resp. nega-
tive) values of bz(z = 0) = ±5, 10, 15, 20, 25, 30.
The inversion line bz(z = 0) = 0 is plotted in
yellow. The other lines are magnetic field lines.
In each panel, they are plotted starting from the
same positions at z = 0 in the negative polar-
ities, so these lines are comparable from one
panel to another since their fixed footpoint is
not displaced by the flows (see Fig. 5). The time
unit corresponds to the transit time of an Alfvén
wave on a distance of 0.2 at the initial homoge-
neous Alfvén speed.

(Titov et al. 2002). By definition, Q is uniquely defined along a
field line by:

(b · ∇)Q = 0. (4)

The physical meaning of this apparently complex definition
can, in fact, be simply explained as follows. Let us consider an
elementary flux tube rooted in an infinitesimal circular region
in one polarity. Q simply measures the aspect ratio of the dis-
torted ellipse defined by the footpoint mapping of this flux tube
in the other polarity. In other words, Q measures how much the
initial elementary region is squashed by the field-line mapping.

Other quantities which define the mapping properties
of QSLs do exist, one of them being the ratio |bz+/b∗z−|. Their
full description and meaning are analyzed in Titov et al. (2002).
In this paper, we only use Q, since it is sufficient to localize the
QSLs and to define their thickness. A global view of QSL prop-
erties and their application to coronal physics is presented in
Démoulin (2005) and Titov (2005).

2.3. Numerical calculation of quasi-separatrix layers

3D magnetic configurations, where the maximal value of Q is
large, are challenging for numerical computation of the asso-
ciated QSLs, because their related widths are often orders of
magnitudes below the spatial resolution of any numerical mesh.
For local quantities such as the magnetic field, computing

gradients below the mesh size has no meaning. But this is
not true for N and Q, because their values are dominantly
determined by the large-scale properties of the magnetic con-
figuration. This was thoroughly explained in Démoulin et al.
(1996a, 1997), where the effect of spatial discretization defin-
ing the analytical magnetic fields was tested. There it was
demonstrated that calculating QSLs below the scale of the dis-
cretization is relevant and reliable as long as the large scale-
lengths of the magnetic field are well resolved.

In order to accurately compute N (or Q) in a plane (e.g.
z = 0), one needs to determine a 2D grid (e.g. in x, y) which
is locally adapted to the QSL width. The latter must then be
different than the grid used later in the MHD simulations. One
must also be able to compute the connectivities with high preci-
sion. In the case of a uniform grid, with a mesh interval δ small
enough to resolve all the connectivity gradients, the computa-
tion of N is only limited both by the numerical precision of
the field line integration and by the numerical derivatives in
Eq. (2). With the best integration algorithms, the position ri, j of
the second footpoint of the field line passing by the grid point
of index (i, j) can be known with relative precision of 10−11.
This permits us to calculate the field line connectivities very
accurately. Since local small-scales of the magnetic field have a
low effect on the QSLs, the magnetic field in between the mesh
points is computed simply by a linear interpolation of the near-
est points values. Then from Eq. (2), the computed value Ni, j
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Fig. 2. Same as Fig. 1, but projection views
in the full numerical domain are shown. The
viewing angle is rotated approximatively 180◦

around the z axis relative to Fig. 1.

of N at the grid point (i, j) is given by the knowledge of the field
line connectivity of the four surrounding points on the grid:

Ni, j =

√
(ri+1, j − ri−1, j)2 + (ri, j+1 − ri, j−1)2

2δ
· (5)

Qi, j is then derived from Ni, j using Eq. (3).
In practice and in order to save computational time, we

never use a uniform grid. Q is first computed on a coarse grid,
whose resolution progressively improves adaptively in a multi-
step procedure. In a first step, Q is calculated everywhere, but
only those regions where Q is the highest are kept. In these re-
gions, the spatial resolution is doubled. In a second step, Q is
re-computed in the previously selected points, as well as in the
new four neighboring point of the improved grid. This proce-
dure is repeated until the number of points where Q is com-
puted reaches some previously fixed value. In the present paper,
this number of point was 3500, which corresponds to a spatial
resolution of ∼3×10−3, twice larger than the smallest cell which
is considered in the MHD simulations (see Sect. 3.1).

With such grid resolution, however, Q is still approxima-
tively computed where the gradients of connectivity are strong,
i.e. where the QSL are the thinnest. For the refined calcula-
tion of Q in 2D, we consider a local square around each saved
position of the latter grid. In a second multi-step procedure,

Q is then successively re-computed in the central point of each
square, as the resolution progressively increases by a factor
two at each step. The recurrence is stopped when the values
of Q computed at two consecutive steps converge, i.e. when
their ratio exceeds a fixed value (which we choose to be equal
to 0.9 in this paper). At that stage, Q is calculated well at the
3500 selected points. Note than in separatrices, this second it-
eration never converges since Q tends to infinity.

The results of these two iterative procedures were used to
generate all Q maps at z = 0 shown in this paper and to calcu-
late the corresponding Qmax. Figure 3 shows such maps for the
potential magnetic field configurations defined in Sect. 2.1. The
shape of the QSLs and their significance are discussed below
in Sect. 2.4.

We define the QSL width as the full width at half maximum
of the Q profile. In order to calculate the latter, we recompute Q
along several 1D segments that cross the QSL at various angles,
in the plane z = 0. The 2D Q maps are used to choose the posi-
tion of these segments. Q can there be computed using various
spatial resolutions δ′. The true QSL width along a given di-
rection is reached when δ′ is small enough to ensure that any
further refinement does not change the Q profile. The minimum
full width at half maximum of the Q profiles along each of the
segments finally results in the QSL width.
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Fig. 3. Top views of the quasi-separatrix lay-
ers (QSLs) for the potential field configura-
tions for Φ = 120◦ and 150◦. The greyscale
images show the distribution of the squash-
ing degree Q (Eq. (3)) at z = 0 in logarith-
mic scale. For Φ = 120◦ (resp. 150◦), white
corresponds to Q = 5 (resp. 6) and black to
Q = 1.3×105 (resp. 1011). Typical field lines
that are rooted in the vicinity of the QSLs,
and the same bz(z = 0) contours as in Fig. 1,
are overplotted in the bottom row.

Table 2. Maximum amplitude of the footpoint motions, of the squashing degree and minimum width of its profile across the QSLs, in each
configuration studied. The amplitude of the translation motions, 2 δy, is measured by the ratio of the maximum displacement (δy), divided
by characteristic size along y of the system (0.5). The amplitude of the twisting motions is measured by the maximum numbers of turns ∆N
within P2. The importance of the mapping distortion is given by the maximum value of squashing degree (Eq. (3)), Qmax. Finally the thicknesses
of the QSLs are given by the ratio of the full width at half maximum of Q, δQ with the smallest cell size, d (Sect. 3.1). Both Qmax and δQ /d are
computed with a low spatial resolution of d = 1.5 × 10−3 (resp. at a much higher spatial resolution, see Sect. 2.3) and the values are noted with
a subscript “L” (resp. “H”).

Config. Motion Time 2 δy ∆N δQ,H /d log Qmax
H δQ,L /d log Qmax

L

potential field 0 – – 2.6 3.6 4.0 3.2

Φ = 120◦ translation 81 0.24 – 0.96 4.1 2.8 3.7

twist 99 – 0.29 5.5 × 10−2 5.2 2.7 3.8

potential field 0 – – 4.3 × 10−3 8.8 2.8 5.5

Φ = 150◦ translation 41 0.10 – 1.8 × 10−4 11 1.1 5.5

twist 38 – 0.14 8.2 × 10−3 8.3 2.6 5.5

Figure 4 shows QSL profiles for both configurations de-
fined in Sect. 2.1, using two different segment lengths, thus
with two different spatial resolutions δ′. With the lower reso-
lution which is of the order of the MHD mesh resolution (see
Sect. 3.1), one can neither obtain the correct value of Qmax, nor
the real width of the central peak of the QSL profile. The broad
wings of the QSL are, however, well visible. The properties
of the QSL, as calculated with both resolutions, are given in
Table 2. It shows that the issue of resolution is the most sensi-
tive for Φ = 150◦. The QSL for Φ = 120◦ at t = 0, however, is
almost resolved by the numerical mesh used in the MHD sim-
ulations: “almost”, because the mesh is non-uniform and d is
only the smallest grid size (see Sect. 3.1).

2.4. Topology of the potential fields

In the bipolar potential configurations defined in Sect. 2.1, the
magnetic field line linkage has four basic sets of magnetic

connectivities (see Figs. 1 and 2), just as in 2D quadrupolar
magnetic configurations, but without separatrix between them.
For both configurations, the intersections of the QSLs with the
z = 0 boundary have only two extended thin strips, one over
each magnetic polarity (see Fig. 3, top row). These potential
configurations are thus very similar to the one analyzed by
Démoulin et al. (1996a) and Titov et al. (2002).

Two close field lines rooted at z = 0 on both sides of one
strip rapidly diverge in the volume to connect, on the other
strip, regions which are very far from each other, as shown in
Fig. 3, bottom row.

The thin volume, where Q has the highest values, is of par-
ticular interest: the way field lines diverge there suggests to
call the magnetic structure of QSLs a HFT Titov et al. (2002).
The 3D shape of this HFT is better understood as one follows
its 2D cross-section from one polarity to the other one on the
boundary. Let us define the edge of the QSL by the value Qe,
which is a fraction of the maximal value of Q. The HFT starts
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Fig. 4. Profiles of log Q(z = 0) perpendicular to the QSL for the
initial configurations Φ = 120◦ (left column) and Φ = 150◦ (right
column). The cuts are centered at (x, y) = (xQ, yQ), with (xQ, yQ) =
(−0.155,−0.145) for Φ = 120◦ and (xQ, yQ) = (−0.121,−0.203) for
Φ = 150◦. The profiles are calculated using a spatial resolution corre-
sponding to the smallest cell in the numerical mesh δ′ = d = 1.5×10−3

(upper row) and using an optimized higher spatial resolution δ′ (lower
row), as explained in Sect. 2.3.

as an elongated strip over one polarity, then it is transformed
progressively in a cross shape in the volume, and it ends in the
form of another elongated strip on the other polarity. Each strip
at z = 0 involve one branch of the cross at z > 0. A cartoon of
the cross-section from one polarity to the other is then:
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This shape is similar for any values Qe � 2. The volume de-
fined by Q′e fully encloses the volume defined by Qe if Q′e > Qe,
so that defining an increasing series of Qe values defines a se-
ries of volumes that are somehow organized like Russian dolls.

The QSL shape is robust to the transformation of the mag-
netic configuration, as the locations of the highest values of Q
for the two configurations of Fig. 3 have similarly curved
shapes. The slight modifications of these shapes mostly follow
the displacement of the polarities.

The maximum value of Q however, is extremely sensitive
to modifications of the magnetic configurations: when Q is cal-
culated at a spatial resolution much higher than the numerical
discretization chosen for the MHD simulation so as to obtain its
true profile (see Sect. 2.3), Qmax ∼ 4× 103 for Φ = 120◦, while
Qmax ∼ 6 × 108 for Φ = 150◦, five orders of magnitude higher.
Asymptotically, Qmax tends to infinity as Φ tends to 180◦.

3. Method for MHD evolution

3.1. Equations and mesh

We use a simplified version of our zero-β (pressureless) time-
dependent 3D MHD code, which is extensively described in
Aulanier et al. (2005). The present version solves the following
equations:

ρ
∂u
∂t
= −ρ (u · ∇)u +  × b + ρDu (7)

∂b
∂t
= ∇ × (u × b) + η�b (8)

∇ × b =  (9)

∇ · b = 0, (10)

where ρ is the mass density, u the plasma velocity, b the mag-
netic field,  the electric current density and η the magnetic re-
sistivity. The calculations are achieved in a dimensionless form,
so that the magnetic permeability is set to 1.D is a diffusion op-
erator for the velocity (see Sect. 3.3).

Since we are only interested in quasi-static evolutions and
to save computer time, we fix ρ in time to its initial value given
below:

ρ(x, y, z) = c−1
◦ b2(x, y, z, t = 0), (11)

so that cA(x, y, z, t = 0) = c◦ = 0.2. This leads to define the time
unit as the transit time of Alfvén waves over a distance of 0.2,
which corresponds to the physical spacing between both central
polarities P2 and N2. This setting does not lead to any singu-
larity, since the studied configurations contain no magnetic null
point in the domain.

The boundary conditions at z = 0 are line-tied, and those of
the five other faces are open. Their numerical implementation
with the use of ghost cells is described in details in Aulanier
et al. (2005).

The simulations are done in the domain defined in Sect. 2.1,
using a non-uniform mesh nx×ny×nz = 191×161×170 points.
The mesh intervals vary in the range dx ∈ [1.5 × 10−3 , 1.8 ×
10−2], dy ∈ [1.5 × 10−3 , 1.2 × 10−2], dz ∈ [1.5 × 10−3 , 0.8 ×
10−2], expanding from x = y = z = 0 following di+1

x /di
x =

d j+1
y /d j

y = 1.027 and dk+1
z /dk

z = 1.01.

3.2. Boundary motions

The magnetic configurations evolve in response to large-scale
kinematic motions ux,y which we prescribe in the line-tied
plane at z = 0. Since we want to study the dependence of
the generation of electric currents at QSLs with respect to the
precise nature of the footpoint motions, we consider various
types of motions which move only a part of the QSLs. Firstly,
we only apply motions within the positive central polarity P2.
Secondly, we choose two types of motions which contain nei-
ther X-type stagnation point, nor small scales. The first type of
motion is a nearly solid translation of P2 along y. The second
type of motion is twisting of the strongest fields in P2, which
has a nearly solid rotation over more than half of the vortex
radius. Both types of boundary motions are shown in Fig. 5,
superposed on contours of bz(z = 0). They both do not directly
affect the field lines which have a footpoint in P1.

The translation motion is defined by:

ux(z = 0) = 0,

uy(z = 0) =
u◦

4

[
tanh

(
y − y◦(x)
δy◦

)
+ 1

]
[

tanh

(
x − x◦1
δx◦

)
− tanh

(
x − x◦2
δx◦

)]
,

y◦(x) = 4(x − x◦3)2 + y◦1, (12)
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Fig. 5. Boundary flow patterns applied for
Φ = 120◦ and 150◦, shown by dark arrows
superposed to the same bz(z = 0) isocon-
tours as shown in the top row of Fig. 1.
The flows are fixed in time for t > 13
(see Eq. (15)).

where u◦ is the maximum velocity at the boundary. In all our
simulations, we set u◦ = 1.5 × 10−3 = 0.75% of c◦ (defined
with Eq. (11)) so as to ensure a relatively slow driving of the
system.

The twisting motion in P2 is defined by:

ux(z = 0) =
∂ψ

∂y
, uy(z = 0) = −∂ψ

∂x
, (13)

ψ = ψ◦ tanh
[
α◦1 b2

z (z = 0)
]
tanh4

[
α◦2 b2

z (z = 0)
]
, (14)

where ψ◦ is a parameter which is adjusted so as to prescribe a
maximum twisting velocity of u◦ (same value as above). With
the velocity written as in Eq. (13), bz(z = 0) is only advected
with time (without modifying its Lagrangian value), and this is
re-enforced numerically at each numerical iteration. The choice
of such complex ψ functions (Eq. (14)) was motivated to pre-
scribe a nearly uniform twisting motion in the strong field re-
gions, surrounded by a region of fast velocity decrease and a
last outer region in which both the velocities and their horizon-
tal derivatives tend to zero close to the inversion line around P2.
In this way, the central part of P2 does not incorporate small
scales, and its outer regions do not lead to numerical instabili-
ties, since no small unresolved field line is advected and since
the velocity is numerically derivable everywhere.

The values for the remaining free parameters in Eqs. (12)
and (14) are given in Table 3. In the simulations, all the veloci-
ties given above are multiplied by γ(t):

γ(t) =
1
2

tanh

[
2(t − 10)

3

]
+

1
2
, (15)

which allows the system to first relax to a numerical equilib-
rium for 0 < t < 7, followed by an early acceleration phase for
7 < t < 13, towards a constant boundary driving for t > 13.

Table 3. Parameters for line-tied boundary motions.

Param. Φ = 120◦ Φ = 150◦

δx◦ 0.05 0.05

δy◦ 0.03 0.03

x◦1 −0.22 −0.26

x◦2 0.22 0.07

x◦3 −0.10 −0.14

y◦1 −0.05 −0.10

α◦1 9 × 10−4 9 × 10−4

α◦2 3 × 10−3 3 × 10−3

3.3. Diffusion operators

Some strong Lorentz forces develop during the calculations on
small-scales. They lead to strong vorticity layers on the scale
of a few cells, which are typically located around the QSLs at
z > 0. Their proper numerical treatment leads us to use the
following diffusion operator for velocity:

D ui =
uν


d

(
δ2

xui + δ
2
yui + δ

2
z ui

)
(16)

where ui is the velocity component along either axis (x, y, z)
and d is the smallest cell size in the domain. uν
 is the char-
acteristic diffusion speed. We set to uν
 = 0.03 = 15% c◦ in
all our simulations. This leads to strong viscous effects, which
are unfortunately required: setting uν
 = u◦, which is the stan-
dard value in turbulent simulations, leads to numerical insta-
bilities in the HFT typically at t ∼ 20, which do not permit us
to follow the development of strong electric currents over long
time-scales. δ2

x is a second-derivative operator with respect to
the mesh rather than to spatial units. For any quantity f , this
operator is equal to:

δ2
x f = f (xi+1, y j, zk) − 2 f (xi, y j, zk) + f (xi−1, y j, zk). (17)
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Fig. 6. Greyscale images of the coronal currents j(x, z) at y = 0.07 in linear scale. In all panels, dark grey corresponds to j(x, z) = 0. White
corresponds to j(x, z) = 100, 300, 100, 150 respectively, for the (upper-left), (lower-left), (upper-right), and (lower-right) panels. Each image
shows the co-existence of “extended” currents which result from the line-tied footpoint motions, of “narrow” currents layers within the whole
QSLs, and of an intense current layer at a Hyperbolic Flux Tube (“HFT”) located where the narrow current layers intersect. The plots are drawn
a few Alfvén times before the magnetic field gradients reach the scale of the mesh in the HFT.

So as to reach a compromise which ensures that the effects of
resistivity are small, but enough to ensure numerical stability
for a long time, we set η = 1.5×10−6 in all our simulations. This
leads to a low characteristic resistive speed of η/d = 10−3 =

0.5% c◦.
Considering u◦ as the characteristic velocity of the system

implies the following magnetic Reynolds and Lundquist num-
bers: Rm = 1.5 and Lu = 200 at the scale of the smallest
cell, Rm = 200 and Lu = 2.6 × 104 at the scale of the cen-
tral bipole P2N2, Rm = 103 and Lu = 1.3 × 105 at the scale of
the full magnetic configuration.

4. Development of electric currents

In spite of the very small scales in the QSLs, which are in-
trinsic to the studied configurations, our MHD simulations do
not result in numerical instabilities for several tens of Alfvén
times. During this long time interval, electric currents develop
in various regions (Sect. 4.1). In particular narrow current lay-
ers develop all along the QSLs (Sect. 4.2), while the strongest
current layer is formed at the HFT where the QSLs are the nar-
rowest (Sect. 4.3).

4.1. Extended and narrow current layers

In all our simulations, the footpoint motions naturally lead to
the formation of nearly-field-aligned currents distributed over
wide volumes which are defined by the envelope of the field
lines which are transported. We call them “extended current
layers”. These currents are stronger for the twisting motions

than for the translation motions (see Fig. 6). Even though these
currents are relatively strong, they do not tend to dissipate eas-
ily, since they result from large-scale magnetic field gradients
in the domain induced by the line-tied motions. Indeed, the re-
sistive dissipation term is ∝�b ∼ /L, which clearly shows that
for equal electric current densities, the narrowest current lay-
ers will dissipate more quickly. Since the boundary motions
are less than 1% of the Alfvén speed, the electric current re-
mains nearly aligned with the magnetic field in these extended
regions, so the whole configuration is always very close to a
force-free state. This behavior is typical of every MHD sim-
ulation with slow line-tied boundary motions (e.g. DeVore &
Antiochos 2000; Török & Kliem 2003; Aulanier et al. 2005).

It must be noted that in the time interval during which our
motions are prescribed, the footpoint displacements remain rel-
atively small, at most of the order of ∼1/4th (resp. 1/7th) of the
characteristic size of the system forΦ = 120◦ (resp. 150◦). This
is shown in Figs. 1 and 2. Also, as explained in Sect. 3.2, none
of the prescribed line-tine motions possess very small scales. In
spite of all this, the footpoint displacements in our simulations
lead to the development of “narrow current layers” at z ≥ 0.
They begin to form on small scales as soon as the motions start,
so they mostly do not come from some time-varying steepen-
ing effect. Another property is that, for a given magnetic field
configuration, these narrow currents layers form in the same
specific locations (see Fig. 6), whatever the prescribed motions,
translation or twisting.

All the above properties lead to the conclusion that these
narrow current layers are not a direct consequence of the pre-
scribed velocity gradients at z = 0, as is usually the case
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in line-tied MHD simulations in which large-scale and long-
duration braiding or twisting or shearing motions are applied
(see e.g. van Ballegooijen 1986; Mikic et al. 1989; Galsgaard
& Nordlund 1996; DeVore & Antiochos 2000; Galsgaard et al.
2003; Aulanier et al. 2005). 2D slabs (in x, z) of the 3D currents
layers are shown in Fig. 6, a few Alfvén times before magnetic
field gradients reach the scale of the mesh and halt the simu-
lations. These currents display a shape which is reminiscent of
separatrices with a null point or with a separator, though none
of the latter exist in the 3D magnetic configurations that are
analyzed.

In the translation cases, the electric current densities in the
narrow layers are almost everywhere larger than the extended
currents. They are also associated with Lorentz forces, so that
they are not fully force-free. In the twisting cases, the extended
currents are the highest at low altitude above the polarity P2
for z ≤ 0.05, but they have similar magnitudes than those in
the narrow layers almost everywhere else. For both types of
motions, the magnitude of the currents in the narrow layers and
in the extended regions increase in time at similar rates, except
in the region where two narrow layers intersect (Fig. 6). In all
runs, the smallest-scale currents eventually form in this latter
region. Their time-evolution is described in Sect. 4.3.

4.2. Current layers at QSLs

In order to investigate the relation between the current layers
and the QSLs, we calculate the distribution of the squashing
degree Q(z = 0) with exactly the same procedure as described
in Sect. 2.3 for the potential fields. For all configurations, the
maximum values of the squashing degree Qmax and the associ-
ated widths δQ of the QSLs are given in Table 2, as calculated
with spatial resolutions that are typical of the numerical mesh
and with resolutions that are much finer than the mesh. With
both resolutions, we note that Qmax is larger than 2 by several
orders of magnitudes. The precise characteristics of the QSLs,
however, strongly depend on the resolution at which they are
computed. For a resolution equal to the smallest grid size d of
the MHD simulations, δQ � d−3d for both configurations. But
for the higher resolution, the minimum value of δQ is always
much smaller than d (except for the potential field of the con-
figuration Φ = 120◦ where δQ ∼ d). Thus the numerical grid of
the MHD simulations does not resolve most of the QSLs which
result from the footpoint motions.

The 2D maps of Q and j at z = 0 are drawn in Fig. 7
at the same times as in Fig. 6. Apart from the regions that
were directly affected by the boundary motions (i.e. within and
around P2), Q and j show a striking resemblance in all four
cases. The similarity is most evident for the translation mo-
tions, since the latter produce less extended field-aligned cur-
rents in the displaced flux tubes. But the similarity is also very
visible when twisting motions are applied. Also, apart from the
region covered by the flows, the QSLs are weakly deformed by
the line-tied motions (compare Figs. 3 and 7). The currents then
spontaneously form where the QSLs are located in the poten-
tial fields. Since the selected motions have no relationship with
the QSLs, we then reach the interesting conclusion that any

boundary line-tied motion invariably results in the formation
of current layers all along narrow QSLs. In our simulations,
most of the spatial locations of these current layers are defined
by the intrinsic properties of the magnetic configurations that
already exist for the corresponding potential field. They are not
defined by the topological properties of the boundary motions.
Then these current layers are formed just like current sheets in
configurations which have separatrices. We then reach an op-
posite conclusion from Titov et al. (2003) and Galsgaard et al.
(2003), who pretend that the nature of the boundary motions is
a determining factor in the formation of current layers in QSLs.

Figure 7, especially for Φ = 120◦ for which larger twists
could be applied, clearly shows how the rotational motions de-
form the QSL in the middle of P2, and how they tend to develop
new wide and well resolved QSLs (with weaker Q) around the
envelope of the twisted area. These new QSLs result directly
from the twisting profile, which rapidly decreases to zero away
from the center of P2. It is worth noticing that these new QSLs
are also matched by electric currents, but they are neither as
intense nor as narrow as the current layers which form in the
main QSLs (see Fig. 6).

It is finally interesting to note that in our four simulations,
the widths of the narrow current layers that form around QSLs
tend to be larger for initially broader QSLs, as seen in Figs. 6
and 7. Also, the width of the current layers is well resolved,
of the order of δQ as calculated with the resolution of the nu-
merical simulations. This issue and its consequences are dis-
cussed further both in the context of QSLs and separatrices in
Appendix A.

4.3. The hyperbolic flux tube

Apart from the regions right above sheared/twisted polarities,
the strongest electric currents ,which eventually form in all our
simulations, are always located at high z, even though the mag-
netic fields are the strongest at low z (see Fig. 6). The loca-
tion of these currents corresponds to the region in the QSL that
has the highest squashing degree Q. It is the core of the QSL.
In the limit of infinitely thin QSLs, this region corresponds to
the intersection of two separatrices, which is called a separator.
Contrary to a separator, which is a singular line, the HFT is a
complex layer-like volume that takes the very elongated shape
of the QSLs at the boundary, as shown in Eq. (6)).

For the specific configuration Φ = 150◦ at t = 38 evolved
with twisting motions, Fig. 8 shows the comparison of the
squashing number in the vicinity of the HFT, calculated from
global field line integrations with both the magnitude and the
width of the current layers calculated from the local magnetic
field derivatives. The Q map was calculated as explained in
Sect. 2.3, except that the grid was defined on the plane y = 0.07
(instead of z = 0) and that the field lines were integrated in both
directions from this plane. A similar behavior was found in all
our runs. It is obvious that even though the strongest currents
are the distributed ones at low altitude, the current layers are
narrower within QSLs. These narrow currents reach their min-
imum thickness within the core of the QSLs, i.e. in the HFT.
As mentioned in Sect. 4.2, it is also clear from Fig. 8 that the
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Fig. 7. (Left column): greyscale images of
the electric currents at the lower boundary
j(z = 0) in logarithmic scale. In all pan-
els, white (resp. dark grey) corresponds to
j(z = 0) = 850 (resp. 10−3). (Right column):
greyscale images of the squashing degree at
the lower boundary Q(z = 0) in logarith-
mic scale. As in Fig. 3, for Φ = 120◦ (resp.
150◦), white corresponds to Q = 5 (resp. 6)
and black to Q = 1.3 × 105 (resp. 1011).

currents which form in the MHD simulations are broader than
the unresolved central peaks of the QSLs.

At early times, the current layer, which develops in the
vicinity of the HFT at high z, first has a nearly circular shape
in the (x, z) plane around y = 0, with four extensions along the
QSLs. Its diameter is ∼3 × 10−2 ∼ 20d. In the case of twisting
motions, it is a combination of the outer parts of the extended
currents and of the currents which form right in the middle of
the HFT. This combination explains the spatial shift between
the center of the current sheet and of the HFT visible in Fig. 8.
In the case of translation motions, however, the maximum cur-
rents are almost co-spatial with the center of the HFT. Then
in all our runs, as time progresses, this current layer flattens

vertically along z and slowly expands horizontally, mostly
along x. We thus find that, whatever the precise form of the
boundary motions, HFTs are preferential places for the forma-
tion of an intense current layer.

We checked that no stagnation point for the velocity ever
forms in the vicinity of the HFT in any of our simulations.
This is again contradictory to the restricted conditions that
Galsgaard et al. (2003) found for current sheet formation
in HFTs. This quantitative difference is probably due to our
much thinner pre-existing QSLs combined with the absence
of special symmetry properties in our models. All our mag-
netic field lines are rooted in one single line-tied plane (whereas
Galsgaard et al. 2003, considered a straightened configuration
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Fig. 8. Color images of 2D slabs (in x, z) at y = 0.07 of the HFT for the configuration Φ = 150◦ at t = 38 evolved with twisting motions (see
Fig. 6, lower-right panel). (Left panel): logarithm of the squashing degree = log Q. (Middle panel): inverse of the scale-length of the magnetic
field gradients in current layers = /b. (Right panel): magnitude of the electric currents = .

between two opposite line-tied plates), and only one of our four
polarities is located in the boundary flow region (whereas all
four polarities are displaced in Galsgaard et al. 2003). The pre-
cise dynamics and geometry of the HFT current sheets in our
simulations are still controlled by the form of the line-tied mo-
tions, as shown in Fig. 6. The steepening of the current layer is
mostly due to local compressive shearing motions, which result
from a combination of the different vertical expansions and of
the horizontal rotations of the field lines across the HFT, since
they have different sizes and are not rooted in the same regions
at z = 0. It is then natural that Galsgaard et al. (2003) could
not obtain this behavior and thus needed to create a stagnation
point so as to create a current sheet at the HFT, considering the
absence of both short and long field lines in their straightened
magnetic field configuration.

Electric current and magnetic field profiles along z for fixed
(x, y) positions passing through the middle of the HFT are
shown in Fig. 9; from these plots, one can estimate more quan-
titatively what the greyscale levels correspond to in Figs. 6
and 7. The potential field profiles are also drawn for compar-
ison. These plots are comparable in the sense that they cor-
respond to the formation of similar small scales in the HFT.
These plots suggest that for a given magnetic configuration,
the broader the QSLs are for its potential field, the longer the
twist can be applied on the boundary and the higher the electric
currents can be generated in the HFT, before the latter reach the
scale of the mesh, i.e. the dissipative scale.

In all our simulations, provided that the viscous term was
well adapted, the steep magnetic field gradients which progres-
sively form in the HFT invariably caused numerical instabili-
ties after several tens of Alfvén times, which eventually halted
the simulations. We verified that increasing η permits to further
evolve the systems for longer times. But we did not pursue in
this direction, since the aim of this paper was to study the for-
mation of current layers and their possible collapse at the scale
of the mesh, with reduced diffusive effects.

The Lorentz forces are the strongest at the HFT. First anal-
yses show that once the scale-lengths are small enough, the
Lorentz forces lead to an undriven collapse of the current layer,
and they accelerate the plasma at its outer edges for non-
zero resistivities. This results in a magnetic reconnection-like

Fig. 9. Plots of the three components of b and j along z at (x, y) =
(−0.02, 0.07). The whole domain along z is shown. In the first and
second rows, (continuous-red, dashed-blue, long-dashed-green) lines
respectively correspond to (bx , by, bz). In the third row, (continuous-
red, dashed-blue, long-dashed-green, thick-continuous-black) lines re-
spectively correspond to ( x, y, z, ). In both cases, the location of
the smallest scale for b associated with the narrowest peak of  cor-
responds to the HFT. Note that in this region, when the same small
scale is achieved, the jump in b, so the current magnitude, is larger for
initially wider QSLs (i.e. for Φ = 120◦ shown in the left column).

process, but the related change of connectivity during the dif-
fusion is not discontinuous. Instead the field lines tend to slip
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along each other on both sides of the HFT, while their foot-
points at z = 0 quickly shift along the QSLs over long dis-
tances. Field line slippage was in fact first envisioned in the
general context of magnetic reconnection with no null point by
Priest & Démoulin (1995). Theoretical arguments for it were
developed by Priest et al. (2003). It was only recently identified
in non-zero β MHD simulations of reconnection within a thick
HFT (Pontin et al. 2005) and between sheared arcades in the
frame of prominence modeling (DeVore et al. 2005; Aulanier
et al. in preparation). We thus believe that this specific behav-
ior is the generalization magnetic reconnection from 2D to 3D,
when neither null points nor separators are present in the sys-
tem. Detailed analysis of this process in zero-β for our modeled
configurations will be the object of a forthcoming paper follow-
ing the present one.

5. Discussion

5.1. Summary

We considered two quadrupolar configurations (Figs. 1 and 2).
They only differed by the respective angle made between the
axes of the large outer and the small inner bipoles within one
configuration. In spite of their quadrupolar nature, these config-
urations were, strictly speaking, bipolar. They did not possess
separatrices. They still had strong gradients of field line con-
nectivity in regions called QSLs (Figs. 3 and 4).

We considered two types of line-tied boundary motions,
with zero-β resistive MHD simulations, using a 191×161×170
non-uniform mesh. These motions were prescribed so as to dis-
place only the field line footpoints within one of the polarities
of the inner bipole, either by translation, or by twisting motions
(see Fig. 5). Their maximum velocity was very sub-Alfvénic,
allowing tens of wave reflections from one footpoint to an-
other. They led to the advection of field lines over distances
that were small compared to the characteristic scale-lengths
of the configurations (see Fig. 1). Their gradients had typical
scale-lengths which were between that of one single polarity
and that of the whole quadrupolar configuration. These flows
neither possessed any stagnation point at the line-tied bound-
ary nor did they result in the formation of stagnation points in
the domain as a result of the MHD evolutions.

The prescribed motions firstly resulted in the development
of extended quasi force-free currents. The location and am-
plitude of these currents were directly related to the form
of the motions, as is the case in all line-tied magnetic field
simulations.

The key result is that these motions also invariably resulted
in the formation of very narrow current layers, even though
no true magnetic separatrices were present in the systems (see
Fig. 6). These narrow current layers were always cospatial with
the QSLs for various footpoint motions (see Fig. 7). Most QSLs
already existed in the potential fields, and the evolution of their
shapes mainly resulted from the advection by the boundary mo-
tions. Some secondary QSLs also formed where the boundary
motions had the steepest shear gradients. Current layers natu-
rally developed in these QSLs as well.

The thin volume corresponding to the highest squashing de-
gree Q of the QSLs had a specific shape which led us to call it
a HFT. For long enough motions, the strongest and narrowest
current layer developed around the HFT (see Figs. 6 and 8),
even though no stagnation point ever formed in this region. In
typical magnetic configurations that possess separatrices, a cur-
rent sheet is known to form with almost all kinds of boundary
evolution at the separator, or at the null point if the 3D separa-
trix is only made of a fan surface and a singular spine field line.
The current layer forming at the HFT is a generalization of the
latter for configurations without separatrices, but with QSLs in-
stead. When the magnetic field gradients reached the scale of
the mesh, numerical instabilities developed as a natural result
of the formation of unresolved gradients in this region. This
instability could only be prevented by increasing the resistiv-
ity. Comparisons of several configurations have shown that the
wider the QSLs were in the potential field, the stronger the cur-
rents became in the HFT before they reached the dissipative
scale (see Fig. 9).

Since we varied both magnetic field configurations and
footpoint motions, we started exploring the parameter space.
The generic characteristics of our results on the development
of electric currents suggests that they must also be valid in any
magnetic configurations that have thin QSLs.

5.2. A model for solar flares: topology, energy build-up
and switch-on of reconnection

Our results have strong implications for the physics of solar
flares in general. Flare models that are based on magnetic re-
connection in narrow current layers can be divided into two
main classes. The first class involves a large-scale MHD insta-
bility (e.g. Amari & Luciani 1999) or a global non-equilibrium
(e.g. Forbes 2000), which results in a fast flux tube deformation
on time-scales that can be Alfvénic. The latter leads to strong
vortical and/or compressive motions, which naturally results
in the dynamic formation of narrow current layers and in the
triggering of reconnection, with or without complex topologies
in the pre-flare configuration. Since we have considered only
modest footpoint motions, our simulations are not directly rel-
evant to these models. The second class of flare models con-
siders the slow buildup of large current sheets in separatrices
(Somov 1992, and references therein). They predict that the
width of the current sheets that spontaneously form in sepa-
ratrices tends to zero in the limit of infinite Lundquist num-
ber (e.g. Aly 1990; Lau 1993). So they require that the current
sheets do not diffuse for a long time (which is problematic,
as discussed by Low & Wolfson 1988), before reconnection is
switched on due to the triggering of plasma (or MHD) instabil-
ities within the current sheets when some threshold is reached.
Our simulations extend the latter models, and provide natural
solutions to their difficulties.

In magnetic configurations which initially contained
broader QSLs, the electric currents in the HFT increased to
higher magnitudes when the magnetic field gradients reached
the dissipative scale (Sect. 4.3). Then if the fast energy release
is not the result of a global instability, as in our simulations,
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the narrower the initial QSLs are, the shorter the time it takes
to reach the dissipative scale and the less energy is likely to be
accumulated before (and released during) a flare-like event.

We then argue that the most energetic solar flares that are
not triggered by an early large-scale ideal instability must oc-
cur in magnetic configurations whose corresponding potential
field have broad QSLs. This is rather counter-intuitive if one
considers the long history of the separatrix-related flare models
mentioned above, which involve the formation of long current
sheets, which are spontaneously infinitely thin, during the en-
ergy build-up phase.

Let us now rescale our models to solar units for an ac-
tive region. Typically, distances between P2 and N2 should
be ∼20 Mm, photospheric velocities should be ∼0.1 km s−1,
and Alfvén speeds should be ∼103 km s−1. In this context, the
Alfvén time is ∼20 s and the photospheric velocity is ∼10−4 of
the Alfvén speed. In our simulations forΦ = 120◦, the currents
in the HFT reached the scale of the mesh in ∼102 Alfvén times,
and we used a line-tied velocity of ∼10−2 of the Alfvén speed.
The energy build-up phase converted to solar units should then
be of the order of ∼104 Alfv́en times, i.e. ∼2.3 days. This is
of the order of the observed time-scales. We then propose that
the above estimations, combined with the slow driven grad-
ual steepening of the magnetic field gradients in the vicinity
of a HFT, until they reach small dissipative scales, permits to
solve the long standing paradigm for both the long-duration
energy storage before a flare takes place, and for the switch-
on of magnetic reconnection during the impulsive phase of the
flare. This has been, in fact, one of the main problems in line-
tied separatrix-related models, as discussed by Low & Wolfson
(1988).

Our results then support and extend past works that asso-
ciate temporal and spatial properties of observed solar flares
with QSLs computed from magnetic field extrapolations. When
the magnetic configuration has a low free magnetic energy
stored or when the configuration is strongly quadrupolar, the
potential field extrapolations of observed photospheric magne-
tograms and calculation of the resulting QSLs are sufficient to
predict where a flare can potentially take place (Démoulin et al.
1997; Gaizauskas et al. 1998). When the distributed currents
are important (so the free energy is high) and the configura-
tion is more bipolar, force-free field extrapolations are needed
to determine the location of the QSLs with more accuracy, so
the flare location (Mandrini et al. 1996; Schmieder et al. 1997;
Bagalá et al. 2000). Extrapolations and QSLs should then also
be useful for predictingthe acceleration sites and trajectories of
solar energetic particles in flares.

5.3. The role of QSLs in coronal heating

Many models exist for heating the corona by the dissipation
of thin current layers, as extensively reviewed in Mandrini
et al. (2000). The related currents can either be of the AC
(alternative current) or of the DC (direct current) type. Only
the latter are related to low-frequency perturbations such as
sub-Alfvénic line-tied footpoint motions. Presently, observa-
tional constraints permit to select the most relevant models

(Démoulin et al. 2003; Schrijver & Title 2005). DC type mod-
els are among the ones which fulfill observational require-
ments.

Recently, Gudiksen & Nordlund (2005) have performed
MHD simulations of turbulent flux braiding in a potential field
that was extrapolated from an observed magnetogram. The de-
velopment of narrow current layers in their simulations was
due to the line-tied driving. Since their boundary flows follow
a turbulent power-spectrum, it should naturally create small
scales and stagnation points in the velocity profiles, as directly
prescribed in the simulations of van Ballegooijen (1986) and
Galsgaard et al. (2003). Thus, one may argue that the topology
of the flow was directly at the origin of the current layers which
develop within the coronal volume.

Here we propose that another effect might play a non-
negligible role in this particular simulation, and on the Sun
more generally, based on the idea that well developed active
regions are typically composed of numerous flux concentra-
tions. Even with strictly bipolar and potential configurations,
Démoulin & Priest (1997) found very thin QSLs, when sev-
eral flux concentrations were embedded in a (non-zero) weaker
vertical field background. They show that the QSL thickness
strongly depends on the intensity of this background. In the
present paper, we have shown numerically that narrow cur-
rent layers spontaneously develop in such QSLs, even though
we considered much simpler configurations with only two flux
concentrations on each side of the inversion line. So we believe
that at least some of the current layers in Gudiksen & Nordlund
(2005) must be associated with QSLs defined by the magnetic
flux concentrations at the boundary, rather than with the topol-
ogy of the boundary flows, which must anyway create others
QSLs, even if the magnetic field is initially homogeneous.

This conjecture and its associated time-scales should be
tested in the future. If QSLs associated to the flux concen-
trations dominate in general, their calculation in potential (or
force-free) field extrapolations of any high resolution magne-
togram could be a good proxy not only for the occurrence of
solar flares, but also for the locations where coronal heating re-
sults in the illumination of discrete loops in EUV images of the
corona. Wang et al. (2000) and Fletcher et al. (2001) provided
first observational evidences of this.

Appendix A: Numerical and physical issues
regarding resistive and viscous effects
in separatrices and QSLs

For the bipolar magnetic configurations that we studied, es-
pecially for Φ = 150◦, but also for more general configura-
tions, the profile of the squashing degree Q can be very strongly
peaked (Démoulin et al. 1996a,b; Titov et al. 2002). This peak
is, in fact, infinitely high and thin in the case of separatri-
ces. The related full width at half maximum of the Q profiles
can then often be orders of magnitudes below the grid reso-
lutions presently achievable in MHD simulations. We argue
that in an ideal plasma, the continuous characteristics of the
ideal MHD equations (with neither resistive nor viscous effect)
should physically advect the field lines in the volume according
to the line-tied boundary motions. We believe that this physical
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advection should then typically form thin current layers, with
a thickness comparable to the QSL thickness (zero in the case
of a separatrix, see e.g. Aly 1990; Low & Wolfson 1988; Lau
1993). The width of the current sheets that form is of major im-
portance for flare and reconnection modeling, since it clearly
determines the diffusive time, thus the duration of energy stor-
age (see Sect. 5.2) and the reconnection rate (see e.g. Sweet
1958; Petsheck 1964).

If the physical behaviour described above is also true when
discretized equations are used in a numerical simulation, the
line-tied motions should try to form sharp current layers at the
QSLs on a time-scale of the order of the travel time of Alfvén
waves along a QSL field line, and at a scale below the grid reso-
lution, thus further leading to a quick numerical instability over
a few time steps. This fast instability clearly does not happen
in our simulations. It does happen in the HFT, but only after
tens of Alfvén time units. Outside the HFT, but still within the
QSLs, all our simulations result in current layers that are indeed
narrow, but that are still resolved and far wider than the QSL
itself (see Fig. 8 and Table 2). The same behavior is found in
many separatrix line-tied 2.5D MHD simulations (e.g. Ma et al.
1995; Longcope & Magara 2004), which should physically re-
sult in spontaneous zero-width current sheet formation (as dis-
cussed by Low & Wolfson 1988). In the case of MHD numeri-
cal simulations, three questions therefore arise:

(1) How is the discretized system of MHD equations sensitive
to the QSL small-scales (or separatrix zero-scale) that al-
ready exist below the mesh resolution at t = 0?

(2) How do the resistive and viscous terms control the width of
the current layers that form around separatrices and QSLs?

(3) How reliable are line-tied simulations of unresolved QSLs
and separatrices in the calculation of time-scales associ-
ated with reconnection (duration of the energy storage and
reconnection rate)?

In order to discuss these major issues, we performed two other
simulations (hereafter labeled “S1” and “S2”) of our sharpest
case: Φ = 150◦ with twisting motions. Both simulations were
done with exactly the same settings as the original (let us call
it “S0”), except that η = 0 in S 1 and η = 0 and uν
(t > 13) = 0
in S2. S1 surprisingly gave very similar results to S0. In particu-
lar, the narrow current layers that formed in the QSL, although
they were slightly more intense, spontaneously developed on
the same (resolved) scale, for tens of time units. The main dif-
ference is that S1 was halted earlier than S0, at about t ∼ 31
instead of 40, because of numerical instabilities developing in
the HFT, not elsewhere in the QSL. This earlier instability was
expected off course, since the current build up at the HFT was
not weakened by diffusion. However the long duration of the
ideal simulation was not expected according to the idea that
magnetic diffusion was not there to ensure that the current lay-
ers within the QSLs remained resolved. S2 remained stable for
about one Aflvén time after the viscous term was set to zero
at t = 13, and fast growing numerical instabilities stopped the
run by t ∼ 15. Even though common sense tells us that set-
ting all diffusive terms in an MHD simulations cannot result in
anything else than a numerical instability, we still performed
this run to see where and how the instability first developed.

We found that it did not occur in the HFT, but on both sides
of the magnetic configuration, around (x, z) = (±0.25, 0.18).
These regions did not correspond to the strongest squashing
degree Q, but rather to the regions where the ratio between the
(non-uniform) grid size to the width of the unresolved QSL
peak was the highest.

Comparing the three simulations permits us to give some
answers to the questions addressed above.

(1) Since with no diffusive term, numerical instabilities first
and very quickly develop where the QSLs are the least re-
solved, we argue that our MHD code is somehow aware of
the field line connectivities, even if the latter have strong
unresolved gradients. Since our numerical scheme (de-
scribed in detail in Aulanier et al. 2005) has no explicit fea-
ture to ensure this, we believe that it is a general property
of all explicit codes that do not incorporate any important
scheme-based diffusive effects.

(2) Since a simulation with only viscosity is barely distin-
guishable from another one with both viscous and resis-
tive effects, it appears that not only resistivity, but also
viscosity, is a determining factor in the broadening of cur-
rent sheets. The effect of the latter is in fact to smoothe
the velocity profiles that result from the Aflvén waves that
transport the information from one field line footpoint to
another. So the shearing profile of the magnetic field on
both sides of the QSL at z > 0 is artificially broadened,
regardless of any resistive effect. This issue is not men-
tioned often in numerical simulations of separatrices and
null points, which tend to focus their parameter study on
the value of the Lundquist number.

(3) Since viscosity and resistivity both limit the width of the
current layers (to achieve long runs), it seems that the slow
amplification of electric currents in magnetic field gradi-
ents that are on the scale of the mesh (i.e. the pre-flare
energy build-up phase) is fully conditioned by the diffu-
sive terms, which are always much higher than in a real
plasma. Hence, the current sheet gradual stretching that is
calculated in unresolved HFTs (see Fig. 8, middle panel) or
at the intersection of separatrices (e.g. Biskamp 1986; Ma
et al. 1995; Longcope & Magara 2004) may then be un-
physical. This could have strong consequences in the eval-
uation of reconnection rates.

In a real physical system such as the solar corona, however, the
continuous MHD equations are applicable to a much broader
range of spatial scales than in present numerical simulations.
We conjecture that the true width of the current layers within
QSLs should then be defined by the true profile of the squash-
ing degree Q (as in Fig. 8, left panel), while the boundary mo-
tions should define the precise current magnitude within these
thin layers. The central peak of Q can have very high values,
tending to infinity for a true separatrix, and the peak width
can be extremely narrow, tending to zero for a true separatrix).
Physical limitations to achieve these small scales should then
be micro-physics (diffusive) effects and finite time evolutions,
if the characteristic wave propagation speed is locally slow,
e.g. in the vicinity of a magnetic null point. More generally,
this implies that the gradual amplification of electric currents
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in QSLs can only be possible as long as the later are broader
than the physical dissipative scale, whatever its precise nature
(resistive or collisionless). This suggests that slow line-tying
motions around separatrices cannot account for anything more
than steady coronal heating, since there, the currents readily
form at the dissipative scale.

All these conjectures are difficult to test quantitatively,
since resolving thin QSLs numerically is difficult. For very
thin QSLs, MHD simulations should be performed with very
small grid scales (see the values of δQ,H given in Table 2),
which are hardly reachable with present computers facilities.
Adaptive mesh refinement techniques are plausible ways to
study a much larger range of scales. For wider QSLs, the am-
plitude of footpoint motions required to generate enough cur-
rents in the initial QSLs may be so large that new QSLs may
form earlier on smaller scales, due to the prescribed velocity-
field topology at the boundary. The newly formed QSLs can
become much thinner than the initial QSLs, thereby dominate
the current buildup. This is what happened in the simulations of
Galsgaard et al. (2003), as discussed in Démoulin (2005). Since
our configuration for Φ = 120◦ has QSLs that remain resolved
during about one fourth of the duration of our simulations, a
compromise between both possibilities should be possible to
investigate in a close future.
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